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Abstract

Etoposide is a chemotherapy drug derived from the natural lignin podophyllotoxin. Our novel 

generated Aza-podophyllotoxin compounds (AZP 8a & AZP 9a) are analogues of podophyllotoxin 

and were previously screened for anti-cancer activity through the NCI 60 cell line screening panel 

showing activity on various cell types including colon cancer. This study expands the 

toxicological screening by studying apoptosis and various hallmark events as part of the 

mechanism of action of these compounds on colon cancer cells. The COLO 205 cell line was 

selected and exposed to AZP to determine the IC50 doses at 24 hours treatment. Apoptosis 

hallmark events such as migration of phosphatidylserine (PS) to the cell membrane, DNA 

fragmentation, cell cycle effects, mitochondrial membrane permeabilization and caspase activation 

were included. Experiments were performed in triplicates for all tested compounds including AZP 

8a, AZP 9a, camptothecin as positive control and vehicle as negative control. Our results present 

contrasting apoptotic activity between the experimental compounds. Compound 8a presented 

migration of PS (annexin V assay), DNA fragmentation and cell cycle arrest at S phase. 

Compound 9a presented PS migration with fragmented DNA, cell cycle arrest at S phase, 

mitochondrial membrane permeabilization and activation of caspase 3, 8 and 9. Compound 8a 

without the oxygen atoms in ring A appears to cause effects similarly to autophagy as induced by 

etoposide, a cancer drug analogue of our heterocyclic compounds. Compound 9a with the oxygen 

atoms in expanded ring A presented induction of cell death following activation of a classical 

apoptosis pathway. Our results suggest that minor structural differences among these AZP can 

account for the difference in biological response and cancer cell toxicity.
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1. Introduction

The American mayapple (Podophyllum) has been a source of bio-active lignans for many 

years. The most studied one of these is podophyllotoxin (1) Figure 1(a).

This natural compound 1 presents a chemical structure consisting of four fused planar rings 

with consecutive chiral centers [1]. Original uses for podophyllotoxin since 1942 (still in 

use) include topical applications [2]. Among the various medical applications of 

podophyllotoxin or its derivatives are skin disorders, periodontal disease, parasitic infections 

and a number of anti-viral applications among others [3]. Podophyllotoxin was antimitotic 

and tubulin inhibitor by itself [4] but later it was developed as a topoisomerase-II inhibitor. 

Several semisynthetic derivatives of podophyllotoxin have been used as chemotherapeutic 

drugs. These current derivatives are etoposide (2), etopophos (3) and teniposide (4) [5] 

(Figure 1(b)).

Arguably the most important derivative of these has been etoposide (also known as VP-16). 

This drug has been widely studied and has been classified since the 1980's as a 

topoisomerase II inhibitor [6].

The success of etoposide has led to a great deal of work with podophyllotoxin derivatives, 

much of it studying a variety of biological effects and anti-cancer activities [7] [8].

Synthesis of podophyllotoxin in laboratory is still quite challenging chemistry [9]. To fulfill 

the industrial demand of 1 we are still dependent on the endangered natural sources of this 

compound. 1 is also the precursor to a new derivative CPH 82 (5) (Figure 1(c)) which has 

been tested for rheumatoid arthritis in Europe [10], and it is the precursor to other 

derivatives used for the treatment of psoriasis [11] and malaria.

In our previous work we explored the synthesis and application of novel aza-

podophyllotoxin derivative compounds which led to several new analogs with anti-cancer 

potential [12]. Using a one pot method, synthesis of an aza-podophylltoxin derivative is less 

complicated and results in a high yield. This method also, allows us to create extensively 

modified libraries of several novel derivatives, which were previously impossible to 

synthesize from podophyllotoxin [13]. These new aza-podophyllotoxin derivative 

compounds have only two chiral centers at the 1 and 4 positions of ring “C” as compared to 

4 chiral centers in ring “C” of podophyllotoxin. Elimination of chirality at C2 and C3 by 

double bond in aza-podophyllotoxin is helping all the 4 A, B, C, and D fused rings in one 

plane, better than podophyllotoxin. Probably this is one of the reasons for enhanced activity 

of aza-podophyllotoxin derivatives against tumor cells [14]. Most of the drugs from our 

library showed excellent activity against 60 types of human cancer cell line panels 

performed at the United States National Cancer Institute (NCI) [15]. Two AZP derivatives 

8a (4-(2-Hydroxyethyl)-10-(3,4,5-trimethoxyphenyl)-3,4,6,7,8,10-hexahydro-1H-

yclopenta[g]furo[3,4-b]quinolin-1-one) (Figure 1(c)) and 9a (6-(2-Hydroxyethyl)-10-(3,4,5-

trime-thoxyphenyl)-2,3,7,10-tetrahydro-[1,4]dioxino[2,3-g]furo[3,4-b]quinolin-9(6H)-one) 

(Figure 1(c)) were found very active against COLO 205 colon cancer cell line. Compound 

8a does not contain an oxygen atom in ring A, while compound 9a contains 2 oxygen atoms 

and expanded ring with 1 carbon in ring A. Here we are presenting the major apoptotic 
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associated activities of 8a and 9a in COLO 205 human cancer cell line directed to determine 

the mechanism of action of these novel podophyllotoxin derivatives. This information will 

establish the background biological activities necessary for conducting further in vivo and 

gene expression studies.

2. Materials and Methods

2.1. Cell Culture

The cell line used in this study was the COLO-205 human colorectal adenocarcinoma 

(ATCC CCL-222). Cells were maintained in RPMI 1640 (ATCC, Manassas VA) containing 

10% fetal bovine serum (ATCC). Cultures were maintained at 37°C with humidified 

atmosphere of 95% air/5% CO2. Measurement of apoptosis endpoints was determined at a 

24 hours exposure. This time of exposure allows sufficient time to screen various events that 

occur within 24 hours [15].

2.2. Annexin V

The annexin V assay has been used as an apoptosis event indicator thru the detection of 

phosphatidylserine (PS) on the exterior surface of cells, a key event in apoptotic cells [16]-

[18]. Approximately 4 × 106 cells were treated for 24 hours with the GI50 dose of each 

compound (80 nM of 8a and 180 nM of 9a) as previously determined [12]. Controls used in 

all assays were etoposide (3.38 μM), podophyllotoxin (3.44 μM) and vehicle (DMSO). After 

24 hours of exposure, cells were stained with annexin V conjugate, and propidium iodide 

(Biotium, Hayward, CA). Samples where then analyzed using the Nucleo Counter NC3000 

system (Chemometec, Allerød, Denmark). All experiments described in this section were 

analyzed using the Nucleo Counter NC3000 system, reagents and kits are specified by the 

manufacturer.

2.3. DNA Fragmentation

The measurement of deoxyribonucleic acid (DNA) fragmentation after exposure to chemical 

substances has been used as a tool for apoptosis detection for a number of years [19] [20]. 

This event which is mediated by nucleases can be measured using DNA content and 

measuring cells containing less than 1DNA equivalent known as Sub-G1. This assay is 

based on removal of small DNA fragments and the retention of 4′,6-diamidino-2-pheny-

lindole (DAPI) stained fragments which have a higher weight. After 24 hours treatment with 

the test drugs and controls at their respective GI50 dose, cells fixed with ethanol 70%, 

stained with 1 μg/ml DAPI, and then analyzed by differential image analysis which 

measured DAPI intensity.

2.4. Cell Cycle Effects

Changes to cell cycle can provide insight to therapeutic drug's mechanism of action and 

targeting this key cellular event has been used as mechanism against cancer cells [21]-[23]. 

In order to study any possible alterations in the cell cycle, the DAPI based NC3000 fixed 

cell cycle assay was performed. Cells exposed to the experimental drugs were stained with 1 

μg/ml DAPI and analyzed to measure DNA content.
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2.5. Mitochondrial Membrane Permeabilization

Mitochondrial membrane permeabilization (MMP) is a well-known event during apoptosis 

[24]. A total of 1 × 106 cells were exposed to the test compounds and controls etoposide and 

podophyllotoxin at previously described doses, then labeled with 200 μg/ml of 5,5′,6,6′-

tetrachloro-1,1′,3,3′-tetraethylbenzimidazolocarbocyanine iodide (JC-1) stain to assess 

mitochondrial potential changes. A counter stain with 1 μg/ml DAPI in PBS was also 

applied, then analyzed to detect the fluorescent markers.

2.6. Caspase Activity

Caspase activation, a hallmark of the apoptosis process [25], was assessed to determine the 

response to the tested compounds. Cells were exposed to the compounds as described 

previously, harvested then stained with Fluorescent Labeled Inhibitors of Caspases (FLICA) 

which bind to active caspases. The green FAM FLICA kit (Immunochemistry Technologies, 

Bloomington Min) for caspase 3, 8 and 9 were used as per manufacturer's specifications then 

analyzed the fluorescent probe.

2.7. Statistical Analysis

A one way ANOVA and Post Hoc Test Tukey was also performed on all experiments to 

determine statistical significant differences.

3. Results

3.1. Annexin V

Expression of phosphatidylserine was measured as an apoptosis marker. Both tested 

compounds presented statistical significance (P < 0.05) for apoptosis induction. Compound 

8a presented 44% of apoptotic cells while 9a presented 59.5%. Figure 2(a) presents the 

values obtained. Compound 9a presented a majority of cells at a late apoptotic stage (50%) 

shown on Figure 2(b). Both compounds are comparable to the positive controls etoposide 

(32%) and podophyllotoxin (27%) clearly showing apoptotic activity.

3.2. DNA Fragmentation

Cells with fragmented DNA were assessed using DAPI staining. Results indicate significant 

fragmentation for both tested compounds. Figure 3 shows results for DNA fragmentation, 8a 

presented a mean of 20.9% DNA fragmentation whereas 9a presented 30.5%. These results 

contrast with the structural analog etoposide (9.5%) and podophyllotoxin (16%) which did 

not cause statistically significant DNA fragmentation.

3.3. Cell Cycle Effects

We analyzed the cell cycle to assess possible details which may give insight to the 

mechanism of action of the tested compounds. Our results indicate that the majority of cells 

exposed to the tested compounds were arrested at the S phase of the cell cycle (Figure 4). A 

total of 54% of cells exposed to compound 8a were arrested at the S phase followed by 13% 

at the G2/M, 10% at the Sub G0 and 3% at the G0/G1 stage. For compound 9a the majority 

Vélez et al. Page 4

Open J Med Chem. Author manuscript; available in PMC 2014 December 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



of cells (52%) were arrested at the S phase followed by 12% at the sub G0 stage, 8% at the 

G2/M and 2% at the G0/G1 stage.

3.4. Mitochondrial Membrane Permeabilization

Mitochondrial mediated apoptosis can be an indicator of intrinsic apoptotic pathway. We 

examined this phenomenon to assess the possibility of an intrinsic mechanism after exposure 

to our tested compounds. Our results indicate that only compound 9a induced a statistically 

significant (P < 0.05) permeabilization of the mitochondrial membrane (MM). Compound 9a 

caused a mean of 82.5% (Figure 5) of cells with permeabilized MM while compound 8a 

caused 41% which was not statistically significant and comparable to the compounds which 

also did not cause MM permeabilization.

3.5. Caspase 3 y 7 Activation

Caspase activation can provide insight in the mechanism of action and cell death processes. 

We analyzed caspase 3 and 7 effector caspases after exposure to our tested compounds. 

Results show (Figure 6(a)) that only compounds 9a (70.5%) and positive control 

podophyllotoxin (44%) caused significant activation of effector caspases whereas compound 

8a caused no significant activation (33.5%) comparable to the negative control. 

Interestingly, only cells exposed to compound 9a were detected at a late apoptotic stage 

(Figure 6(b)).

3.6. Caspase 8 Activation

Caspase 8 was measured to determine if apoptosis occurs via an intrinsic or extrinsic 

pathway. Our results show that only compound 9a caused significant activation of caspase 8 

with an 82.5% of cells with activated caspase 8 (Figure 7). These caspase activated cells 

were again detected in the late apoptotic stage as in the caspase 3 results. All other 

compounds did not present significant activation of caspase 8.

3.7. Caspase 9 Activation

Caspase 9 activation is a hallmark event of the intrinsic apoptotic pathway. Our results show 

activation of caspase 9 on cells treated with the 9a compound (89.5%). This was unexpected 

since caspase 8 was also activated thus an extrinsic mechanism was presumed to be involved 

(Figure 8).

4. Discussion

In this study we screened the biological activity and apoptosis induction of two novel aza-

podophyllotoxin derivatives. These compounds were previously assayed for toxicity against 

a number of cell lines and were determined to be active for growth inhibition upon COLO 

205 colorectal adenocarcinoma cells among other cancer cell types. Both of our tested 

compounds presented different biological activities on the COLO 205 cell line. Compound 

8a presented an unexpected apoptotic activity profile. This compound presented PS 

migration to the exterior of cells as evidenced by the annexin V staining. Migration of PS is 

usually indicative of an apoptotic cell death mechanism. Additionally this compound 

presented a significant cell cycle arrest at the S phase and as well as DNA fragmentation; 
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however none of the traditional apoptosis hallmarks such as mitochondrial membrane 

permeabilization and caspase 8, 9, 3 and 7 activation were detected in a significant manner.

This type of apoptosis sometimes referred to as atypical apoptosis, has been observed after 

activation of intra-S DNA damage checkpoints [26], or p27 mediated autophagy [27]. Intra-

S checkpoint effects involve the phosphorylation of proteins such as the retinoblastoma 

tumor suppression protein (pRB) causing accumulation of cells at the S phase to permit 

reparation of any DNA damage. P27 mediated autophagy results from inhibition of cyclin 

dependent kinases (CDK) which regulate cell cycle progression [28] [29]. Other types of 

similar effects include inhibition of the topoisomerases in which cell cycle arrest with DNA 

fragmentation have been documented [30] in this case however, evidence of caspase 3 

activation was observed. Given our compounds close structural relationship with the known 

topoisomerase II inhibitor, etoposide; we deduced that biological activities could be similar 

to this chemotherapeutic drug.

Our results for compound 8a are similar to previous work [31] in which etoposide induces 

autophagic cell death through a BCL-2 dependent mechanism. The activity of compound 9a 

included the same positive parameters as in compound 8a such as PS migration, DNA 

fragmentation and cell cycle arrest at S phase. This compound however did cause activation 

of caspases 3, 8 and 9 in a significant manner. Generally the type of activated caspase can 

give insight to the cell death mechanism that is occurring. The death receptor pathway (also 

known as extrinsic) is usually associated with activation of caspase 8 [32]. Other evidence 

exists in which this caspase can be activated by other mechanisms such as p53 [33]. Intrinsic 

mediated pathways include the liberation of cytochrome C after mitochondrial membrane 

permeabilization. This pathway can cause activation of the apoptosome complex involving 

caspase 9 [34]. It is this caspase in its activated form that cleaves effector caspase 3 which 

acts upon numerous cell substrates that can cause the characteristic DNAse mediated 

fragmentation [35] [36]. If we consider this information in the context of compound 9a we 

can see that the classical apoptosis effects are present. Work by Liu et al. [37] demonstrates 

that etoposide can cause p53/p73 apoptosis through a caspase 8 signal amplification of the 

intrinsic mitochondrial pathway. This suggests a similar mechanism for 9a in which we 

evidenced mitochondrial permeability as well as caspase activation including the classic 

hallmarks of apoptotic cell death.

5. Conclusion

Although a complete mechanistic description was beyond the scope of this work, we found 

interesting evidence which suggests a structure-activity difference for our aza-

podophyllotoxin derivatives. Compound 8a presents similar core structure to the 

podophyllotoxin, precursor of etoposide. The only difference is substitution of nitrogen in 

ring “C” at position 4, elimination of two chiral centers and elimination of 2 oxygen atoms 

from ring A. Substitution of nitrogen in ring C might not make significant difference in 

biological activity [38] and elimination of chirality from ring C probably enhancing its 

biological activity by increasing planarity in one plane of all four fused rings [39] [40]. 

Elimination of 2 oxygen atoms from ring A is probably playing a key role in the biological 

activity of these compounds. 8a does not have the two oxygen atoms in ring A appearing to 
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have activity similar to etoposide inducing autophagy [31], whereas compound 9a has minor 

structural difference from compound 8a except that it has two oxygens and ethylene group 

on ring A presented typical apoptosis cell death with the hallmarks of etoposide induced 

apoptosis. Overall, this preliminary biological screening for these novel substances provides 

the ground work for further insight on these promising substances.
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Figure 1. 
(a) Structure of Podophyllotoxin 1; (b) Drugs Derived from Podophy llotoxin; (c) N-

Hydroxyethyl-4-aza-didehyropodophyllotoxin Derivatives.
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Figure 2. 
(a) Annexin V analysis. Results clearly indicate apoptotic activity for both compounds. 8a 

presents 44% of apoptotic cells whereas 9a presents 59.5%. Both compounds present higher 

activity than the positive controls etoposide (32%) and podophyllotoxin (27%); (b) Annexin 

V Staining Histogram. Data presents the stage of apoptosis after exposure to the tested 

compounds. Compound 9a presents the majority of cells (50%) at a late apoptotic stage (top 

right quadrant). Positive controls and test compound 8a present mostly cells at an early 

apoptotic stage clustered in the bottom right quadrant.
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Figure 3. 
DNA Fragmentation. Results indicate significant DNA fragmentation for both tested 

compounds 8a (20.9%) and 9a (30.5%) in comparison with the analog controls etoposide 

(9.5%) and podophyllotoxin (16%).
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Figure 4. 
Cell Cycle. Results indicate that the majority of cells exposed to the tested compounds were 

arrested at the S phase. The majority of the cells exposed to compound 8a were arrested at 

the S phase followed by 13% at the G2/M, 10% at the Sub G0 and 3% at the G0/G1 stage. 

For compound 9a the majority of cells (52%) were arrested at the S phase followed by 12% 

at the sub G0 stage, 8% at the G2/M and 2% at the G0/G1 stage.
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Figure 5. 
Mitochondrial Membrane Permeabilization. Results indicate that compound 9a caused 

significant mitochondrial permeabilization, but not 8a. Compound 9a caused a mean of 

82.5%, compound 8a 41%, the controls etoposide 35.5%, podophyllotoxin 37.5% and the 

vehicle 21% mitochondrial membrane permeabilization.
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Figure 6. 
(a) Caspase 3 and 7 activation. Results reveal that among the experimental drugs compound 

9a caused significant activation of effector caspases in contrast to the compound 8a; (b) 

Caspase 3 and 7 activation. Compound 9a caused significant activation of effector caspases 

in contrast to compound 8a. As observed the majority of cells are in the late apoptotic stage 

(upper right quadrant). Caspase activated green fluorescent cells (lower right box) were used 

in this assay.
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Figure 7. 
Caspase 8 activation. Results show that compound 9a activated caspase 8 on treated cells in 

contrast to the compound 8a where no significant activity was detected.
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Figure 8. 
Caspase 9 activation. when comparing our test drugs, only compound 9a induced significant 

activation of caspase 9 in contrast to compound 8a.
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