
Predicting Differentially Methylated Cytosines in TET and

DNMT3 Knockout Mutants via a Large Language Model, 2024, pp. 1–10

doi: DOI HERE

Advance Access Publication Date: Day Month Year

Paper

PAPER

Predicting Differentially Methylated Cytosines in TET
and DNMT3 Knockout Mutants via a Large Language
Model

Saleh Sereshki1 and Stefano Lonardi1,∗

1Department of Computer Science and Engineering, University of California, Riverside, 900 University Ave, Riverside, 92521, CA, United

States
∗Corresponding author. stelo@cs.ucr.edu

FOR PUBLISHER ONLY Received on Date Month Year; revised on Date Month Year; accepted on Date Month Year

Abstract

DNA cytosine methylation is an epigenetic marker which regulates many cellular processes. Mammalian genomes typically
maintain consistent methylation patterns over time, except in specific regulatory regions like promoters and certain
types of enhancers. The dynamics of DNA methylation is controlled by a complex cellular machinery, in which the
enzymes DNMT3 and TET play a major role. This study explores the identification of differentially methylated cytosines
(DMCs) in TET and DNMT3 knockout mutants in mice and human embryonic stem cells. We investigate (i) whether
a large language model can be trained to recognize DMCs in human and mouse from the sequence surrounding the
cytosine of interest, (ii) whether a classifier trained on human knockout data can predict DMCs in the mouse genome
(and vice versa), (iii) whether a classifier trained on DNMT3 knockout can predict DMCs for TET knockout (and
vice versa). Our study identifies statistically significant motifs associated with the prediction of DMCs each mutant,
casting a new light on the understanding of DNA methylation dynamics in stem cells. Our software tool is available at
https://github.com/ucrbioinfo/dmc_prediction.
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Introduction

DNA methylation is an epigenetic marker which directly or

indirectly regulates several critical cellular processes, including

gene expression, genome stability, transposon suppression,

and gene imprinting (see, e.g., (14; 15; 16; 17; 18; 19; 20;

21; 22; 23; 24; 25; 26)). The most common form of DNA

methylation, known as 5-methylcytosine (5mC), involves the

attachment of a methyl group to the fifth carbon of a cytosine

residue. Abnormal methylation patterns in humans have been

associated with diseases, including cancer and imprinting

syndromes (see, e.g., (29; 30; 31; 32)).

In mammals, DNA methylation primarily occurs in

CpG dinucleotides, with most of them being methylated

(28). Mammalian genomes typically maintain consistent CpG

methylation patterns over time, except in specific regulatory

regions like promoters and certain types of enhancers (27).

In these variable regions, the dynamics of methylation and

demethylation is orchestrated by a complex cellular machinery,

in which the enzymes DNMT3 (A/B) and TET play a major

role. DNMT3A and DNMT3B are DNA methyltransferases

that can add a new methyl group to cytosines, e.g., during

development and cellular differentiation (34; 33). TET is

an enzyme that catalyzes the conversion of 5-methylcytosine

to 5-hydroxymethylcytosine and its oxidized derivatives. The

conversion of 5-hydroxymethylcytosine and its derivatives

ultimately leads to active DNA demethylation (35).

Knockout experiments that disrupt DNMT3 and TET have

allowed life scientists to unravel the complex dynamics of DNA

methylation changes over time and space, and across cell types.

During pluripotency stages, DNMT3 and TET modulate the

epigenetic landscape, thus influencing cellular differentiation

(36; 2). During post-fertilization reprogramming, the embryo

undergoes a two-phase process in which it loses gamete-specific

DNA methylation patterns inherited from the oocyte and

sperm, with the initial active demethylation of the paternal

genome by TET3 followed by subsequent passive dilution of

DNA methylation during cell divisions (37).

TET and DNMT3s are crucial in regulating fetal organ

development and tissue generation, through DNA methylation

and histone modifications (55; 54; 56; 57; 58). Their

dysregulation is linked to human diseases, particularly cancers

(59; 60; 61; 62; 63). Although the importance of TETs is

well recognized, their precise mechanisms of action is not well

understood. Several studies have shown that DNMT3 and

TET, both individually and in combination, influence DNA

methylation patterns in human embryonic stem cell lines (e.g.,

(2)). Chao et al. also studied the interactions between TET1,
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DNMT3A, and DNMT3B in human embryonic stem cells, and

how these interactions collectively influence global methylation

patterns (9).

Given the importance of DNMT3 and TET in developmental

biology and embryogenesis, there is strong interest in

characterizing which cytosines are affected by these two classes

of enzymes. A few recent studies attempted to capture the

sequence preference for DNMT3 and TET. For instance, in (39)

the authors showed that TET has a sequence preference for CG

dinucleotides within specific transcription factor-binding sites,

indicating that its activity in catalyzing DNA demethylation

is influenced by the underlying sequence context. The study in

(9) also reported that TET1 prefers binding to specific genomic

regions. This appears to be also true for DNMT3. Jeltsch et al.

(40) demonstrated that the enzymatic activities of DNMT3A

and DNMT3B are influenced by the sequence context of their

target sites. As part of these studies, several DNMT3 and

TET knockout methylation data sets for human and mouse

have been produced (see, e.g., (2; 4; 6)). These data sets open

the possibility to investigate whether one could predict which

specific cytosines are affected by DNMT3 and TET using a

machine learning model.

Here we explore for the first time the problem of predicting

differentially methylated cytosines (DMC) in TET and DNMT3

knockout mutants, using exclusively the underlying DNA

sequence around the cytosines. Our predictor, called L-MAP

(Language model-based Methyltransferases Activity Predictor),

is transformer-based large language model that utilizes

contextual sequence information to predict the enzymatic

activity of DNMT3 and TET on cytosines.

We envision the main use of L-MAP as a tool to impute

missing and/or uncertain DMCs obtained from wet lab

experiments. In this study, we also investigate (1) whether

training L-MAP on DNMT3 knockouts can be used to predict

TET activities, and vice versa; (2) whether training L-MAP

on human knockout data can be used to predict enzymatic

activity on mice, and vice versa; (3) whether the methylation

levels of nearby cytosines can help L-MAP predicting DMCs

with higher accuracy; (4) whether L-MAP has learned sequence

motifs known to be associated with the activity of DNMT3 and

TET enzymes.

A deeper understanding of cell functions can lead to

significant advancements in medical research, therapeutic

development, disease prevention, and diagnostic techniques,

such as drug discoveries (64; 65; 66). Some studies have

identified interacting partners for TETs and DNMT3s (67;

68; 69; 70). Here, we have identified transcription factor

binding site (TFBS) motifs that may be linked to TET

and DNMT3 activity in pluripotent cells. These findings can

open new avenues for understanding the functions of these

methyltransferases and lead to advancement in treatment

strategies and novel drug discoveries.

Results

Seven data sets, across three studies, were used to train

and test L-MAP. In the first study by Charlton et al. (2),

the authors utilized CRISPR-Cas9 to create an array of gene

knockouts in human embryonic stem cells (ESC) involving

DNMT3s and TETs, both individually and in combination.

The following knockout configurations were established: (i) in

the DNMT3KO ESC line, both DNMT3A and DNMT3B genes

were deactivated; (ii) in the TETKO ESC line, TET1, TET2,

and TET3 genes were knocked out; (ii) in the QKO ESC line,

TET1, TET2, TET3 and DNMT3B were deactivated; and (iv)

in the PKO ESC line, TET1, TET2, TET3, DNMT3A and

DNMT3B were knocked out. The second study by Gu et al.

(4) involved DNMT3A and DNMT3B knockout in mouse ESC.

The third study by Ansari et al. (6) involved TET2 and TET3

knockout in mouse intestinal stem cells (ISC).

All ten datasets (seven knockout and three wild type)

(i) were obtained using whole genome bisulfite sequencing

using Illumina sequencing instruments and (ii) were processed

using the BSMAP pipeline (1) for mapping bisulfite-treated

reads to the reference genome. In our experiments, we used

the methylation levels provided by the authors. However, to

ensure that we could compare methylation level across different

studies, we re-analyzed the three wild-type samples using a

common software pipeline. We processed the three sets of

Illumina reads through Bismark (5) using default parameters.

The methylation levels obtained from our pipeline matched

almost exactly the methylation levels provided by the authors:

the mean square difference between our levels and those

provided by the authors were less than 2%.

Supplemental Figure 2 reports the genome-wide methylation

levels for the three wild type and seven knockout data sets.

In general, the methylation level of a cytosine c ranges from

0 to 1, where 0 indicates that none the cells in the sample are

methylated on c, and 1 indicates that all the cells in the sample

are methylated on c. Observe that the average methylation level

is in the range 0.7–0.8 for all data sets, except for the DNMT3A

knockout data set on the mouse ESCs.

The methylation levels for the seven knockout and three

wild type datasets were used to determined seven sets of

differentially methylated cytosines (DMC). A cytosine was

determined to be differentially methylated when its methylation

level for the knockout was significantly higher or lower than

its methylation level in the wild type (details in Methods).

Supplemental Figure 1 reports the number of differentially

methylated cytosines on the seven data sets. Observe that the

number of differentially methylated cytosines ranges from about

100 thousand in the DNMT3B knockout dataset for mouse

ESC, to about 1.5 million in the DNMT3A knockout for mouse

ESC. Based on this, we chose a sample size of 100 thousand

cytosines for each data sets, half of which were differentially

methylated (and the other half was not). The sample included

100 thousand 512 bp-long DNA sequence centered around the

chosen cytosines, along with the corresponding binary label (1

indicated a DMC, 0 otherwise). We evaluated the impact of size

of the training dataset on L-MAP’s accuracy in Supplemental

Figure 7. Observe that the accuracy improves up to a sample

size of 100,000. Further increases in the sample size do not

significantly improve L-MAP’s accuracy.

L-MAP was trained on 90% of the cytosines (chosen

uniformly at random from each data set) and tested it on the

remaining 10%. To ensure consistent results across different

random train-test splits, we computed the variance of L-MAP’s

accuracy across five random samples of the training set for

TETKO and DNMT3KO. The average and standard deviation

for L-MAP’s accuracy is illustrated in Supplemental Figure 5.

Observe that the deviation on L-MAP’s accuracy is very small

across different random samples for the training set, which

allowed us to rely on the results of a single run for the rest

of the experiments.

Figure 1-D shows the methylation levels of human

ESC wild-type and TET knockout cytosines in the region

[2493500,2497500] of chromosome 19, as a qualitatively example
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[SEP]
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Fig. 1. (A) the architecture L-MAP; (B) ROC curves for the performance of L-MAP on human TET and DNMT3 knockout datasets (AUC=area

under the curve, ACC=accuracy); (C) ROC curves for the performance of L-MAP on mouse TET and DNMT3 knockout datasets (AUC=area under

the curve, ACC=accuracy); (D - upper panel) methylation levels of human ESC wild-type and TET knockout cells in the region [2493500,2497500] of

chromosome 19; (D - middle panel) the difference in methylation level between wild-type and knockout, red dots indicate differentially methylation

cytosines; (D - lower panel) predictions generated by L-MAP based on contextual sequence information, red dots indicate cytosine that are predicted

to be differentially methylated

of the training data. The middle panel shows the difference in

methylation level between the two cell lines, where the red dots

indicate differentially methylation cytosines (blue otherwise).

The lower panel shows L-MAP’s predictions of differentially

methylation cytosines based on the sequence context around

the cytosine. Observe how L-MAP makes accurate predictions

in the middle portion of this region.

Figure 1-B show the ROC curves for the binary classification

performance of L-MAP on the four human knockout data set.

Observe that the best classification performance was achieved

on the TETKO dataset in which TET1, TET2, and TET3

genes were knocked out (area under the curve 0.95, accuracy

0.89). The second best was on the DNMT3KO dataset, in

which both DNMT3A and DNMT3B genes were knocked

out. The quadruple knockout (QKO) and quintuple knockout

(PKO) had lower accuracy and AUC compared to TETKO and

DNMT3KO. Our hypothesis is that mixing multiple enzymatic

knockouts in QKO and PKO makes it harder for the classifier

to capture their sequence specificity. However, the fact that

L-MAP can still classify differentially methylated cytosines in

the QKO and PKO suggests the existence of common sequence

signatures between the two classes of enzymes.

Figure 1-C shows the ROC curves for the binary

classification performance of L-MAP on the three mouse

knockout data set. Again, observe that the best classification

performance was achieved on the TET2/3KO dataset in which

both TET2 and TET3 genes were knocked out (area under the

curve 0.83, accuracy 0.73). These results in human and mouse

suggest that the TET activity is more sequence-dependent

than DNMT3. The performance of L-MAP on the DNMT3bKO

dataset was the second best.

Cross knockout prediction
In the following experiments we carried out a set of

cross-knockout and cross-species predictions. In one set of

experiments, L-MAP was trained on one knockout dataset and

tested on a different knockout enzyme. In the second set, L-

MAP was trained on human knockout data, and tested on

mouse data, or vice versa.

The cross-species L-MAP’s accuracy is visualized in

Figure 2-A and Figure 2-B, for human and mouse, respectively.

Observe that in most cases the highest accuracy is observed

when L-MAP is trained and tested on the same data set,

as expected. However, there are some exceptions. L-MAP’s

accuracy is higher when trained on human PKO and QKO data

sets and tested on TET data sets, compared to being tested

on the same knockout dataset. This can be explained by the

presence of shared patterns in PKO and QKO cell lines, both

of which include the knockout of TET.

The cross-knockout L-MAP’s accuracy is illustrated in

Figure 2-C and Figure 2-D. Figure 2-C reports the results

on three data sets: two for mouse ESC (DNMT3AKO and

DNMT3BKO) and one for human ESC (DNMT3KO, which

includes DNMT3A and DNMT3B knockout). Figure 2-D

reports the results on two data sets: one for human ESC

(TETKO, corresponding to TET1, TET2, and TET3 knockout)

and one for mouse ISC (TET23KO, representing TET2 and

TET3 knockout). Observe again that the highest accuracy is

achieved when the model is trained and tested on the same

dataset. Also observe that in the case of TET the cross-species

experiment yields significantly lower accuracy, suggesting that

the underlying sequence contexts associated with TET activity

are likely to be different in the two species.
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Fig. 2. (A) L-MAP’s accuracy when trained on a human knockout dataset and tested on another human knockout dataset (B) L-MAP’s accuracy when

trained on one mouse knockout dataset and tested on another mouse knockout dataset (C-D) L-MAP’s accuracy when trained on a human (mouse)

knockout dataset and tested on a mouse (human) knockout datasets

Motif analysis
The objective of this analysis was to extract “knowledge” from

the LLM to gain insights on the sequence context employed by

L-MAP to make predictions about DMCs. Briefly, we used the

attention layer of L-MAP to identify DNA sequences associated

with DMCs and DNA sequences associated with non-DMCs.

These positive and negative examples were processed using

STREME (41), to obtain motifs and corresponding p-values

(see Methods for details). Figure 3 reports the motifs with

the lowest p-value for each of the seven knockout datasets

(the lowest three p-value motifs are reported in Supplemental

Figures 8 and 9). We utilized JASPAR (38) to search for

known motifs that matched our motifs. The best matches are

reported in last four columns of Figure 3. First observe that

all the motifs belong to the C2H2 zinc finger factors, which

are known to have a role in methylation and demethylation

processes (see, e.g., (11; 12; 13; 3)). For instance, zinc finger

protein ZNF615 plays a significant role in embryonic stem

cell development through DNA methylation by facilitating the

recruitment of DNA methyltransferases to specific genomic

regions (42). Most of the matching motif are also associated

with molecular mechanisms in embryonic stem cells.

The first JASPAR hit in Figure 3 is the binding site for the

PRDM9 zinc finger, which controls the location and intensity

of crossovers during meiosis in humans and mouse (43; 45; 46).

Studies have shown that there is a link between PRDM9

activity and TET1 during meiosis in mice (44). The second

hit is the motif associated with ZNF320, which influences the

regulation of cell cycle and immune infiltration, underscoring

its significance in the molecular pathways of hepatocellular

carcinoma progression (47). The third hit is the binding site

for ZBTB14, which is a key protein in Xenopus embryonic

development, influencing neural induction and differentiation

by modulating BMP and WNT signaling pathways (48).

ZBTB14 is also known as a regulator that binds to non-

methylated CpG islands, playing a crucial role in controlling

gene expression associated with the 2-cell-like state (49). The

fourth hit is the motif associate with GLIS2, which has been

identified as a transcriptional activator and is implicated as an

epigenetically defined biomarker of a pluripotent phenotype in

human ESCs (50). The fifth hit is the binding site for ZNF740,

which plays a crucial role in cell differentiation by modulating

the expression of MEF2C and its target genes, influencing the

transition of pluripotent stem cells into trophoblasts through

its interaction with a specific genomic variation (52). The sixth

hit is the motif associate with ZNF343, which is involved in

early stages of human embryonic development and influences

embryo quality and developmental potential (51). The last

hit on Figure 3 is the binding site of KLF17 which plays a

significant role in the establishment of naive pluripotency in

human ESCs (53).

L-MAP’s high accuracy in the prediction of DMCs for

the TET knockout samples can be leveraged for a deeper

analysis of the related motifs. In Supplemental File 1, we

collected the 20 motifs with the lowest p-values and searched

the JASPAR database for corresponding transcription factor

binding motifs. These transcription factors can be further

analyzed for potential interaction with TET. Notably, CTCF

had the highest occurrence in the JASPAR hits. The interaction

between CTCF and TET is well studied (67; 75; 74; 71; 72; 73).

We expect that the other transcription factor in this list are

also interacting with TET, but most of them are unexplored in

the literature. This is an opportunity for research in functional

determinants of TET proteins.

DNMT3a and DNMT3b de novo DNA methyltransferases

are known to have strong sequence preferences, particularly

in the sequences surrounding the CpG dinucleotides (76; 77;

78; 79; 80; 81). To investigate which positions in the input

window are more important for the classification, we extracted

the L-MAP’s attention scores. Figure 10 and Figure 11 in the

supplemental material show the attention scores within the

input window for L-MAP on different data sets. Observe that L-

MAP’s strongest attention are the position flanking the center

cytosine. Also observe that the attention is much stronger for

the flanking positions for the DNMT3 data sets compared to

TET data sets, consistent with the literature.

Predictions using sequence and methylation levels
Within the scope of data imputation, one could assume to have

the methylation levels of some cytosines and want to predict

differentially methylated cytosines for the missing data. To test

the extent of which imputation would be possible, we modified
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Fig. 3. Sequence motifs (extracted from the attention layer of L-MAP) that achieved the lowest p-values in each knockout dataset and the corresponding

the best hits from the JASPAR motif database

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

HE
SC
-TE
TK
O

HE
SC
-D
NM

T3
KO

HE
SC
-Q
KO

HE
SC
-PK
O

ME
SC
_D
NM

T3
aK
O

ME
SC
_D
NM

T3
bK
O

MI
SC
_T
ET
23
KO

Ac
cu

ra
cy

seq-only seq+wt methylation seq+ko methylation seq+wt & ko methylations

Fig. 4. Effect of including neighboring cytosine methylation levels on L-MAP’s prediction accuracy for DMCs in seven knockout datasets

the input to L-MAP to allow the use of nearby methylation

levels for the wild type sample, the knockout sample, or both

(in addition to the primary DNA sequence surrounding the

cytosine of interest). Details about the architecture of this

variant of L-MAP can be found in the Methods section.

Figure 4 illustrates the performance of L-MAP using various

input combinations. Observe that providing the methylation

levels of neighboring cytosines does not significant improve

L-MAP’s accuracy. In fact, in four out of seven cases, L-

MAP performed slightly better when neighboring cytosine

methylation levels were not provided.

Discussion

Here we introduced L-MAP, a large language model capable

of predicting differentially methylated cytosines for TET and

DNMT3 knockouts from the DNA sequence surrounding the

cytosine of interest. Our findings highlight the potential of L-

MAP to predict DMCs even when trained on different knockout

datasets, with the exception of the model trained on the human

TETKO dataset and tested on mouse ESC TET23KO and vice

versa. This observation suggests distinct TET activity domains

in ESCs between mouse and human species.

Furthermore, our study identified DNA sequence motifs

associated with TET and DNMT3 activity in human ESC,

mouse ESC, and mouse ISC, which were validated by comparing

them to known motifs. Our work represents the first attempt

in addressing this challenging problem, and it provides a tool

to gain new insights into the role of TET and DNMT3 activity

in cell processes, particularly during cell differentiation. The

ability to predict DMCs and discover associated sequence motifs

opens up opportunities for advancing our understanding of

epigenetic regulation in various cellular processes.

Key Points

• L-MAP is a large language model that can predict

differentially methylated cytosines (DMCs) in human and

mouse when trained on TET and DNMT3 knockout data

sets

• L-MAP predicts DMCs with high accuracy exclusively based

on the DNA sequence surrounding the cytosine of interest

• L-MAP can predict DMCs even when trained on different

knockout data sets (human vs. mouse, or TET vs DNMT3)

• L-MAP can be used to discover new transcription factor

associated with TET and DNMT3
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Methods

Data sources and pre-processing
We used seven data sets from three different studies, namely

(i) the human ESC knockout data sets generated by Charlton

et al., who engineered several HUES8 embryonic stem cell

lines using CRISPR-Cas9, producing variants with double,

triple, quadruple, and quintuple genetic knockouts through the

selective inactivation of DNMT3A, DNMT3B, TET1, TET2,

and TET3 genes (2); (ii) the mouse knockout data sets

generated by Gu et al. who analyzed the roles of DNMT3A and

DNMT3B in DNA methylation within mouse ESCs following

the loss of those enzymes (4); (iii) the mouse ISC knockout

data sets produced by Ansari et al. who investigated the roles

of TET2 and TET3 in the small intestine by generating double

knockout mice (6). All the datasets are publicly available from

NCBI. We note that in all these datasets, due to the choice of

the protocol used to carry out bisufite-treated sequencing, only

the methylation levels for the forward strand is available.

Given a pair of (wild type, knockout) data sets, we

compared the difference in methylation levels for the same

cytosine in the two experiments. We defined a cytosine to

be differentially methylated (DMC) if the absolute value of

the difference between the methylation level in the wild type

and the methylation level in the knockout was at least 0.6,

as proposed by Charlton et al. in (2). We only called DMC

for cytosines that were covered by at least ten reads in both

wild type and knockout experiments. Cytosines that were

not covered by at least ten reads in either experiments were

considered undetermined and ignored in our study.

Training set design
We studied the effect of the size of the training set size on

L-MAP’s accuracy in Supplemental Figure 7. Observe that

L-MAP’s performance improves until the training set size

reaches 100 thousand data points. Expanding the training

set size further only increases the training time, without a

significant benefit in the accuracy. Based on this analysis,

for each experiment in our study, we sampled 50 thousand

cytosines (uniformly at random) from all genome-wide cytosines

that were differentially methylated, and another 50 thousand

cytosines (uniformly at random) from all genome-wide cytosines

that were not differentially methylated. We evaluated L-MAP’s

performance for various choices of the input window sizes on

DNMT3 and TET knockout datasets in Supplemental Figure 4.

Based on this analysis we selected 512 bp centered around the

cytosine of interest, as it yielded the best results among the

tested sizes. We observe that 512 bp is the longest possible input

that DNABERT allows. The sample containing 100 thousand

sequences was divided into training set (90%) and test set

(10%) uniformly at random. The label of each sequence was

binary, indicating whether the center cytosine was differentially

methylated or not.

Classifiers
The architecture of L-MAP combines DNABERT (10) with

a fully connected neural network as shown in Figure 1-A.

In Supplemental Figure 6 we assessed the accuracy of other

Transformer-based models. We selected DNABERT because it

achieved the best performance on the TET knockout dataset.

The input sequence was first tokenized in overlapping 6-mers.

In Supplemental Figure 3 we tested various sizes for the

tokens on the DNMT3 dataset, and k = 6 produced the best

performance. DNABERT’s output layer was used as input to a

fully connected neural network consisting of three layers with

128, 24, and 2 nodes respectively. Each layer used a dropout

rate of 0.5 and employed the ReLU activation function, with

the exception of the final layer, which utilized softmax as the

activation function. The model was trained utilizing the Adam

optimizer, with a learning rate of 1e-5, and employed the binary

class entropy as the loss function.

In the experiments that used neighboring cytosine

methylation levels, the embedding produced by DNABERT was

concatenated with the vector(s) representing the methylation

levels from either wild-type or knockout datasets (or both).

This additional vector was -1 in all positions, except for the

positions of neighboring cytosines with sufficient read coverage,

where the known methylation level of the cytosine was used.

Motif Analysis
We first obtained a random set of 10,000 genomic sequences of

length 512 bp, where half of them were the context sequence

surrounding a DMC, while the other half surrounded a non-

DMC. We processed these sequences through DNABERT, then

extracted the weights from DNABERT’s attention layer. We

used the weights to identify high-attention regions, using the

DNABERT motif-finding tool. For each of these regions, we

extracted the corresponding DNA sequences from the original

DNA sequence dataset, resulting in two distinct sets of DNA

sequences for positive and negative samples. Then, we employed

STREME (41) to identify motifs (and their p-values) that

were enriched in the positive set and depleted in the negative

set, using parameters minw=6, maxw=12, and nmotifs=100. The

position weight matrices of the three motifs with the lowest

p-values were matched against known motifs using JASPAR

(38).

Data access

All the datasets used in this study are publicly available from

NCBI. The datasets accessions are GSE126958, GSE100956,

and GSE200227. Bisulfite-treated Illumina reads were obtained

from NCBI SRA, accessions SRR8611939, SRR6894127, and

SRR18645747. L-MAP is available at https://github.com/

ucrbioinfo/dmc_prediction
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59. Eric Genaro Salmerón-Bárcenas, Ana Elvira Zacapala-
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