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Hepatic encephalopathy (HE) is a neurocognitive dysfunction based on metabolic
disorders caused by severe liver disease, which has a high one-year mortality. Mild
hepatic encephalopathy (MHE) has a high risk of converting to overt HE, and thus the
accurate identification of MHE from cirrhosis with no HE (noHE) is of great significance in
reducing mortality. Previously, most studies focused on studying abnormality in the static
brain networks of MHE to find biomarkers. In this study, we aimed to use multi-layer
modular algorithm to study abnormality in dynamic graph properties of brain network
in MHE patients and construct a machine learning model to identify individual MHE
from noHE. Here, a time length of 500-second resting-state functional MRI data were
collected from 41 healthy subjects, 32 noHE patients and 30 MHE patients. Multi-layer
modular algorithm was performed on dynamic brain functional connectivity graph. The
connection-stability score was used to characterize the loyalty in each brain network
module. Nodal flexibility, cohesion and disjointness were calculated to describe how
the node changes the network affiliation across time. Results show that significant
differences between MHE and noHE were found merely in nodal disjointness in higher
cognitive network modules (ventral attention, fronto-parietal, default mode networks)
and these abnormalities were associated with the decline in patients’ attention and
visual memory function evaluated by Digit Symbol Test. Finally, feature extraction from
node disjointness with the support vector machine classifier showed an accuracy of
88.71% in discrimination of MHE from noHE, which was verified by different window
sizes, modular partition parameters and machine learning parameters. All these results
show that abnormal nodal disjointness in higher cognitive networks during brain network
evolution can be seemed as a biomarker for identification of MHE, which help us
understand the disease mechanism of MHE at a fine scale.

Keywords: mild hepatic encephalopathy, dynamic graph properties, multi-layer modular algorithm, disjointness,
machine learning, individual discrimination, functional MRI, brain network evolution

Abbreviations: Cerebelum_Crus1_R, right cerebellum crus 1 region; Cingulum_Mid_L/R, left or right middle cingulum
region; Cuneus_L, left cuneus region; Frontal_Inf_Tri_L, left inferior triangle frontal region; Frontal_Mid_Orb_L/R, left
or right orbital middle frontal region; Frontal_Sup_L/R, left or right superior frontal region; Frontal_Sup_Medial_L, left
superior medial frontal region; Frontal_Sup_Medial_L/R, left or right superior medial frontal region; Insula_R, right insular
region; Lingual_L/R, left or right lingual region; Occipital_Inf_R, right inferior occipital region; Parietal_Inf_R, right
inferior parietal region; Precentral_L, left precentral gyrus; Precuneus_L/R:left or right precuneus; Supp_Motor_Area_L,
left supplemental motor area; Temporal_Mid_R, right middle temporal region.
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INTRODUCTION

Hepatic encephalopathy (HE) is a syndrome of central nervous
system dysfunction based on metabolic disorders caused by
severe liver disease (Agrawal et al., 2015; Zhang et al., 2017b).
Mild hepatic encephalopathy (MHE), as a mildest form of HE
spectrum, has no recognizable clinical symptoms of HE, but is
characterized by subtle neurocognitive and psychomotor deficits,
such as psychomotor slowing, shortened attention concentration,
dysfunctional executive abilities, and memory loss (Agrawal
et al., 2015). MHE impairs individual’s daily functioning, driving
performance, work performance and learning ability (Agrawal
et al., 2015). MHE has a probability of 40% converting to
overt HE within six months if not treated promptly, and once
converted, patients will have increased falls, short survival and
high mortality (Campagna et al., 2014; Zhang et al., 2018b).
Early diagnosis and effective treatment are essential to reduce
conversion to overt HE and to improve patients’ quality of life.
Currently, it is difficult to clinically diagnose MHE patients from
cirrhotic patients with no HE (noHE). Therefore, it is of great
significance to understand the dysfunction mechanism of MHE
and to explore the biomarkers for precisely clinical diagnosis.

In the past years, resting state-functional magnetic resonance
imaging (RS-fMRI) characterized by non-invasiveness, high
sensitivity, ultra-fast imaging and no requirement of engaging
in a task, has attracted more and more attention in the study
of hepatic encephalopathy (Zhang et al., 2014a, 2017a). It
measures the relative changes of blood oxygen level dependent
(BOLD) signals as a representation of spontaneous neural
activities in the human brain. A number of studies have
explored changes in brain functional network that are related
to cognitive function in patients with MHE. Zhang et al.
(2014b) used graph theory analysis and found that changes
in small-world property in patients with MHE were related
to their cognitive impairment. Qi et al. (2012) used the
independent component analysis (ICA) to evaluate the difference
of resting state networks between MHE patients and healthy
controls (HCs), revealing that MHE patients showed significantly
decreased functional connectivity in dorsal attention network
(DAN), both decreased and increased functional connectivity
in default mode network (DMN), auditory network (AN)
and visual network (VN). No significant differences were
found in self-referential network (SFN) and sensorimotor
network (SMN) between MHE and HCs. Regional homogeneity
(ReHo) analysis of resting state brain activity showed that
compared with the noHE patients, the MHE patients show
decreased ReHo value in the bilateral parietal lobes including
the precuneus, supplementary motor area, frontal lobes and
occipital lobes including the cuneus. With whole-brain functional
connectivity analysis, a study (Zhang et al., 2012) concluded
that compared with HCs, MHE patients presented widespread
cortical and subcortical functional connectivity alterations that
were correlated with neuropsychologic impairment. Particularly,
impairment in the basal ganglia-thalamocortical circuit may
play a key role in mediating neurocognitive dysfunction,
especially the psychomotor speed and attention deficits in MHE
patients. These studies indicate that changes in resting state

functional connectivity can reflect abnormal cognitive function
in MHE patients. Some other studies combined the resting
state brain activity or functional connectivity features with
machine learning method (i.e. support vector machine, linear
discriminant analysis) to investigate the early identification of
MHE (Chen et al., 2014, 2016a,b; Jiao et al., 2017). However,
the discrimination accuracy is not satisfying to meet the clinical
demands. Moreover, these previous studies assumed the brain
as a static functional connectivity pattern during the whole
resting state scan (at least 5 min) and ignore the fact that
the human brain is obviously a dynamically interactive system,
and even at the relatively sluggish temporal resolution of fMRI
(Cai et al., 2019).

Recently, dynamic functional connectivity analysis has drawn
more and more attention in studies of brain disease (Hutchison
et al., 2013; Calhoun et al., 2014; Kucyi and Davis, 2015),
which can capture transient functional connectivity changes
and describe dysfunction of MHE at a fine scale. For example,
abnormality in dynamic brain function has been observed in
autism spectrum disorder (Harlalka et al., 2019), and epilepsy
(Tailby et al., 2018). Dynamic graph analysis is a promising
avenue to quantitatively characterize the time evolving brain
dynamics at a system level. It assumes the whole brain functional
connectivity as a graph, there is a modular structure in the brain
network graph (Rubinov and Sporns, 2010) and the modular
structure evolves dynamically across time. It was reported that
the modularity of dynamic functional connectivity networks can
change on a very short time scale, and thus this approach may be
able to track transient changes in functional connections between
brain regions (Betzel et al., 2016). Bassett et al. (2011) and Cole
et al. (2013) used multi-layer modular analysis on the dynamic
graph structure of the brain imaging data and found that the
modular structure in the dynamic network was able to represent
the cognitive function. Therefore, we believe that dynamic graph
analysis will give us a deeper insights into the abnormal cognitive
function of MHE.

In this study, we intended to use a multi-layer modular
analysis method to detect the changes of dynamic graph
properties of brain network in patients with MHE, investigate
the clinical correlation of these properties and further construct
a machine learning model based on the selected network
properties to identify MHE from noHE at the individual level.
We hypothesized that dynamic brain connectivity analysis
can reveal the complex, adaptive, cognitive dysfunction
underlying MHE and the temporal variation of the brain
network metrics could provide rich diagnostic information to
discriminate MHE from noHE.

MATERIALS AND METHODS

Participants
A total of 103 participants was used in this study, including 30
MHE patients, 32 noHE patients and 41 HCs, see Table 1. HC
group was added to study dysfunction mechanism as a contrast.
The machine learning model was performed on the patient
groups because the discrimination of cirrhosis with MHE from
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TABLE 1 | Demographic, neuropsychological and clinical data.

Protocols HC (n = 41) noHE (n = 32) MHE (n = 30) p-value χ2/F/T value

Sex (M/F) 28/13 18/14 21/9 0.449a 1.603a

Age (years) 50.1 ± 7.3 47.9 ± 8.2 50.9 ± 6.3 0.153b 1.917b

Education (years) 13.0 ± 2.6 12.3 ± 3.5 12.3 ± 3.0 0.499b 0.699b

NCT-A (seconds) 41.6 ± 3.2 43.1 ± 12.7 78.9 ± 14.6 <0.001b 93.427b

– – – <0.001c1 10.306c1

– – – <0.001c2 12.011c2

– – – 0.599c3 0.528c3

DST (score) 47.9 ± 10.2 43.1 ± 9.5 30.1 ± 11.7 <0.001b 25.920b

<0.001c1
−4.792c1

– – – <0.001c2
−6.685c2

– – – 0.043c3
−2.071c3

Prothrombin time (seconds) – 16.8 ± 6.0 18.8 ± 5.2 0.105c1 1.353c1

Albumin (mg/dl) – 32.0 ± 5.8 30.0 ± 5.9 0.565c1
−1.355c1

Total bilirubin (mg/dl) – 96.1 ± 139.3 106.4 ± 170 0.737c1 0.268c1

Blood ammonia (µmol/L) – 55.1 ± 21.3 72.6 ± 31.5 0.009c1 2.543c1

Child-Pugh A/B/C – 5/15/11* 1/7/22 – –

Data are presented as mean ± standard deviation. *: One person lacked information.
a: Pearson χ2 test of three groups (two-tailed), b: One-way analysis of variance test among three groups (two-tailed), c1: Two-sample t test between MHE and noHE
groups (two-tailed), c2: Two-sample t test between MHE and HC groups (two-tailed), c3: Two-sample t test between noHE and HC groups (two-tailed). DST, digit-symbol
test; HC, healthy control; MHE, mild hepatic encephalopathy; NCT-A, number connection test of type A; noHE, cirrhotic patients without clinical hepatic encephalopathy.

that with no HE is the main concern of clinical doctors. This
study was approved by the Medical Research Ethics Committee
of Tianjin First Central Hospital. Written informed consent was
obtained from each subject prior to participation in this study.

Before functional magnetic resonance imaging (fMRI)
scanning, patients with cirrhosis were tested for blood ammonia,
prothrombin time, total bilirubin, and albumin biochemical
parameters to assess liver function (Table 1). Functional status
of cirrhosis was assessed by child-pugh score (Pugh et al., 1973).
The HC group had no liver or other systemic problems, no
history of psychosis or neuropathy.

As recommended by previous studies (Weissenborn et al.,
2001; Li et al., 2013), neuropsychological tests including Number
Connectivity Test A (NCT-A) and Digit Symbol Test (DST)
were performed on all subjects to diagnose MHE by clinic. To
be specific, linear regression models of NCT-A and DST were
estimated with regressors of age and education in the HC group,
and then the model was used to predict scores of NCT-A and
DST for subjects in patient groups. The difference between the
predicted value and the true value was calculated, and the patient
with either DST or NCT-A difference greater than 2 standard
deviation was determined as MHE.

In addition, some patients used antibiotics if they have
infections, such as spontaneous bacterial peritonitis, and
pulmonary infection. Lactulose was used in 19 patients to
improve feces excretion function, and they took 5–10 g
lactulose three times a day. Patients were excluded if they took
psychotropic medications, suffered from uncontrolled endocrine
disorders, had other neuropsychiatric disorders or metabolic
diseases, had alcohol abuse within 6 months prior to the study,
or had large head motions during scanning. In the end, the
aforementioned 103 participants were remained.

Overview of Methodology
An overview of the framework is summarized in Figure 1.
First, resting-state fMRI data were preprocessed. Second, the
nodal time series were extracted using a sliding time window
to calculate the dynamic functional connection graph. Third,
the dynamic functional connection matrix is constructed with
Pearson correlation and these matrix can be seemed as a dynamic
graph. Fourth, the multi-layer modularization algorithm is used
to determine the temporal module structure in the dynamic
graph. Fifth, several dynamic graph properties describing brain
connection stability and node changes of module affiliation
during brain network evolution over time were calculated. Sixth,
inter-group difference of these metrics and their correlations with
the neuropsychological and clinical test scores were performed
at two levels of local network and individual node. Finally,
the metrics with largest inter-group differences were selected
as features to identify individual MHE from noHE by machine
learning, and discriminant analysis were used to explore the
contribution of each feature.

MRI Scanning Parameters
The MRI data were collected using a Siemens 3.0T (TIM-
Trio, Siemens Medical Solutions, Erlangen, Germany) MRI
scanner with a 32-channel head coil. Foam padding was used
to reduce head motion. The scan sequences of each subject
included conventional T2WI, 3D-T1WI and resting-state fMRI.
Two-dimensional T2-weighted turbo spin echo (TSE) and T1-
weighted MPRAGE sequences were used to detect brain lesions.
Gradient echo plane imaging (EPI) sequence was used to obtain
BOLD image with the following parameters: measurement= 200,
echo time (TE) = 30ms, repeat time (TR) = 2500 ms, flip
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FIGURE 1 | An overview of data analysis pipeline. À. fMRI data preprocessing; Á. Extracting regional time series based on Power’s 264 atlas; Â. Sliding-window
based dynamic functional connectivity matrix calculation; Ã. Multi-layer modular structure calculation from the dynamic brain connectivity matrix; Ä. Extraction of
dynamic network properties; Å. Group difference of dynamic network properties and their correlations with clinical cognitive test scores; Æ. Construction of
identification model based on dynamical network properties for individual MHE discrimination.

angle (FA) = 90◦, field of view (FOV) = 220 mm × 220 mm,
matrix = 96 × 96, slice thickness = 3 mm, slice gap = 0.3 mm,
and number of slices = 40. The total scan time of resting-state

data was 500 s. The subjects were asked to close their eyes, relax
physically and mentally, stay awake, keep their heads and bodies
still, and try not to think about anything.
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Data Preprocessing
The fMRI images were preprocessed using MATLAB 2013a
(MathWorks, Natick, MA, United States) with the GRETNA
software package1. The first 10 time points were removed to
equalize the magnetization and to allow subjects to adapt to
the scanning environment. Time slice correction and head
motion correction were performed for the remaining 190 time
points. We also calculate the frame-wise displacement (FD),
which represents the volume changes of the head position.
Subjects were removed with mean FD > 0.2 mm, maximum
translation > 2 mm, maximum rotation > 2 degree (Greve and
Fischl, 2009). The images were then normalized, including co-
registered, segmented, normalized to EPI Spaces and resampled
to 3 × 3 × 3 mm3, After spatial smoothing of the image
with a full width at half maxima (FWHM) kernel of 8 mm,
linear trend of BOLD signal was removed and covariates such
as white matter signal, cerebrospinal fluid signal (CSF) and 24
head motion parameters were regressed to reduce the influence
of other factors. According to previous studies, global signal
regression (GSR) has been shown to cause a possible inverse
correlation effect in resting brain networks, so GSR is not used in
image preprocessing (Murphy et al., 2009; Weissenbacher et al.,
2009; Saad et al., 2012). Finally, the regression time series was
temporal filtered (0.01–0.1Hz) (Liu and Duyn, 2013).

Dynamic Function Network Construction
We used a whole brain template to define the brain as 264
nodes (Power et al., 2011). The 14 functional networks were
partitioned based on 264 nodes for subsequent network analysis
(Power et al., 2013). The mapping between names of the
network and their abbreviations, member nodes are provided
in Table 2. The Pearson correlation was applied to obtain the
whole brain functional connectivity matrix. Then, to track the
dynamic changes in the brain over a short period of time,
we used a sliding window length of 45TR (112.5s), which
has been proved to achieve better identification performance
around 110s based on a previous study (Liu et al., 2017),
and the window moves with a step size of 1TR (2.5s). The
remaining 190 time points were divided into 146 time windows
(1-45, 2-46, 3-47..., 146-190). A Fisher Z-Transformation was
performed on the connection matrix within each window of
the subject for subsequent analysis. Therefore, the dynamic
functional connectivity matrix was obtained and it can be viewed
as a dynamic graph.

Multi-Layer Modular Algorithm
A multi-layer modular algorithm was used to determine the
modular structure in the dynamic functional connection matrix.

In order to quantify the temporal and spatial interactions
of brain nodes, we used an iterative and orderly Louvain
algorithm to track the changes of community partition over time.
Compared with the Louvain algorithm, the multi-layer modular
algorithm adds one parameter called omega, which is used to
control the strength of the coupling between time layers. The
optimization goal is to maximize the modularity (Q) of the
brain network. That is to maximize intra-modular connectivity

1https://www.nitrc.org/projects/gretna/

and minimize inter-modular connectivity, so as to find a stable
modular structure (Newman, 2004). The calculation method of
multi-layer modularization is as follows:

Q (γ, ω) =
1

2µ

∑
ijsr

[(
Aijs − γs

kiskjs

2ms

)
δ (s, r)+ δ

(
i, j
)
· ωjrs

]
δ
(
Mis, Mjr

)
(1)

m =
1
2

∑
ij

Aij (2)

µ =
1
2

∑
jr

kjr (3)

where Aijs is the correlation between nodes i and j under the
sliding window of time point s, kis is the degree of node i under
time point s and kiskjs

/
2ms represents the Newman-Girvan

null model of intra-network connections. γs is the topological
resolution parameter under a time point s or layer s. ωjrs is the
time-coupling parameter between node j in the time window r
and node j in the time window s. For δ

(
Mis, Mjr

)
, if node i and j

belong to the same module, it is 1; otherwise, it is 0. For δ (s, r),
if s = r, it is 1; otherwise, it is 0. For δ

(
i, j
)
, if i = j, it is 1;

otherwise, it is 0.
In our study, we used Genlouvain Matlab toolbox (Jutla et al.,

2011–2019) to calculate the modular structure of the brain. And
the default value 1.0 was chosen as the gamma and omega values.
Due to the variability in optimizing the partition, we repeated the
algorithm 100 times.

Connection-Stability Matrix
In order to study the characteristics of nodal connection that
are more stable in dynamic brain interaction, we calculated
the connection-stability scores between nodes by dividing the
module results. The connection-stability score was calculated
as the proportion of time windows in which a given node
pair is assigned into the same module, with nodal network
membership defined on the basis of multi-layer modular
algorithm (gamma = 1.0 and omega = 1.0). If two nodes were
assigned to the same module in a time window, the connection-
stability score is 1, else it is set 0. A higher value indicates that two
nodes were relatively stable participating in the same community.
The output is G = N × N matrix, where each element (m, n)
is connection-stability scores between node m and node n. To
avoid the chance of a result, the final result of each metric was
the average of 100 runs.

Dynamic Nodal Metrics Extracted From Modular
Structure
From modular partition result, we extracted three dynamic
metrics to describe the nodal properties, namely nodal flexibility,
cohesion, disjointness. These metrics measured the dynamic
reconfiguration that occurs in the brain over time, and a higher
dynamic metrics would imply a hypervariable connection. To
avoid the chance of a result, the final result of each metric was
the average of 100 runs.
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TABLE 2 | The mapping between network names, their abbreviations and member nodes.

Networkindex Network name abbreviation member node

1 Uncertain Uncertain 1-12,84-85,132,140-142,182-185,247-250,253-254

2 Sensory_Somatomotor_Hand SSHN 13-41,255

3 Sensory_Somatomotor_Mouth SSMN 42-46

4 Cingulo-opercular_Task_Control CON 47-60

5 Auditory AN 61-73

6 Default_mode DMN 74-83,86-131,137,139

7 Memory_retrieval MRN 133-136,221

8 Ventral_attention VAN 138,235-242

9 Visual VN 143-173

10 Fronto-parietal_Task_Control FPN 174-181,186-202

11 Salience SN 203-220

12 Subcortical Subcortical 222-234

13 Cerebellar Cerebellar 243-246

14 Dorsal_attention DAN 251-252,256-264

FIGURE 2 | The connection stability profile of the brain network across time in MHE, noHE and HC groups. (A) The distribution of 14 brain networks in the 264-node
brain template; (B) The connection-stability matrix distributed in the 14 networks in MHE, noHE and HC groups. MHE, minimal hepatic encephalopathy; noHE,
non-hepatic encephalopathy; HC, health control.

(1) Flexibility
Node flexibility is defined as the ratio of the number
of times a node changes communities to the number of
possible times a node changes communities. It’s a number
between 0 and 1 where 1 means that the node is most
flexible over time.

fi = 1−
1

T − 1

T−1∑
s=1

δ
(
Gi,s, Gi,s+1

)
(4)

For δ
(
Gi,s, Gi,s+1

)
, if node i and j belong to the same

module, it is 1; otherwise, it is 0. T is the total number
of time windows.

(2) Cohesion
Although node flexibility determines how often the node
changes the community, it does not describe how the
node changes the community. Node cohesion describes
how often one node changes a community with another
(Telesford et al., 2017). A high cohesion value indicates that
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the node typically changes the community along with other
nodes. A low cohesion value indicates that the node rarely
changes the community with other nodes.

(3) Disjointness
Node disjointness is defined as the ratio of the number
of times a node can change a community independently
to the number of times a node can change a community
(Telesford et al., 2017). It quantify the percentage of times
a node changes its community independently. The global
disjointness for each subject was calculated as the mean
disjointness values of all nodes of each subject.

Group Differences in Dynamic Graph
Metrics
We used Kruskal-Wallis nonparametric one-way analysis of
variance (ANOVA) to analyze differences among three groups
(MHE, noHE, and HCs) in dynamic indicators and connection-
stability. The analyses were performed at two levels of brain
network and brain region nodes. If there was a statistical
difference, a post hoc test were performed to detect the inter-
group difference. Significant group differences were tested at
p < 0.05 after corrections for multiple comparisons.

Correlation With Neuropsychological
Scores
We used partial correlation analysis to examine the relationship
between dynamic metrics, connection-stability of each patient
and the neuropsychological scores, meanwhile the age, gender,
educational level, and head motion parameters were all used as
covariates to avoid their influences. Multi-level correlations have
been performed, from the network-level and individual node-
level. At the network level, the 264 nodes were divided into 14
brain networks (Power et al., 2013).

Discrimination of Individual MHE From
noHE
In this study, F-score was used as feature selection method to
measure the ability of the dynamic graph metrics (Chen and Lin,
2006). The F score of the ith feature is defined as follows:

F (i) =

(
¯̄x(+)

i − x̄i

)2
+

(
x̄(−)

i − x̄i

)2

1
n+−1

∑n+
k=1

(
x(+)

k,i − x̄(+)
i

)2
+

1
n−−1

∑n−
k=1

(
x(−)

k,i − x̄(−)
i

)2

(5)
Where the x is the average values of all the sample, while xi

(+)

and xi
(−) represent the mean values of all the positive and

negative samples, respectively. k represents each instance of the
specific ith feature. F(i) calculated the difference of ith feature
between the two groups. The larger the F-score, the stronger
the discrimination of this feature. We ranked all the features
according to the F-score, and selected the top k largest features for
the following classification analysis. The k was determined based
on the average classification performance of all loops. Finally, 23
features were selected in this study.

Support vector machine (SVM)2 was applied to classify
individual patient with MHE from the noHE using the extracted
features because SVM is especially suitable for fMRI data
with small samples and a high dimension. A leave-one-out
cross-validation(LOOCV) method was used to estimate the
classification performance due to its small-sample friendly nature
(Pereira et al., 2009).

To assess the performance of our method, we calculated
classification accuracy, sensitivity, and specificity, respectively.
Sensitivity measures the proportion of positives that are correctly
identified as such. Specificity measures the proportion of
negatives that are correctly identified as such. In addition,
the receiver operating characteristic (ROC) analysis was used
to evaluate the performance of the classifier. The larger area
under ROC curve (AUC) indicates a better discriminant power
(Fawcett, 2006). We used 1000 permutation tests to determine
whether the accuracy of the results were higher than the
chance level. Because the LOOCV approach makes the feature
selection of the sample subset in each fold slightly different,
the discriminant features were defined as the top 23 frequently
occurred features in all folds.

Validation
To validate the robustness of our findings, we also repeated
the analysis using multiple parameters. As for the analysis
results of correlation and group difference, we mainly verify
the robustness of the results under different time windows
and different modularization algorithm parameters. For the
time window size, a window length of 40TR (100 s), 50TR
(125 s) and 55TR (137.5 s) were considered. For multilayer
modular parameters, values near gamma = 1.0 and omega = 1.0
were analyzed repeatedly. As for the classification results, the
comparisons of feature selection method and classifier kernel
function were performed. We used the commonly used relief
method (Kira and Rendell, 1992) and the linear kernel SVM
classifier as a comparison.

RESULTS

The results reported in the group comparison and correlation
section are based on the parameters (gamma= 1.0; omega= 1.0;
window size = 45TR) that can obtain the best identification
accuracy. Results based on different parameters for validation
were reported in the classification section.

Effect of Disease on Network
Connection-Stability Matrix
The connection-stability matrix over time for MHE, noHE and
HC was shown in Figure 2. Before comparison, the connection
stability values were averaged in each network module. One-
way ANOVA results indicated that average connection-stability
score in sensory/somatomotor mouth network (SSMN), default
mode network (DMN), cingulo-opercular task control network
(CON), and frontro-parietal task control network (FPN) showed

2http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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significant differences among the three groups, but only FPN
survived false discovery rate (FDR) correction. Post hoc analyses
were performed to detect the inter-group difference. Results
showed that the average connection-stability scores of MHE
patients were significantly lower than that of HC in CON
and FPN, and marginally significant (adjusted p = 0.054)
in DMN after FDR correction, but no significant differences
were observed between other groups. The p-value in each
comparison and significances after FDR correction were all listed
in Table 3.

Correlation Results Between Network
Connection-Stability and Clinical Scores
We also calculated the correlation between the average network
connection-stability score and the clinical scores in all cirrhotic
patients. The results showed a significant positive correlation
between DST and network connection-stability scores in
DMN, visual network (VN), FPN, salience network (SN), and
subcortical network (Table 4). All the results were reported at
p < 0.05 after corrections for multiple comparisons.

Effect of Disease on Dynamic Nodal
Metrics
The results showed that the node disjointness score of MHE
patients was significantly higher than that of noHE patients

at some specific brain regions, which mainly fell in Frontal_
Sup_Medial_L/R, Frontal_Mid_Orb_R, Frontal_Sup_L/R
and Cingulum_Mid_L (Figure 3A). MHE patients were
significantly lower than noHE patients only in the area of
the Temporal_Mid_R. It can be seen that compared with
noHE patients, MHE patients have more frequent single-node
switching rate in regions in DMN and FPN and less frequent
single-node switching rate in region of VAN.

In order to better understand the pathogenesis, we also
conducted a control analysis between MHE patients and
the HC group. The results showed a significant difference
in Frontal_Inf_Tri_L, Frontal_Sup_Medial_L, Parietal_Inf_R,
Cuneus_L, Frontal_Sup_R, Precuneus_R areas (Figure 3B).
It can be seen that MHE patients had a higher single-
node switching rate than HC in most regions, except in
the Frontal_Inf_Tri_L region. The difference regions were
located in DMN, FPN, ventral attention network (VAN), VN
and SSHN.

Meanwhile, the noHE patients and the HC group were
compared. The disjointness of noHE patients was significantly
higher than HC in Insula_R, Precuneus_L, Frontal_Mid_L, but
lower in Frontal_Mid_R (Figure 3C). The difference nodes
mainly fell into DMN, FPN, SN and sensory/somatomotor
hand network (SSHN).

In addition, we analyzed the effect of disease on flexibility
and cohesion metrics, but no significant group difference

TABLE 3 | The differences in average network connection-stability scores among MHE, noHE and HC groups.

Network p value (ANOVA) p value (MHE vs. HC) Median MHE Median noHE Median HC

Uncertain 0.941 – 0.260 0.259 0.268

SSHN 0.231 – 0.367 0.382 0.406

SSMN 0.042 0.039 0.488 0.492 0.565

CON 0.022 0.006* 0.333 0.358 0.389

AN 0.32 – 0.349 0.345 0.366

DMN 0.031 0.018 0.307 0.351 0.356

MRN 0.26 – 0.455 0.517 0.502

VAN 0.392 – 0.324 0.333 0.317

VN 0.251 – 0.373 0.465 0.467

FPN 0.001* <0.001* 0.308 0.331 0.389

SAN 0.054 – 0.287 0.355 0.347

Subcortical 0.772 – 0.330 0.324 0.323

Cerebellar 0.45 – 0.493 0.478 0.518

DAN 0.523 – 0.381 0.402 0.365

Results with p < 0.05 are bold in the table. * indicates that p < 0.05 after FDR corrections for multiple comparisons.

TABLE 4 | Networks showing significant correlation of connection-stability with clinical test scores.

Network Blood ammonia[r] Blood ammonia[p] NCT[r] NCT[p] DST[r] DST[p]

DMN −0.12 0.37 −0.217 0.102 0.35 0.007*

VN −0.202 0.128 −0.132 0.324 0.376 0.004*

FPN 0.004 0.979 −0.278 0.035 0.338 0.009*

SN −0.147 0.272 −0.212 0.111 0.525 <0.001*

Subcortical −0.053 0.69 −0.106 0.43 0.361 0.005*

Results with p < 0.05 are bold in the table. * indicates that p-value survived FDR correction.
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FIGURE 3 | The differences in node disjointness during brain network evolution among the three groups by one-way analysis of variance (ANOVA). (A–C) The
difference regions of the brain networks and the corresponding spatial locations in post hoc comparison of MHE with noHE, MHE with HC and noHE with HC. MHE,
minimal hepatic encephalopathy; noHE, non-hepatic encephalopathy; HC, health control.

was found at p < 0.05 after corrections for multiple
comparisons.

Correlation Results Between Dynamic
Nodal Metrics and Clinical Scores
At the network level, we observed a significant negative
correlation between disjointness and DST score in DMN and
SN (p < 0.05, r > −0.4) (Figure 4). We didn’t find correlation
between cohesion or flexibility and all the clinical testing scores.

At the node level, there are much more nodes showing
correlation between disjointness and scores. These nodes are
listed in Supplementary Table 1. Some correlative nodes were
also found between cohesion or flexibility and clinical scores,
but it should be noticed that these nodes were mostly similar.
This suggests that the community flexibility is most likely caused
by nodes partition change in pairs. The higher correlation
in the disjointness metrics also indicates that community
switching of nodes in the disease population were more likely
changed individually.
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FIGURE 4 | Networks showing significant correlation of disjointness metric with DST score in DMN (A) and SN (B). DMN, default model network; SN, salience
network; DST, digit symbol test; MHE, minimal hepatic encephalopathy.

Validation analysis to check for robustness of correlation
results with different modularity parameters or different window
parameters are provided in the Supplementary Information
(Supplementary Tables 1–6).

Classification Results of MHE From
noHE
Considering node disjointness is the unique metric that can
reveal difference between MHE and noHE among the three
dynamic network properties, and it also shows correlation with
neuropsychological scores in patient groups, we take this metric
as discriminant features for identification MHE from noHE.
The accuracy, sensitivity and specificity of SVM classifier with
radial basis function (RBF) kernel were 88.71, 92.31, and 83.33%,
respectively. The permutation tests reveal a significance level of
p < 0.001 for accuracy, which suggests that the identification
accuracy was significantly higher than chance level, indicating the
effectiveness of the identification model.

The classification results of MHE from noHE based on
difference window size are shown in Table 5. All results achieved
a cross-validated classification accuracy above 83.87%, indicating
the robustness of the selected window length. On the other hand,
we obtained optimal window length of 45TR (112.5 s), basically
consistent with the result that the optimal classification accuracy
was obtained around the window length of 110s (Liu et al., 2017).

Figure 5 displays the classification accuracies based on
different feature selection method, SVM kernel function and
module partition parameters. For a fixed value of gamma
(gamma = 1.0), we found a stable accuracy above 80% in

omega value range between 0.6 and 1.4. When performing
analysis in other topological scales (gamma = 0.8, gamma = 0.9,
gamma = 1.1 with omega = 1.0), we observed a slightly
accuracy decrease. We also paid attention to the impact of
feature selection on classification accuracy. The commonly used
feature selection method “relief” was used as a comparison,
the results show almost no difference in classification accuracy.
Altogether, the best accuracy is obtained at 88.71% with
parameters of gamma = 1.0, omega = 1.0, F-score method and
RBF kernel in SVM.

The ROC curve using each subject’s classification score as a
threshold are shown in Figure 6A. The area under the ROC curve
(AUC) of the proposed method was 0.921, indicating an excellent
discriminative power.

Because we used LOOCV strategy to train the model,
features are different in different loops. The frequently occurred
discriminative feature nodes in all loops were displayed in
Figures 6B–D, which included Occipital_Inf_R, Precuneus_R,
Cingulum_Mid_L, Frontal_Sup_L/R, Lingual_L/R, Frontal_
Sup_Medial_L/R, Cuneus_L, Frontal_Mid_Orb_R, Precentral_L,
Insula_R, Temporal_Mid_R, Putamen, Supp_Motor_Area_L,
Cerebelum_Crus1_R.

DISCUSSION

Cognitive decline in cirrhotic patient with occurrence of MHE
has been largely acknowledged (Damulin, 2018), but the current
clinical diagnosis based on neuropsychological cognitive tests
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TABLE 5 | The classification results with different window length.

Windowlength (40TR) Window length (45TR) Window length (50TR) Window length (55TR)

ACC 85.48% 88.71% 85.48% 83.87%

SEN 92% 92.31% 88.89% 85.71%

SPE 81.08% 83.33% 84.38% 82.35%

FIGURE 5 | The classification results based on different module partition parameters (gamma, omega), feature selection methods (Fscore and Relief), and kernel
functions of classifier (RBF kernel and linear kernel), where omega is spatial resolution parameter, and gamma is temporal resolution parameter in multi-layer
community structure calculation. Values of gamma and omega = 0810 mean gamma = 0.8, omega = 1.0. RBF = radial basis function.

is easily mixed by sex, age and education level. In this study,
we aimed to investigate the biomark of MHE based on brain
imaging data. From a view of dynamic brain graph analysis,
we took the whole brain functional connectivity matrix as a
graph and applied multi-layer modular algorithm to analyze
the dynamic reorganization of the modules in brain graph of
MHE patients. Connection-stability profile and nodal affiliation
changes were used to describe the dynamic graph properties
of the brain network. By comparing these metrics among
groups, we found that in the connection-stability matrix,
MHE and HC showed significant differences within specific
networks, but there was no statistical significance between other
groups at network level. In terms of nodal dynamic metrics,
MHE and noHE showed significant differences merely in node

disjointness. Further, we observed node disjointness in patient
groups were correlated with neuropsychological scales. In order
to test the discriminative power in identification MHE from
noHE, we used SVM to classify the two groups based on
node disjointness metric. Consistent discriminant nodes were
identified contributing to a better explanation of dysfunctional
mechanisms. The high classification accuracy of 88.71% also
suggest the effectiveness of the dynamic brain functional metric
in identification of individual MHE.

In our study, the connection-stability matrix quantifies the
relative stability of node pairs in a dynamic process. A higher
value means less flexibility of the node pairs. From the matrix
profile of the three groups, it can be seen that the obtained
connection-stability matrix in healthy control group showed

Frontiers in Neuroscience | www.frontiersin.org 11 January 2021 | Volume 14 | Article 627062

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-627062 December 28, 2020 Time: 17:20 # 12

Zhang et al. Identifying MHE With Dynamic Graph

FIGURE 6 | Evaluation of individual MHE discrimination classifier. (A) ROC curve of the classifier. (B–D) The consistent discriminant nodes in SVM classification
showing in sagittal (B), axial (C) and coronal planes (D). MHE, minimal hepatic encephalopathy. ROC, receiver operating characteristic; AUC, = area under ROC
curve.

obvious modularity, which was similar to Power’s 14 functional
network partition results (Power et al., 2013). This suggests
that the modular partition results in the present study are
confidential and are consistent with brain functional network
organization patterns. Compared with healthy control group,
the average connection stability within SSMN, CON, DMN, and
FPN were significantly reduced in MHE patients (Table 3). This
is consistent with previous studies reporting that the abnormal
network strength in these networks (Chen et al., 2014; Jao et al.,
2015; Cheng et al., 2018). Because the SSMN is important for
motor control function (Matyas et al., 2010), the CON, DMN
and FPN are responsible for execute control function, attention,
and working memory that are important in daily activities (Fox
et al., 2005; Matyas et al., 2010), the abnormal connection stability
with these networks may explain the impairs in daily functioning,
driving performance, work capability and learning ability in
MHE patients (Agrawal et al., 2015). There was no significant
difference in the average connection-stability matrix between
MHE and noHE at the network level, but at the node level,
nodal disjointness difference was found between the two groups,

indicating that conversion from noHE to MHE is represented
by some nodal dysfunction within networks but not the whole
network dysfunction.

Further analysis of three node properties in comparison of
MHE with noHE indicates that significant differences were found
merely in node disjointness metric. The regions that showed
abnormal node disjointness were in middle temporal region,
superior medial and lateral regions, orbital frontal region, middle
cingulate cortex, and they mainly occupied the VAN, FPN and
DMN, which are important for attention allocation and execution
control functions that have decline in MHE patients (Rosazza
and Minati, 2011; Zhang et al., 2014a). These damaged areas of
MHE were also reported in previous studies (Chen et al., 2016a;
Zhang et al., 2018a). Comparison of the three groups together,
we can see in cirrhosis with no HE, the affected regions were
located in both primary network (SSHN) and high level cognitive
networks (SN, FPN, and DMN). When progression from noHE
to MHE, the dysfunctional nodes were mainly distributed in
the three high-level core cognitive networks (VAN, FPN, and
DMN), demonstrating that occurrence of MHE is related to core
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cognitive dysfunction. On flexibility and cohesion, we found
no significant differences, suggesting that brain impairment in
MHE patients might be caused by the abnormal proportion of
nodes independently switching network affiliation but not the
nodes that change network affiliation with other nodes together.
The results also show that single-node switching may be more
frequent in brain regions in MHE patients than in noHE patients.
This may lead to cognition-related dysfunction in MHE patients.

The cognitive deficit of all cirrhotic patients was evaluated
using DST and NCT-A scores in this study as recommended
(Weissenborn et al., 2001; Li et al., 2013), in which DST evaluates
cognitive function of attention and visual memory (Weissenborn
et al., 2001; Zhang et al., 2017a). Correlation analysis showed
that DST scores were positively correlated with the average
connection stability scores of DMN, VN, FPN, SN, subcortical
network and had negative correlations with the nodal disjointness
values of the DMN and SN. Theoretically, a higher flexibility of
the nodes corresponds to a lower average connection stability,
and thus consistency in the two correlation analyses were found
in DMN and SN. Both of the two networks are important
for attention and working memory (Pessoa et al., 2002; Silk
et al., 2010). DMN collectively comprises an integrated system
for different aspects of self-referential mental processes and it
is de-actived in a cognition-demanding task (Raichle et al.,
2001). SN is important for detection and mapping of salient
external inputs and internal brain events, and it drives the
switching between default mode and central executive networks
in a triple-network model underlying the high level cognitive
function (Menon, 2011). Therefore, correlation between the node
disjointness of the two networks and the DST scores indicates
that increased single-node switching rate in DMN and SN may
be responsible for decline in high level cognitive functions such as
attention and working memory that are important in the cirrhotic
patients’ daily life.

Since we found significant differences between MHE and
noHE merely in the node disjointness at network level and
unique correlation with neuropsychological scores was also
obtained in this metric, we used node disjointness to evaluate the
discriminative power of classifier. The experiment results show its
effectiveness in identification of individual MHE from noHE with
an accuracy of 88.71%. Comparison analyses show that the spatial
resolution parameter of omega had a greater impact on the results
than temporal resolution parameter gamma. The best result
was obtained when we chose the default values gamma = 1.0
and omega = 1.0 as the module partition parameters. With
the best omega of 1.0, each network module was functionally
explainable (see Figure 2). In respect of the impact of time
window size, it is not a parameter that affects our main results.
Results showed that the accuracy was highest when the time
window length was 45TR (112.5 s), which is consistent with a
previous study reported that classification accuracy was highest
when the time window length was around 110s (Liu et al.,
2017). With the comparisons of different combinations of feature
selection method and classifiers, the best accuracy was obtained
with F-score method and SVM with RBF kernel. In general,
by validation on different parameters, our results showed a
good discriminative power at individual level. Furthermore, by

comparing the discriminative nodes obtained from individual
diagnosis with the results from group statistical analysis, we
can see not only overlapping regions, but also other regions
were found in the discriminative analysis. This is because the
discriminative analysis can grasp the whole pattern information
in a multivariate way than the univariate group statistical analysis,
demonstrating that combination of the dynamic features with
machine learning model can provide more information.

However, some factors may limit the generalization of our
findings in clinical application. First, because of the difficulty
in patient recruitment, the sample size is small in this study,
which may bias the result. Large samples can improve statistical
power and reduce overfitting in the identification model. In the
future, we will verify the identification model by both internal
and external validations with lager sample size to provide a
stable performance. Other more complex models like deep neural
networks that can grasp deep and complex MHE characteristics
can also be tried with larger dataset to provide better accuracy.
Second, the laboratory test data was not used in the identification
model. It could be combined with imaging data together into the
identification model, which may provide a better identification
accuracy. Third, different medications among patients may affect
the findings in this study. In our study, lactulose was used in 19
patients to improve feces excretion function, and they took 5–10 g
lactulose three times a day. Antibiotics was used in some patients
who had infections such as spontaneous bacterial peritonitis,
pulmonary infection, which may bias the findings because
antibiotics may induce changes in synaptic plasticity and neural
cell growth (Heiss and Olofsson, 2019). In addition, the smoking
history may also affect the result, which should be considered in
the future studies. Last, laboratory test data are needed for healthy
controls to fully exclude the possible liver disease.

CONCLUSION

Previous studies mainly used static analysis features to study
MHE, we used the multi-layer modular algorithm based dynamic
functional connectivity features to study and identify MHE from
noHE. The core of this method is to extract metrics describing
network connection-stability and dynamic nodal affiliation based
on dynamic module partition results. It is found that compared
with HC, MHE showed differences in both primary sensory
network module and high level cognitive networks, consistent
with the symptom of decline in driving ability, daily functioning,
learning and working performance. When progression from
noHE to MHE, the cognitive impairments were mainly in higher
cognitive networks of DMN and SN by disrupting network
organization in a way of frequent single-node disjointness, which
is associated with the neuropsychological score. Based on the
node disjointness property, the individual discriminative model
showed a diagnosis accuracy of 88.71%. Taken together, the
results in this study suggest that dynamic graph analysis can
reveal the brain network evolvement patterns from noHE to
MHE, help us understand the dysfunction of the brain in a fine
scale, and provide powerful features for the individual diagnosis.
In the future, larger samples of patients with no mixture of
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interference factors are needed to verify the findings and further
optimize the model to improve the identification accuracy.
We can further investigate the clinical features of MHE on
electroencephalo-graph (EEG). EEG features and the clinical data
from laboratory test can also be incorporated into the machine
learning model to develop a tool that can be used with lower cost
and rural areas without fMRI.
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