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Abstract: The critically ill polytrauma patient is characterized by a series of metabolic changes induced
by inflammation, oxidative stress, sepsis, and primary trauma, as well as associated secondary injuries
associated. Metabolic and nutritional dysfunction in the critically ill patient is a complex series of
imbalances of biochemical and genetic pathways, as well as the interconnection between them.
Therefore, the equation changes in comparison to other critical patients or to healthy individuals,
in which cases, mathematical equations can be successfully used to predict the energy requirements.
Recent studies have shown that indirect calorimetry is one of the most accurate methods for
determining the energy requirements in intubated and mechanically ventilated patients. Current
research is oriented towards an individualized therapy depending on the energy consumption
(kcal/day) of each patient that also takes into account the clinical dynamics. By using indirect
calorimetry, one can measure, in real time, both oxygen consumption and carbon dioxide production.
Energy requirements (kcal/day) and the respiratory quotient (RQ) can be determined in real time by
integrating these dynamic parameters into electronic algorithms. In this manner, nutritional therapy
becomes personalized and caters to the patients’ individual needs, helping patients receive the energy
substrates they need at each clinically specific time of treatment.

Keywords: indirect calorimetry; nutrition; metabolism; trauma; intensive care unit

1. Introduction

The critically ill polytrauma patient represents a very complex, multifactorial case of associated
pathologies that significantly increase mortality rates [1–3]. Both primary trauma and secondary,
post-traumatic injuries lead to a worsening of the clinical and biological status of these patients,
presenting a real challenge for intensive care units (ICUs) [4,5]. Among these complications, the most
important are systemic inflammatory response syndrome (SIRS) [6,7], cardiogenic shock, sepsis [8],
acute respiratory distress syndrome (ARDS) [9–11], ventilator-associated complications, oxidative stress
(OS) [12–14], and malnutrition [15]. When looking at these issues objectively and from a molecular
point of view, the critically ill patient’s nutrition status is closely related to all the above-mentioned
complications. A high degree of malnutrition or an inadequate nutrition strategy in the case of critically
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ill polytrauma patients can significantly increase the rate of secondary, post-traumatic complications,
leading to a vicious cycle in which inflammation, the immune system, infections, and increased oxygen
consumption are strongly interconnected [16].

In an international multicenter study, Heyland et al. reported that over 70% of the patients
included in the study did not receive the minimum 80% of their energy requirements [17]. They showed,
at a global level, that a high percentage of critical patients admitted to the ICU suffer from underfeeding,
and, consequently, are malnourished [17]. The mechanisms that initiate malnutrition in critically ill
polytrauma patients are multifactorial, depending on a series of molecular, genetic, cellular, and clinical
factors [18–20]. The most common are represented by an increase in oxygen requirements, aberrant
increase of metabolism, coagulation and immune system imbalances, infections, and inadequate
administration of nutritional therapy [7,21,22].

For decades, clinicians have been using mathematical equations to predict energy requirements.
However, numerous studies have reported a disparity between the clinical status of the patient and
the values rendered by these calculations, especially in the case of critically ill patients. A recent
study published by Zusman et al. concluded that mathematical equations cannot replace the indirect
calorimetry monitoring of energy requirements for critical patients. This study included a high number
of patients, with over 3500 quantifications [23].

Regarding the metabolic disorders of critically ill polytrauma patients, some of the most important
clinical symptoms are hyperglycemia and increased insulin resistance, rapid loss of muscular mass,
and disturbance of the nitrogen balance [24,25]. The imbalances produced in the lipid profile by the
augmentation of pro-oxidative stress are important characteristics that strongly influence the metabolic
status of these patients. When looking at the symptoms as a whole, nutrition should be considered
to be one of the most important therapeutic actions in the case of critically ill polytrauma patients.
Recent studies have shown important implications of nutrition both in the modulation of the patients’
responses to metabolic stress and in their clinical outcome [26,27].

In the literature, there are a series of controversies regarding the adjustment of nutrition in the
case of critically ill polytrauma patients, as several studies present advantages and disadvantages for
both enteral and parenteral nutrition [28–30]. On the one hand, it has been reported that by using
enteral nutrition there is a higher rate of infections and longer stays in intensive care for these patients.
On the other hand, by administering parenteral nutrition, a series of adverse effects have been reported,
such as hyperglycemia, augmentation of metabolic stress, and an increase in the incidence of sepsis.

The aim of this paper is to connect and present in a clinical setting the strong relationship between
inadequate nutrition and a series of secondary complications, specific to the critically ill polytrauma
patient. Furthermore, we wish to detail the modern methods used to determine energy expenditure,
as well as new guidelines for adapting nutritional therapy in a specific manner to these patients.

2. Molecular and Pathophysiological Aspects of Metabolism

From a clinical point of view, the critically ill polytrauma patient is characterized by a series of
primary traumatic injuries, as well as by a multitude of trauma-associated secondary injuries such
as hemorrhagic shock, tissue hypoxia, generalized inflammation, oxidative stress, and infections.
All of these subsequently lead to a multiple organ dysfunction syndrome (MODS) and to a significant
increase in mortality rates [7,31–34].

From a molecular point of view, the above-mentioned events lead to the activation of a series
of molecular systems and mechanisms, such as coagulation [35–38], complement [39], fibrinolysis,
and an immense quantity of pro- and anti-inflammatory mediators released from macrophages,
granulocytes, and lymphocytes [5,9,40–43]. Among these, the most researched are interleukin 6 (IL-6),
interleukin 8 (IL-8), interleukin 10 (IL-10), interleukin 17 (IL-17), and tumor necrosis factor alpha
(TNF-α) (Figure 1) [40–43].
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Figure 1. The entire metabolic process in the critical patient and the correlation with continuous gas 
exchange monitoring (VO2 and VCO2). 

Figure 1. The entire metabolic process in the critical patient and the correlation with continuous gas
exchange monitoring (VO2 and VCO2).
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Redox balance is significantly affected, with significant quantities of free radicals being released.
In this case, the metabolic imbalance is strongly affected at a molecular level, with the free radicals being
involved in a series of protein and lipid denaturation reactions [12,44–46]. Moreover, the redox protein
and lipid denaturation reactions lead to the release of other reactive species, leading to augmentation
of the pro-oxidative cascade [16,47].

An important aspect in the pathophysiology of critically ill polytrauma patients is represented by
the negative nitrogen balance [48–50]. One of the main responses to severe injury is represented by the
accentuation of protein catabolism and by the loss of urinary nitrogen and phosphorus. The process
of nitrogen loss is very complex, and recent studies have shown that it correlates significantly with
a change in metabolic rate, with a maximum peak a few days after the injury, and a gradual return
to baseline after a few weeks. Hence, it has been concluded that if the mobilization of amino acids
from metabolized proteins is not rapidly corrected through adequate and personalized nutrition,
the consequences are dramatic, manifested through a rapid loss of muscular mass, and a very long and
difficult recovery [51–53].

Regarding the metabolic answer to trauma, a series of articles described the following three phases
of the event: the ebb phase, the catabolic phase, and the anabolic phase [54–56]. One very important
aspect is the different biological and biochemical characteristics of each phase. From a clinical point
of view, each of these phases needs a different therapeutic intervention from a nutritional viewpoint.
From a clinical point of view, the ebb phase lasts for 12 h to 36 h, depending on the severity of the
injuries, whereas the flow phase lasts between seven days and three weeks [25,57–59]. A therapeutic
decision with high accuracy cannot be made without adequate monitoring of the metabolic changes
and associated energy requirements.

From a biochemical, molecular, and cellular point of view in trauma, we distinguish the ebb phase
during the first 8 h to 24 h post-trauma, a phase characterized by important hemodynamic changes.
From a clinical point of view, during this phase, volemic resuscitation through fluid and blood products
is the basis of the therapy. Afterwards, during the next three days, patients are characterized by an
aggressive production of cytokines and inflammatory molecules. During this phase, the metabolic
disaster continues at a cellular level, with the redox imbalance being augmented and extensive. The last
phase, described as an anabolic phase, is considered to be the one in which molecular and metabolic
mechanisms are oriented towards recovery [25,60–62].

The existence of an inflammatory response without the clear presence of bacterial sources leads to
an alarming activation of the immune system a short time after the traumatic event. These underlying
signaling events are also called alarmines and influence the metabolic status of these patients
considerably. The most researched endogenous signaling pathways responsible for the excessive
augmentation of the immune response are represented by defensins, heat shock proteins (HSPs),
cathelicidin, high-mobility group box 1 (HMGB1), and eosinophil-derived neurotoxin (EDN). Moreover,
post-traumatic coagulopathy is responsible for a series of other side effects that lead to a metabolic
imbalance [42,63–66].

In this manner, we can frame these molecular mechanisms in the so-called acute phase response,
through which the liver’s protein synthesis is redistributed depending on the severity of trauma.
In these situations, adapting the nutrition becomes an impossible task without adequate and correct
monitoring of each individual patient.

Although enteral nutrition is recommended by the majority of clinical studies, it was concluded that
in certain patients, the desired enteral nutrition cannot be ensured because of digestive intolerance. In the
case of critically ill polytrauma patients, this aspect is present in the majority of the situations [26,67,68].
Fully enteral nutrition is impossible to achieve because of the intolerance manifested in the first three
to five days post trauma. In this situation, parenteral nutrition should be applied. There are no
clear guidelines regarding the exact time when the nutrition should be initiated and there have been
important debates on the subject in the literature, but there are important differences between different
guidelines on the topic in certain situations.
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The European Society of Parenteral and Enteral Nutrition (ESPEN, www.espen.org) recommends
early initiation of enteral nutrition, in the first 24 h after admission to the ICU. On the other hand,
The Canadian Society for Nutritional Science (CSCN, www.nutritionalsciences.ca) recommends
initiation of enteral nutrition in the 24–48 h interval after admission to the ICU.

A critically ill polytrauma patient with sepsis also presents with changes, as well as specific interactions
caused by plasmatic cholesterol and proteins. Recent studies have shown that hypercholesterolemia
can be an important index for negative prognosis in these patients, especially because of the complex
interactions that cholesterol has with protein fragments in plasma. Moreover, it has been noticed that
hypercholesterolemia interfaces with the augmentation of the systemic inflammatory response [69].
Chiarla et al. conducted a study in order to identify correlations between plasmatic cholesterol levels
and a series of metabolic changes in septic patients. Following this study, they reported that there are
strong correlations between hypercholesterolemia and changes in the expression of amino acids in
plasma [70].

3. Biochemical and Pathophysiological Aspects of the Hypermetabolic Status

The critically ill polytrauma patient is characterized by a hypermetabolic status that is divided into
different clinical time periods. From a pathophysiological and molecular point of view, hypermetabolism
is represented by a complex line of interconnected biochemical reactions that have disastrous effects
on the clinical outcome. This is a very serious situation not only because of the hypermetabolism
characterizing the critical period of these patients but also by the fact that this hypermetabolic
status can continue years after the trauma, leading to a delayed recovery for these patients [58,71–73].
The hypermetabolic status is characterized, in particular, by an alarming increase in oxygen consumption
throughout the body. The hypermetabolism that characterizes the polytrauma patient is extremely
complex and has not been described in detail until now. This is mainly because there is a high
interdependence between a series of reactions specific to inflammation, infections, hormonal reactions,
as well as pharmacological and pharmacodynamic interactions. At a cellular level, there is a similar
trend [74–76].

4. Genetic and Epigenetic Expressions Associated with Hypermetabolism

Another system involved in the modulation of both the hypermetabolic response and the
inflammatory response specific for critically ill patients is represented by the genetic and epigenetic
expressions [77–112]. The most sensitive systems capable of a fast reaction to hypermetabolic changes
are the microRNAs epigenetic species. From a structural point of view, the microRNAs are synthesized
inside the cell. Their biosynthesis takes place in the cell nucleus where the RNA polymerase II attacks
and codes for specific genes. These coding reactions lead to the formation of pri-microRNAs and the
biochemical reactions that follow are represented by the attack of the RNAse III endonuclease (Drosha)
on the pri-microRNA, leading to the formation of pre-microRNAs. This reaction is catalyzed by the
DiGeorge syndrome critical region 8 (DGCR8) complex. After their formation, the pre-microRNAs
species are transported through the exportin-5 transporting protein from the cell nucleus into the
cytoplasm. Here, the RNAse III endonuclease (Dicer) and the RNA binding protein (TRBP) initiate
new biochemical reactions leading to the formation of mature microRNAs that will be further exported
under various forms, such as microvesicles, exosomes, and apoptotic bodies. One of the most useful
and interesting facts is that microRNAs that are transported outside the cell can be used as specific
biomarkers for certain cellular pathologies, as well as for molecular damage reactions specific to a
certain disease [109].

A series of correlations between the clinical status and microRNAs expressions can be made
regarding the hypermetabolism, inflammation, as well as the malnutrition, of the critically ill polytrauma
patient, and therefore one can state that the nutritional status and metabolic imbalances found in these
patients can be evaluated by using this method. The critically ill polytrauma patient is especially
characterized by an accentuated catabolic stress. Under these circumstances, skeletal muscle is one of
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the major sites for the metabolic activity. This is due to the increased amino acid reserve. Inflammation,
infection, renal failure, and respiratory dysfunctions lead to muscle wasting and muscle atrophy,
with severe consequences on the clinical outcome of these patients. Recently, a series of biochemical
connections have been observed between the microRNAs and the muscle wasting processes that
take place due to inflammation and hypermetabolism. Practically, it has been proven that muscle
atrophy is a biochemically active process that is controlled by a series of genetic signals specific for
the microRNAs. Soares et al. determined the microRNAs expression under the circumstances of
muscle waste in a catabolic profile and an increased activity for microRNA-206 and microRNA-21 were
discovered following this study [77–100,109,110].

The critically ill polytrauma patient is characterized by severe hypoxia that affects a series of
biochemical and metabolic systems. A very important element for this situation is the factor, alpha-1
inducible hypoxia (HIF-1 α). Under conditions of stress and hypoxia, HIF-1α is used as a transcription
substrate for a series of genes that modulate cellular metabolism, cellular motility, and angiogenesis.
Recent studies have proven the existence of biochemical links between microRNAs and the HIF-1α
activity. In this manner, they have identified changes in the microRNAs expression that were closely
correlated with the hypermetabolic status, such as microRNA-140 (a genetic regulation reaction specific
for chondrocyte), microRNA-140 and let-7 (a specific regeneration reactions for skeletal muscles),
microRNA-199a (differentiation reactions for chondrocytes through the SMAD1 transcription factor),
and microRNA-365 (proliferation reactions of chondrocytes through histone deacetylase). Another
study regarding the expression of regulatory T-lymphocytes and their interaction with microRNAs
under metabolic stress showed that in under-nutrition conditions, the expression of transforming
growth factor beta 1 (TGF-β1) is altered. Moreover, a series of interactions have been identified between
the TGF-β1 and microRNA-29a, microRNA-146a, microRNA-21, microRNA-181a, microRNA-181c,
and microRNA-155 [78–112].

5. Mathematical Formulas for Predicting Energy Requirements

In the past, there were several mathematical formulas capable of estimating energy needs.
After numerous studies, however, it has clearly been proven that these formulas are, in fact, not capable
of correct estimations of energy requirements for critically ill patients, especially for polytrauma
patients. This is not surprising, as there is no correlation between the mathematical factors included in
the formulas and clinical dynamics of these patients [75–79].

In such circumstances, calculating the energy expenditure is important in order to accurately
determine the number of calories they need. During the early phases of critical illness, the number of
calories consumed is lower than the energy expenditure because the body utilizes the inhabitable glucose.
For this reason, there is a risk of overfeeding. In a similar manner, more calories are needed when the
critical illness is subsiding, and therefore there is a risk of underfeeding. Significantly, inappropriate
energy intake can affect the outcome of the patient during critical illness. To avoid this, energy
expenditure estimation methods, such as predictive equations, indirect calorimetry, use of double-labeled
water, and reference methods have been applied [77]. All of these methods have disadvantages and
advantages, however, preference for one over the other depends on the method with advantages that
outweigh the disadvantages. Some research has pointed out that predictive equations tend to be
inaccurate most of the time, whereas indirect calorimetry presents a cumbersome setup, including
problems with storage of equipment as well as technical limitations. Often, predictive equations are
used because indirect calorimetry is not available for all populations in all institutions [78,79].

Nevertheless, studies have shown that these equations sometimes give inaccurate answers despite
the age, gender, or weight [80] (Table 1). On the one hand, for example, in a study performed to
validate the results produced by the two methods, indirect calorimetry was found to have a ±10%
degree of error for measured energy expenditure. As it is considered the gold standard for measuring
energy requirements, these ranges are quite acceptable. The Harris–Benedict equation was used in
this experiment and produced inaccurate results, with some overestimates and some underestimates.
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On the other hand, a predictive equation estimate based on an assumption of relationships between
age, height, weight, sex, or minute ventilation has not yet been proven.

Table 1. Predictive equation for energy expenditure determination (M, male; F, female; RMR, resting
metabolic rate; REE, resting energy expenditure; BMR, basal metabolic rate; FFM, fat free mass; FM, fat
mass; TBSA, total body surface area; BSA, body surface area; and AF, activity factor, typically 1.2–1.4).

Name Formula Accuracy (%) References

Mifflin St Joer M: RMR = 9.99 ×Weight + 6.26 × Height − 4.92 × Age + 5
F: RMR = 9.99 ×Weight + 6.25 × Height − 4.92 × Age − 161 17.8

[12,78,80–88]

Harris−Benedict M: RMR = 66.47 + 13.75 ×Weight + 5.0 × Height − 6.75 × Age
F: RMR = 655.09 + 9.56 ×Weight + 1.84 × Height − 4.67 × Age 31.3

Owen M: RMR = 879 + 10.2 ×Weight
F: RMR = 795 + 7.18 ×Weight 48

Carlson REE = BMR × [0.89142 + (0.01335 × TBSA)] × BSA × 24 × AF 94

Curreri REE = 25 ×Weight (kg) + 40 ×% BSA burned 91

Bernstein REE = 19.02 × FFM + 3.72 × FM − 1.55 × Age + 236.7 19

Xie REE = (1000 × BSA) + (25 × TBSA) 91

Horie–Waitzberg REE = 560.43 + (5.39 ×Weight) + (14.14 × FFM) 65.8

Ireton-Jones M: REE = 606 + (9 ×Weight) − (12 Age) + 400 (if ventilated) + 1400
F: REE = Weight − (12 × Age) + 400 (if ventilated) + 1444 60

Muller REE = 0.05 ×Weight + 1.103 × Sex + 0.01586 × Age + 2924 68

Livingston M: REE = 293 ×Weight 0.4330
− 5.92 × Age

F: REE = 248 ×Weight 0.4356
− 5.09 × Age

67

Schofield W M: REE = 11.711 ×Weight + 587.7
F: REE = 9.082 ×Weight + 658.5 59

Henry
M: REE60–70y = 13 ×Weight + 567|REE≥71y = 13.7 ×Weight + 481
F: REE60–70y = 10.2 ×Weight + 572|REE≥71y = 10 ×Weight + 577 66

De Lorenzo M: REE = 53.284 ×Weight + 20.975 ×Height − 23.859 × Age + 487
F: REE = 46.322 ×Weight + 15.744 × Height − 16.66 × Age − 944 63

20 Kcal/kg Ratio REE = Weight × 20 44

Lazzer M: REE = 0.048 ×Weight + 4.655 × Height − 0.020 × Age − 3.605
F: REE = 0.042 ×Weight + 3.619 × Height − 2.678 59

Korth REE = 41.5 ×Weight + 35.0 × Height + 1107.4 × Sex −
19.1 × Age − 1731.2 63

Huang REE = 10.158 ×Weight + 3.933 × Height − 1.44 × Age +
273.821 × Sex + 60.655 71

Weijs REE = Weight × 14.038 × Height × 4.498 + Sex (1 = M, 0 = F) 48

Fredrix REE = 1641 + 10.7 ×Weight − 9 × Age − 203 × Sex 70

Cunningham 1989 REE = (21.6 × FFM) + 370 63

Wang et al. REE = (21.5 × FFM) + 407 59

Lurhmann REE = 3169 + 50.0 ×Weight − 15.3 × Age + 746 × Age 58

Swinamer REE = (945 × BSA) − (6.4 × Age) + (108 × Temperature) +
(24.2 × Respiratory rate) + (817 × Vy) − 4349 55

Frankenfield REE = 925 − (10 × age) + (5 ×Weight) + (281 if male) +
(292 if trauma present) + (851 if burns present) 28

Penn State 2003 REE = (0.85 × Value from Harris−Benedict equation) +
(175 × TMax) + (32 ×VT) − 6433 39

Penn State 1998 REE = (1.1 × Value from Harris–Benedict equation) + (140 × TMax)
+ (32 × VE) − 5340 68

6. Nutritional Therapy Guided with Indirect Calorimetry

Indirect calorimetry is one of the most widely discussed methods in the literature, because it is the
ideal parameter for determining the energy requirements for critically ill patients who are intubated
and mechanically ventilated [89,90]. Although over 90% of critically ill polytrauma patients also
present respiratory failure and require prolonged mechanical ventilation, indirect calorimetry can
be considered the gold standard for determining appropriate nutritional therapy and adapting the
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therapy to these specific patients. From a technical point of view, indirect calorimetry is based on
real-time monitoring of oxygen consumption (VO2) and carbon dioxide production (VCO2) [91–93].
Clinically speaking, the principle behind indirect calorimetry is represented by the fact that, in the
human body, there are no considerable molecular oxygen reserves. The oxygen that reaches the
organism is then utilized to produce an energy substrate by oxidizing carbohydrates, protein, and fats.
Therefore, we can say that the ratio between carbon dioxide production and oxygen consumption is
constant. It has also been proven that the respiratory quotient (RQ) depends on the prevailing type of
metabolic oxidation, providing useful information about the energy substrate used at critical moments
for these patients [94–96]. A simple mathematical formula is used for calculating RQ, represented by
the ratio between CO2 production and O2 consumption (RQ = VCO2/VO2) [94]. Basically, depending
on the oxidized substrate at that point in time, the RQ value will vary at certain intervals, providing
supplementary information regarding the metabolic status of these patients (Figure 2).
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Figure 2. Indirect calorimetry gas exchange monitoring and respiratory quotient interpretation during
critically ill conditions.

Numerous studies have shown that a series of complications can arise after inadequate nutritional
therapy. Among these are infections, acute kidney injury, acute respiratory distress syndrome,
multiple organ dysfunction syndrome and, in the case that the patient survives, late and prolonged
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recovery [67,97,98]. Another important aspect is the longer ICU stay for these patients. Anbar et al.
showed that the time spent in the ICU can be increased by up to three days for patients for whom
nutritional therapy is not correctly administered [99].

Regarding the accuracy of the method, there are a series of studies that have shown an increased
specificity for indirect calorimetry. Inadomi et al. conducted a study in which they compared oxygen
consumption (VO2) measured through indirect calorimetry and by the Fick method that uses central
venous oxygen saturation (ScVO2) and cardiac output (CO) measured by pulse dye densitometry (PDD).
This was a prospective study and included mechanically ventilated patients. Following certain tests,
they identified major differences between the two studied methods. In the case of indirect calorimetry,
VO2 was 148 ± 28 mL/min/m2 as compared with 110 ± 29 mL/min/m2 measured through the Fick
method (p < 0.01). The authors concluded that, for the measurement of VO2, indirect calorimetry
remains the gold standard due to its increased accuracy [100].

The use of nutritional therapy, in the case of critically ill polytrauma patients, has grown during
recent years because of its implications in the clinical course of these patients, as has been proven in
numerous clinical studies. Another important aspect in the development of nutritional therapy, in these
particular cases, is represented by the progress of diagnostic methods and by the understanding of the
molecular and biological mechanisms involved in the process.

Together with the introduction of artificial nutritional support, a series of complications associated
with the nutrition type, be it enteral, parenteral or mixed, have been identified. Several years ago,
there were a series of controversies regarding the type of nutrition and caloric input that should be
administered to a patient. Therefore, a series of equations have been developed to predict energy
requirements in critical patients. Numerous studies have identified a major discrepancy between the
values calculated with these formulas and the clinical reality [82,101].

Recently, a new concept has been introduced in the field, a concept of nutrition adapted to the
individual needs of each patient, based in particular, on determining energy requirements through
indirect calorimetry. In essence, this adapted nutritional therapy is based on the supplementation of
specific nutritional deficits by assuring the energy requirements (kcal/day) that the patient can tolerate
at that certain critical moment.

It goes without saying that a critically ill polytrauma patient represents a real challenge for the
intensive care physician in regard to selecting an approach to nutritional therapy. This is because of
the complex immune response, the aggressive pro-oxidative status, and the generalized inflammatory
response. In particular, the pathophysiological changes, molecular alterations, and dynamics of
inflammatory status modify the clinical status differently from one patient to another, as well energy
requirements (kcal/day) and protein turnover are modified continuously, and therefore the estimation
of their values through mathematical methods becomes impossible.

With respect to adapting nutritional therapy during the first week from admission to the ICU,
in the case of critically ill polytrauma patients, it is recommended that over 50% of their caloric target
is administered through enteral feeding. Obviously, if this is not feasible, then, parenteral nutrition
is also an option. Another important recommendation is that proteins should not be included in the
calculations for the caloric requirements, because, from a biological viewpoint, they are not used in the
deposited of muscle mass or the metabolism reactions to cover the energy requirements [76,98,102].

A significant proportion of polytrauma patients is represented by patients with traumatic brain injury
(TBI) [2,103,104]. A different aspect, in the case of these patients, is represented by the hemodynamic
instability and secondary complications that they develop. From a metabolic point of view, patients
with TBI present with a hypermetabolic status, with a specific catabolism regardless of proteins or
administered calories. Practically, because of the molecular mechanisms responsible for the links
and reactions induced by the cerebral lesions, each patient will have a different degree of catabolism,
and therefore different energy requirements. Thus, indirect calorimetry remains the only way to
validate the correct determination of energy requirements (kcal/day) for this type of patient. From a
biochemical point of view, one of the main causes of accelerated hypermetabolism in these patients
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is the augmentation of the damage-associated molecular pattern (DAMP). Among these, are the
excessive production of cytokines (IL-6, IL-8, and TNF-α) that also induce the excess production of
catecholamines, cortisol, and glucagon. Clinically, through the accumulation of complex molecular
mechanisms, the energy requirements (kcal/day) of critically ill polytrauma patients with TBI increase
significantly and change from day to day under the action of a series of DAMP-specific factors [105].

Allingstrup et al. carried out a study on the topic of early nutrition versus standard nutritional
therapy. Regarding the study design, the authors divided the patients into two groups. One group
received nutritional therapy based on values obtained through indirect calorimetry and urinary urea
nitrogen, whereas the other group received nutritional therapy based on a recommended administration
of 25 kcal/kg/day. The authors randomly enrolled 203 patients in the study, and the study results
showed a statistically significant difference regarding negative energy (p < 0.001) and protein balance
(p < 0.001) for patients whose nutritional therapy was based on indirect calorimetry, however, following
this study, there were no significant differences regarding mortality or time spent in the ICU and
hospital days [101].

In agreement with the recommendations, indirect calorimetry is the gold standard for invasively
mechanically ventilated patients, however, recently, indirect calorimetry was also tested as a method for
application in patients ventilated non-invasively. Siirala et al. conducted a study regarding the accuracy
of indirect calorimetry in the case of non-invasive mechanically ventilated patients as compared with
patients with spontaneous breathing and they could not identify any significant differences regarding
the resting energy expenditure (REE) values and RQ in the two groups [91].

Sunderland et al. carried out a study including critical patients with TBI, in which they
compared the measured energy expenditure through indirect calorimetry to the energy requirements
calculated using different mathematical formulas. They included 102 patients in the study, with over
385 measurements. They showed an increased accuracy for indirect calorimetry, validating once again
the clinical accuracy of the method [106]. Another study carried out by Maxwell et al. supported these
results, proving that indirect calorimetry is the gold standard for determining energy requirements
(kcal/day) in critical patients [107].

A revolutionary study was conducted by Strack et al. on the clinical outcomes and implications of
indirect calorimetry-guided nutritional therapy. They proved, when guided by indirect calorimetry,
that nutritional therapy and the administration of a minimum of 1.2 g proteins/kg/day brings significant
improvements in survival rates after 28 days in the ICU. An important aspect of this study was that
they did not identified any significant differences regarding mortality in the case of men [108].

In addition, the critically ill polytrauma patient is characterized by a series of pathologies and
imbalances, all of which are interconnected and have accelerated dynamics. These rapid pathophysiological
and metabolic changes lead to an extremely dynamic energy expenditure profile that changes on a daily
basis [102–107]. On the one hand, the most common changes that lead to an increased energy expenditure
(kcal/24 h) are represented by hyperventilation, hyperthermia, overfeeding, infections, inflammation,
metabolic acidosis, hyperthyroidism, and pheochromocytoma. On the other hand, there are certain
pathological situations responsible for decreased energy expenditure (EE, kcal/24 h) such as metabolic
alkalosis, underfeeding, hypoventilation, sedation and coma, hypothermia, and hypothyroidism.
Moreover, certain pathologies exist that are able to dynamically modify the energy expenditure, one of
which is cancer that dynamically increases EE (kcal/day) because of inflammation and aggressive
cellular division. Other such pathologies are chronic kidney disease and diabetes which both, through
inflammation and metabolic acidosis, are responsible for an increased metabolic activity and lead to
increased EE (kcal/day) [105–108].

RQ is another important aspect when using indirect calorimetry. It can be obtained directly by
monitoring respiratory gases and can guide nutritional therapy in a patient-centered, individualized
manner. The complexity of nutritional substrate biochemical and metabolic oxidation processes makes
adapting nutrition for each particular segment impossible. Six O2 moles are needed for the oxidation
of glucose, with the further production of six moles of CO2 for each mole (180 g) of glucose. In this
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particular situation, the RQ (VCO2/VO2) equals one. Through a similar mechanism, the oxidation of
one mole of fat (palmitoyl–stearoyl–oleoyl–glycerol), there is a consumption of 78 moles of O2 and
a production of 55 moles of CO2 for each mole of fat. Therefore, the RQ for fat (VCO2/VO2) will be
0.7. Other studies have also presented similar RQ values following fat metabolism, such as RQ for
tripalmitin (fat) 0.71, oleic acid (fat) 0.71, and triolein (fat) 0.7 [99–110].

In the case of proteins, the calculations are based on empirical formulas using the urinary nitrogen
excretion. Studies have reported that from the metabolism of 6.25 g of protein, 1 g of urinary nitrogen
will be produced. In the context of the critically ill patient, the metabolic processes are more complex
and interfere with one another, leading to important dynamic changes in RW, such as oxidation of
glucose to fat, metabolism of lactate, and reactions involved in ATP production. An example is the
transformation of glucose into fat that needs the intervention of pyruvate and acetyl-CoA. Basically,
through this complex mechanism, 27 moles of glucose (the equivalent of 4.865 g) will consume six
moles of O2 (the equivalent of 134 L) in order to produce six moles of fat and 52 moles of CO2 (1165 L
CO2). The biosynthesis and oxidation of lactate is another important process, which is also very
specific to the critically ill patient. The mechanisms involved in lactate metabolism are represented by
gluconeogenesis and oxidation. For the oxidation of one mole of lactate, the body uses three moles
of O2 with the production of three moles of CO2, however, one mole of CO2 will be converted to
bicarbonate due to the intervention of a proton (H+) in the oxidation process of lactate [113,114].

Jeon et al. conducted a study on 215 adult patients with severe burns focusing on EE using IC in
comparison with mathematical equations and proved a high accuracy for measurements performed
using IC as compared with the results obtained when solely using equations. They also showed rapid
changes in EE that were only detected by IC, proving that the adjustment of nutritional therapy based
on mathematical equations is impossible [115].

Zusman et al. developed a similar study regarding the differences between measured EE and
calculated EE including 1440 patients. They concluded that equations have low accuracy as compared
with indirect calorimetry and cannot replace this method in guiding nutritional therapy [116]. The study
by Kreymann et al., on EE changes and their correlation with sepsis and septic shock, showed that the
mean VO2 in patients with sepsis was 180 ± 19 mL/min/m2, whereas the value for patients in septic
shock was 120 ± 27 mL/min/m2 (p < 0.001). Statistically significant changes (p < 0.01) were reported
regarding the mean resting metabolic rate in sepsis (+55% ± 14%) and in septic shock (+2% ± 24%).
The O2 extraction capacity was also studied, with maximum values being reported for sepsis as
compared with septic shock (VO2/DO2, 0.39 vs. 0.29, p < 0.05). An increase in the resting metabolic
rate with +61% ± 21% during recovery from sepsis and septic shock was also proven. Following their
study, the research group underlined the importance of IC monitoring for detecting dynamic metabolic
changes, as well as their association with the clinical context and with guiding nutritional therapy
based on each patient’s hypermetabolic status [98]. Singer et al. reported, from the tight calorie control
study (TICACOS), that in-hospital mortality can be reduced when administering nutritional therapy
based on IC. They included 130 mechanically ventilated patients in their study that had been divided
into two study groups (nutritional therapy based on IC vs. 25 kcal/kg/day). The monitored EE was
much higher than the calculated EE (2086 ± 460 kcal/day vs. 1480 ± 356 kcal/day, p = 0.01). The group
also highlighted a statistically significant difference in the amount of protein administered per day
(76 ± 16 g/day vs. 53 ± 16 g/day, p = 0.05) [117]. Heidegger et al. carried out a similar study and
showed a decrease in the incidence of nosocomial infections in patients that benefited from IC guided
nutritional therapy [118].

The study by Tamura et al. investigated REE in cardiac surgery patients as compared with
the REE values obtained by IC and the Harris–Benedict equations. The study included 47 patients
and demonstrated significant differences between calculated and measured EE values. They also
showed that EE calculated by using the Harris–Benedict equation was 1.14 higher than the EE
monitored through IC [119]. Dias Rodrigues et al. compared the results of IC with the mathematical
equations, in a group of elderly patients, on hemodialysis and reported an overestimation of energy
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requirements when basing calculations on equations. Their results showed statistically significant
differences (p < 0.05) between measured EE and the Harris–Benedict method (1339 ± 245 kcal/day),
WHO (1385 ± 225 kcal/day), as well as Schofield (1358 ± 203 kcal/day). While investigating the
accuracy, they reported a lower accuracy for equations as compared with IC [120]. In a similar study,
Valainathan et al. compared the difference in EE values between IC, the Harris–Benedict equation,
and a modified Harris–Benedict equation in patients with severe acute pancreatitis. Following this
study, they concluded that the Harris–Benedict equation underestimates EE, while the modified
Harris–Benedict equation overestimated EE in this patient group, and therefore IC is the most reliable
method for calculating the energy requirements [121].

7. Nutritional Therapy Guided with Indirect Calorimetry in Critically Ill Pediatric Patients

When looking at the pediatric critically ill population, the energy requirements are of utmost
importance. In the first two years of life, the nutritional status has a significant impact on the development
of all biological and morphological structures. In preterm newborns, it has been observed that the
nutritional status has important implications in organ development, especially due to organ immaturity
and low nutritional reserve [122]. A high percentage of newborns also have a diaphragmatic hernia.
One of the major risks in this situation is the development of growth failure due to an imbalance between
calorie intake and increased catabolic stress. In this patient category, low calorie intake is mainly due to
specific organic illnesses, such as gastro-esophageal reflux, oral aversion, and esophageal dysmotility.
Moreover, metabolic and surgical stress leads to an underestimation of the energy requirements,
with IC being the only method that can be used for a correct appreciation of the nutritional therapy.
Haliburton et al. carried out a study on determining EE in infants with a congenital diaphragmatic
hernia by using IC, as well as comparing their results with classical formulas. They showed that, after
IC monitoring, the energy requirement was 58 ± 18 kcal/kg/day, which was considerably higher than
the calculated EE of 46.6± 3 kcal/kg/day (p < 0.05). This study also showed that 59% of the patients were
hypermetabolic with a measured EE of >110% than the predicted EE [122]. Howell et al. also reported
significant differences between the metabolic statuses of infants with congenital diaphragmatic hernias
when measuring EE with IC as compared with calculated EE [123]. The study by White et al. also
supported these results by comparing EE measured through IC and EE calculated with equations
such as Schofield (mean % difference, 21.2%), WHO (mean % difference, 23.39%), and White (mean %
difference, 36.45%) [124].

Vazquez Martinez et al. also carried out a study on EE in the critically ill pediatric patient. They
compared EE from IC and from mathematical equations for 43 mechanically ventilated pediatric
patients. They showed a statistically significant difference regarding measurement accuracy, as follows:
IC vs. Harris–Benedict (mean differences, 162.9 ± 236.5, p = 0.001); IC vs. Schofield (96.74 ± 186,
p = 0.01); IC vs. Maffies (181.4 ± 232.0, p < 0.0001); IC vs. Kleiber (−130.5 ± 178.9, p = 0.001); IC vs.
Dreyer (296.5 ± 219, p < 0.0001); and IC vs. Hunter (−317.7 ± 180.5, p = 0.001) [125]. Suman et al.
studied the critically ill patient with burns, and also showed significant differences between measured
and calculated EE as follows: IC vs. Schofield-HW (mean difference, −64.7 to −22.4 kcal/day);
IC vs. Harris–Benedict (mean difference, 640 ± 555 kcal/day); and IC vs. Food and Agriculture
Organization, World Health Organization, and the United Nations University (FAO/WHO/UNU)
(mean difference, 652 ± 559 kcal/day) [126]. Bott et al. reported similar results following a study that
included 52 pediatric patients with bronchopulmonary dysplasia as follows: IC vs Harris–Benedict
(mean difference, −15 ± 33.3); IC vs. Schofield-W (−51.3 to −2.0), Schofield-HW (−67.7 to −22.4); and
IC vs. FAO/WHO/UNU (−47.5 to 7.4) [127,128].

8. Conclusions

In conclusion, we can state that each critically ill polytrauma patient is special and unique because
of their characteristic hypermetabolic and hyperinflammatory status. The time spent on mechanical
ventilation, the multiple tissue injuries, the organ lesions, multiple site infections, and increased
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oxygen consumption all lead to dynamic changes in energy consumption for each individual patient.
The literature shows that mathematical equations, for the most part, are far removed from the clinical
reality of the patient, with significant discrepancies between the results. Therefore, indirect calorimetry
becomes the gold standard for monitoring the personalized energy requirements of the patients,
respecting the individual clinical dynamics.
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