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Work extraction from quantum systems with
bounded fluctuations in work
Jonathan G. Richens1,2 & Lluis Masanes2

In the standard framework of thermodynamics, work is a random variable whose average is

bounded by the change in free energy of the system. This average work is calculated without

regard for the size of its fluctuations. Here we show that for some processes, such as

reversible cooling, the fluctuations in work diverge. Realistic thermal machines may be unable

to cope with arbitrarily large fluctuations. Hence, it is important to understand how

thermodynamic efficiency rates are modified by bounding fluctuations. We quantify the work

content and work of formation of arbitrary finite dimensional quantum states when the

fluctuations in work are bounded by a given amount c. By varying c we interpolate

between the standard and minimum free energies. We derive fundamental trade-offs

between the magnitude of work and its fluctuations. As one application of these results, we

derive the corrected Carnot efficiency of a qubit heat engine with bounded fluctuations.
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H
istorically, thermodynamics has been a theory of
macroscopic systems comprising of many particles. As
we venture away from the thermodynamic limit we must

question the validity of established principles. Recently, the
problem of extracting work from a microscopic quantum system
has received much attention1–5. The standard free energy is used to
calculate the maximal amount of average work that can be
extracted from a system in thermal contact with an infinite heat
bath. Generally the work extracted on each running of the protocol
fluctuates, but in the thermodynamic limit the relative size of
fluctuations in work vanishes. However, in the case of microscopic
systems, and systems that are far from equilibrium, fluctuations in
the work can no longer be ignored. It is of significant practical
importance that we understand these fluctuations in order to
describe the behaviour of small and fragile machines such as
quantum heat engines comprising of just a few qubits6–8. Realistic
thermal machines are designed to operate at specific energies with
a certain tolerance to fluctuations. Taking into account this
inevitable fragility requires a modified free energy that tells us the
average work associated with a process when fluctuations in that
work are constrained.

One approach to dealing with fluctuations is to simply not allow
for them. This is the tactic employed by single-shot thermo-
dynamics, a recently developed approach to quantum thermo-
dynamics inspired by the field of single-shot information
theory1,4,5. The single-shot (deterministic) work associated with a
process is given by the difference in minimum-free energy between
initial and final states1,4, which is generally significantly smaller
that the standard free energy difference. The work cost of forming
a state from the Gibbs state is given by the max-free energy1,4,
which is generally significantly larger than the deterministic work
that can be extracted from the state. This discrepancy between the
work cost and work content of states in the single-shot regime
results in thermodynamic irreversibility when transforming
between states. Furthermore, the set of allowed thermodynamic
transformations in the single-shot regime are severely restricted. In
this regime, it is possible for a state to undergo a transition r-r0

deterministically (and without supplying work) on the condition
that an infinite family of ‘second laws’ are satisfied9. Some
transitions r2r0 can only be achieved by supplying work in both
forward and backward directions, resulting in a partial order on the
set of states with respect to the resource of work9. This is in stark
contrast to when we allow work to fluctuate freely, whereby all states
can be inter-converted in a thermodynamically reversible manner.

To date the majority of thermodynamic protocols treat work
either as an unconstrained random variable or a totally
constrained (deterministic) quantity. In this article we explore
the landscape of protocols that exist between these two regimes.
We find that in many protocols, for example thermodynamically
reversible cooling, the work must have fluctuations that diverge in
size. This makes realising these protocols practically infeasible,
especially for small or fragile machines. To this end we define the
c-bounded work, giving the optimal average work hwi that can be
achieved by any protocol when fluctuations of the random
variable w are bounded as

w� wh ij j � c ð1Þ
where c is a adjustable parameter. In this article we explore how
bounding work fluctuations in this way affects work extraction,
state formation and the allowed state transformations of
individual systems. We derive expressions for the c-bounded
work that interpolate between these two regimes of deterministic
and freely fluctuating work. We then apply these results to the
study of a single qubit thermal engine, and derive a corrected
Carnot efficiency when fluctuations in the work produced by the
engine are constrained.

Results
The framework. In this section we provide a precise description
of our framework, describing the system, bath, work system and
the set of allowed operations Figs 1–3.

We make use the widely applied set-up for thermodynamic
protocols of system, infinite thermal bath and a weight, which
acts as a store and source of the work produced or consumed
by a protocol2,3,10. In the following we set the Boltzmann
constant kB to 1. The bath has infinite volume and it is in
the Gibbs state rB¼ 1

ZB
e�bHB , where b is the inverse temperature,

HB the Hamiltonian and ZB the partition function.
The work system is modelled as a suspended weight with a

continuous energy spectrum and Hamiltonian dependent only on
its displacement HW¼

R
R

dx x xj i xh j, where the orthonormal basis
xj i; 8 x 2 Rf g represents the position of the weight. To define

work as a classical random variable w, the position of the weight
is measured at the beginning and end of the protocol.

The system being transformed has Hilbert space of dimension
d, initial state and Hamiltonian (r, HS), and final state and
Hamiltonian (r0,H0S) (which may have no relation to the initial
Hamiltonian, see Supplementary Note 1). It is useful to define the
initial and final dephased states and their spectral decompositions

lim
T!1

ZT
0

dt e� iHStr eiHSt¼
X

s

xs sj i sh j; ð2Þ

lim
T!1

ZT
0

dt e� iH0Str0 eiH0St ¼
X

s

xs0 s0j i s0 :jh ð3Þ

The two bases |si and |s0i defined above, allow to write the
spectral decompositions HS¼

P
s Es sj i sh j and H0S¼

P
s0 Es0 s0j i s0h j.

(Note that we use notation xs0 and Es0 instead of x0s0 and E0s0 .)
Finally, we assume that initially the joint state of system, bath and
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Figure 1 | Variation of c-bounded work extraction and state formation

further from equilibrium. Figure shows the unbounded work W(r), the

c-bounded work content W(c)(r) and the c-bounded work of formation

W
cð Þ

F (r) for the state r¼x 0j i 0h j þ 1� xð Þ 1j i 1h j with Hamiltonian

Hs¼E 0j i 0h j with b¼ 1, E¼0:1 and c¼0.7. Note that despite choosing a

c-bound that allows for fluctuations of the order of the maximal work that

can be extracted from the pure state x¼ 1, in general we can extract much

less that this amount. There is a discontinuity in W(c)(r) at x¼0 where we

recover W(c)(r)¼W(N)(r). Notice also that closer to the thermal state the

dissipation (difference between the W(c)(r) or W
cð Þ

F (r) and W(N)(r)) is

greater for state formations than work extraction, and this reverses as the

state moves further from the Gibbs state.
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weight is product r#rB#rW. We consider any process that is a
joint transformation of system, bath and weight represented
by a Completely Positive Trace Preserving (CPTP) map GSBW

satisfying the following conditions:
Microscopic reversibility (Second Law): It has an (CPTP)

inverse G� 1
SBW, which implies unitarity GSBW(rSBW)¼UrSBWUw.

Energy conservation (First Law): [U, HSþHBþHW]¼ 0.
Independence from the ‘position’ of the weight: The unitary

commutes with the translations on the weight [U, DW]¼ 0. The
generator of the translations DW is canonically conjugated to the
position of the weight [HW, DW]¼ i.

Classicality of work: Before and after applying the global map
GSBW the position of the weight is measured, obtaining outcomes
|xi and |xþwi respectively. The joint transformation of the
system and work random variable w is given by the map

L r;wð Þ ¼
Z
R

dx trBW Qxþw U r � rB � QxrWQxð ÞUy
h i

;

ð4Þ
where Qx¼ |xihx| is a weight position projector.

The assumption that the dynamics of a closed system is
reversible and conserves energy is widely used, because it
corresponds to a common physical setup. The third condition
implies that the reduced map on the system and bath is a mixture
of unitaries, and therefore cannot decrease the entropy of the
joint state of system and bath (See Result 1 in ref. 10). This
ensures that the weight cannot be used as a source of non-
equilibrium, and can be viewed as a necessary condition for
defining work2,11. As a consequence of the fourth condition
(classicality of work), the optimal work that can be extracted is
determined by the dephased states of the system, hence the
presence of coherences in the system cannot increase or decrease
this amount (Supplementary Note 3). In the case of state
formation, a state with coherences cannot be formed from a
thermal state. However, for general state transformations (which
we do not analyse in this paper) the presence of coherences in the
initial and final states of system generate further constraints on

the work12,13. Regarding quantum definitions of work, several
attempts have been made14–16, but there is still no consensus on
these definitions and their treatment of fluctuations. The problem
of defining a truly quantum definition of work, or if such a
definition exists, remains an important and open question16–18.

Deterministic work. The single-shot work content of a system is
given by the difference in minimum free energy Fmin rð Þ¼
� b� 1log

P
s

x0
s e�bEs between the state r and the thermal state

W 0ð Þ rð Þ¼ 1
b

logZ� 1
b

log
X

s

x0
s e�bEs ; ð5Þ

where x0 returns 1 if x40 and 0 if x¼ 0, and Z¼ tr e�bHS
� �

is the
partition function of the system1,4. If xs has full rank then
minimum free energy is � b� 1 log Z. Therefore non-zero
deterministic work can only be extracted from states that are
not of full rank. The single-shot work of formation is

Wð0Þ
F rð Þ¼ 1

b
logZþ 1

b
log max

s
xs ebEs : ð6Þ

In general we find that W 0ð Þ
F (r)4W(0)(r), that is, it is not

possible to form most states in a thermodynamically reversible
manner. When a weight is not present, the necessary and
sufficient condition for a state transformation (r, HS)-(r0, H0S)
to be possible is given by the thermo-majorisation criteria1. If in
addition a catalyst is used, the necessary and sufficient conditions
are given in ref. 9 (for states that are diagonal in the energy
eigenbasis). The key phenomenon is that in single-shot
thermodynamics there is a partial order on states, that is,
there are state transitions that are impossible, in both forward
and backward directions, without supplying work. In contrast
thermodynamic irreversibility and partial order are not observed
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Figure 2 | Variation of c-bounded work extraction and state formation

further from equilibrium as a function of c for fixed states. Figure shows

W
cð Þ

F (r) and W(c)(r) versus c for the trit state r¼0:7 0j i 0h j þ
0:2 1j i 1h jþ0:1 2j i 2h j with Hamiltonian Hs¼E1 0j i 0h jþ E2 1j i 1h j with E1¼0:1,

E2¼0:2. b is set to 1. For small c the dissipation |W(c)(r)�W(N)(r)| for

the formation protocol is greater than for the extraction protocol, and for

large c the relationship is inverted. Note that for c40.9 it possible to

thermodynamically reversibly prepare state r but not to thermodynamically

reversibly extract work from it.
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Figure 3 | The corrected Carnot efficiency for various values of c for a

single qubit heat engine. Figure shows the c-bounded Carnot efficiencies

versus TH for single qubit engine with gap E¼0:1 and TC¼ 1. The black line

gives the unbounded Carnot efficiency. The Blue lines give the c-bounded

efficiencies with there corresponding c’s marked on the figure. The dashed

lines give the maximum attainable efficiency in the limit of asymptotic

temperature difference between bC/bH-N.
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in the standard thermodynamic formalism, in which work is
allowed to fluctuate freely, as we discuss next.

Work with unbounded fluctuations. The maximum average
work that can be extracted from a system with the assistance of a
heat bath with inverse temperature b is given by the difference in
free energy between r and the Gibbs state. The free energy is
given by F rð Þ¼ Eh i� b� 1S rð Þ, Eh i¼ tr rHSð Þ¼

P
s xsEs is the

internal energy of the state, S(r)¼ �
P

s xs log xs is the entropy
of the de-phased state. The Gibbs state, with energy level
occupation probabilities xs¼Z� 1e� bEs , is the unique state given
HS and b with the lowest free energy (given by �b� 1logZ).
Therefore the optimal average work that can be extracted from an
out of equilibrium state is given by W 1ð Þ¼b� 1 logZþ F rð Þ. In
the reverse process of state formation the work cost is also given
by the difference in free energy between initial and final states. In
other words, if we do not bound fluctuations in the work it is
always possible to realize all state transformations in a
thermodynamically reversible way. This poses the question—
what is the minimum amount we must allow work to fluctuate in
order for a transition to be achievable with a thermodynamically
reversible protocol?

Theorem 1. The thermodynamically reversible process achiev-
ing the transition (r, HS)-(r0, H0S) with minimal fluctuations in
work has work values w s0 sjð Þ¼b� 1log xsebEs=xs0ebEs0

� �
. Therefore

there exists a thermodynamically reversible process achieving the
transition (r, HS)-(r0, H0S) with fluctuations in work less than or
equal to c if

eb DF� cð Þ � xsebEs

xs0ebEs0
� eb DFþ cð Þ 8s; s0; ð7Þ

where DF¼ F(r)� F(r0) is the change in the standard free
energy. This becomes a necessary and sufficient condition if the
initial and/or or final state is diagonal in the energy eigenbasis

Proof: For a detailed proof see Supplementary Note 2.
Note that for any finite c there exist states such that (7) cannot

be satisfied. These bounds have strong consequences for the
minimal fluctuations that can be achieved with a thermodyna-
mically reversible protocol. For example

lim
xi!0

log
xsebEs

xs0ebEs0
¼� lim

xs0!0
log

xsebEs

xs0ebEs0
¼�1 ð8Þ

Therefore as an energy level occupation probability tends to zero
the work fluctuation associated with transitioning to or from this
energy level diverges, negatively for work extraction and
positively for state formation, when performing a thermodyna-
mically reversible protocol. In either case we require c-N in
order to satisfy inequalities (7).

Result 1 tells us that the further from equilibrium the initial or
final states are, the larger the work fluctuations will be in
thermodynamically reversible protocols. Note that cooling a
system close to its ground state is an example of transitioning
from the thermal state to a far from equilibrium state. Similarly, if
we want to extract work form a far from equilibrium state using a
thermodynamically reversible transformation we encounter the
same divergence in fluctuations. The fluctuations can diverge
even if the average work remains small (for example, if the system
is a qubit with trivial Hamiltonian then Wrb� 1 log 2). These
divergences have been previously noted in the recent study of
absolute irreversibility19,20.

Previous discussions of the inadequacy of the standard free
energy in the nano-regime have focused on the definitions of
work4,5. Here we add another criticism, that using the standard
free energy to describe work we necessarily requires set-ups that
can tolerate arbitrary fluctuations, which diverge in size for

processes with initial or final states that are increasingly far from
equilibrium.

Work with bounded fluctuations. Motivated by these
observations we define the c-bounded work content W(c)(r) as
the maximum average work that can be extracted from state r
with initial Hamiltonian HS and final Hamiltonian H0S, when the
fluctuations of the work are constrained by c, as in equation (1).
This notion of c-bounded work, and a generalization to include a
small probability of failure, was proposed in ref. 4 but not
developed beyond its definition. Analogously, we define the
c-bounded work of formation W cð Þ

F (r) as the minimal average
work that is necessary to create a state r with Hamiltonian H0S
from the Gibbs state (with respect to initial Hamiltonian HS),
such that fluctuations in the work are bounded by c.

Theorem 2. The c-bounded work content W(c)(r) and work of
formationW cð Þ

F (r) are given by

W cð Þ rð Þ¼ 1
b

logZ0 � 1
b

log
X

s

x0
s e� b Es � y cð Þ

sð Þ ð9Þ

W cð Þ
F rð Þ¼ 1

Xu

X
s2Xu

xs

b
log xse

bE0sZ
� �

þ c 1�Xuð Þ
" #

ð10Þ

Proof: See Supplementary Notes 3 and 4 respectively.
Example calculations of the c-bounded work content and work

of formation are shown in Figs 1 and 2. First we describe the
terms in (9). Z0¼

P
s0 e�bEs0 is the partition function of the final

Hamiltonian H0S. The second term can be viewed as a general-
ization of the minimum free energy (5) that allows for
fluctuations in work y cð Þ

s . The only difference to the minimum
free energy is the term eby

cð Þ
s included in the summation. y cð Þ

s is the
fluctuation of the work value from the c-bounded average W(c)(r)
given that the system was initially in state sj i. To find the
fluctuations associated with the optimal c-bounded work
extraction protocol we must partition the energy levels into three
disjoint subsets {1, 2, y, d}¼Xu[X þ[X � , representing the
energy levels with positive X þ , negative X � and unbounded Xu
fluctuations. We also define

Xu¼
X

s2Xu
xs; ð11Þ

X�¼
X

s2X �
xs: ð12Þ

The algorithm for determining the partition Xu[X þ[X � ,
which requires the checking of at most d� 1 inequalities, is
described Supplementary Note 3B. Once we have determined the
partition, the fluctuations are given by

y cð Þ
s ¼

1
b log xsebEs

� �
� n; s 2 Xu

þ c; s 2 X þ
� c; s 2 X �

8<
: ð13Þ

where

n¼ 1
Xu

Fuþ c Xþ �X�ð Þð Þ ð14Þ

Fu rð Þ¼
X
s2Xu

xs log xse
bEs

� �
ð15Þ

where Fu(r) is the free energy calculated for the unbounded
partition only. Note that W(c)(r) can be written in the more
compact form

W cð Þ rð Þ¼ 1
b

logZ0 � 1
b

log Xue�bnþZþ ebcþZ� e� bc
� �

ð16Þ
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where

Z�¼
X

s2X �
e� bEs ð17Þ

are the partition functions calculated over the positive and
negative bounded partitions respectively. In Supplementary
Notes 3 and 4 we find that in the optimal work extraction and
state formation protocols the final/initial state of the system is the
Gibbs state, which is diagonal in the energy eigenbasis. Hence
equations (9) and (10) give the optimal work for arbitrary
quantum states (Supplementary Note 1). For a two-level quantum
system d¼ 2, the work content can be expressed succinctly as

W cð Þ rð Þ¼
1
b logZ0 � 1

b log eþbc 1þ e�b E þ c=x1ð Þ� �� �
if cox

1
b logZ0 � 1

b log e�bc 1þ e�b E � c=x1ð Þ� �� �
if c4� x

1
b logZ0 þ F rð Þ otherwise

8>><
>>:

ð18Þ

where

x¼ 1
b

ln 1� x1ð Þ� F rð Þ: ð19Þ

Without loss of generality we have assumed above x1Zx2 and we
define E¼E1�E2. The above expression derives from equation (16)
and the partitioning algorithm given in Supplementary Note 3.

Returning to the c-bounded work of formation, equation (10)
and the algorithm for finding the state space partition giving the
c-bounded work of formation equation (10) is detailed in
Supplementary Note 4. Note that the hamiltonian of r, the final
state of the system, is given by H0S¼

P
j E0j jj i jh j. The work of

formation for a two level system can be succinctly stated as

W cð Þ
F rð Þ ¼

1
b logZ� F rð Þ; c � x
1
b log x ebE

0Z
� �

þ c 1� x
x ; cox

(
ð20Þ

where r¼x 0j i 0h j þ 1� xð Þ 1j i 1h j, xZ1/2 and HS¼E 0j i 0h j is the
Hamiltonian of the initial Gibbs state.

We now summarize some of the properties of the c-bounded
work.

Theorem 3. The c-bounded work is related to the non-
fluctuating work by inequalities

W cð Þ rð Þ �W 0ð Þ rð Þþ c ð21Þ

W cð Þ
F rð Þ �W 0ð Þ

F rð Þ� c ð22Þ
becoming strict inequalities for c40

Proof: See Supplementary Note 5.
These inequalities imply a fundamental trade-off between work

and fluctuations. To do better than single-shot work extraction/
state formation, our work must have fluctuations that are greater
than the increase in work/decrease in work cost with respect to
the deterministic work. In Supplementary Note 5 we show that

the c-bounded work distributions that give W(c)(r) andW cð Þ
F (r)

obey the Jarzinski equality21. In Supplementary Note 5 we prove

that lim
c!0

W cð Þ rð Þ¼W 0ð Þ rð Þ and similarly forW cð Þ
F (r).

For the interested reader, it is simple to see that for any finite c a
partial ordering of the states w.r.t work emerges. A simple way to
observe this is to choose a qubit state r with Hamiltonian HS and a
thermal qubit state g with Hamiltonian H0SaHS such that neither
state thermo-majorizes the other (see ref. 1 for examples). For any
two such states there is a value of c below which W(c)(r) (for r-g)
is negative andW cð Þ

F (r) (for g-r) is positive, that is, it costs work
to perform both the forward and backwards transitions. Note that
there are states with the same standard free energy that exhibit a
partial order for finite c. Allowing the weight to fluctuate allows us

to transition between these states freely. This is an example of how
weight is not just a resource for extracting additional fluctuating
work but in accommodating dynamics, even when on average its
displacement remains zero. It is an interesting open question to
determine how much we must allow work to fluctuate to allow a
transition r-r0 to be achieved without costing work.

Qubit Carnot engine. In this section we find the c-bounded
Carnot efficiency for a qubit Carnot engine model, that is, the
maximal efficiency the qubit engine can reach given that
fluctuations in the work it produces are bounded by c. We
use the same single qubit engine model as described in ref. 2.
The engine operates by moving a qubit r with Hamiltonian
Hs¼E 0j i 0h j between two baths of inverse temperature bH

and bC, with bHobC. The qubit has state rH;C¼
Z� 1

H;Ce� bH;CE 0j i 0h j þZ� 1
H;C 1j i 1h j when in equilibrium with the

hot/cold bath, where ZH;C¼1þ e� bH;CE . The engine cycle begins
with the qubit in thermal equilibrium with the cold bath. In the
first half of the cycle it is then placed in contact with the hot bath
and work is extracted. In the second step of the cycle the qubit is
returned to the cold bath and work is extracted a second time. In
Supplementary Note 6 we show that, in the case that fluctuations
are not bounded, it is possible to reach Carnot efficiency with this
engine, as shown in ref. 2.

ZCarnot¼1� bH

bC
ð23Þ

In the case that c is finite, the work extracted in the first half of the
cycle is given by

W cð Þ
1 rð Þ¼

1
bH

log ZH
ZC

� �
þ tr HsrC½ � bH �bC

bH

� �
; if A4c

1
bH

log ZH ebH c

ecbHZC þ e�EbH

� �
; if A � c

8<
: ð24Þ

where

A¼ EZC

bC �bH

bH

� 	
ð25Þ

if Arc we simply extract the difference in free energy between
the two thermal states, otherwise we extract the c-bounded work
of rC in contact with the bath bH. Similarly, on the second part of
the cycle we extract

W cð Þ
2 rð Þ¼

1
bC

log ZC
ZH

� �
þ tr HsrH½ � bC � bH

bH

� �
; if B4c

1
bC

log ZCe�bC c

e� cbCZH þ e�EbC

� �
; if B � c

8<
: ð26Þ

where

B¼ EZH

bC �bH

bC

� 	
ð27Þ

Note that satisfying (27) implies that (25) is also satisfied,
therefore breaking inequality (25) is the condition for achieving
Carnot efficiency in this model. Also note that B gives the
minimum worst case fluctuation of the work extracted by
this engine when operating thermodynamically reversibly. The
efficiency is given by the ratio of the heat flow from the hot bath
to the total work extracted in the cycle. The heat flow from the
hot bath is found by applying the 1st law of thermodynamics,

QH¼D Eh i rH ! rCð ÞþW cð Þ
1 where D Eh i rH ! rCð Þ is the

change in the systems internal energy in the first part of the
cycle. Therefore the c-bounded efficiency of the engine is given by

Z cð Þ¼W cð Þ
1 þW cð Þ

2

DU þW cð Þ
1

ð28Þ
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In the case that c-N, we recover the Carnot efficiency, which
is bounded from above by 1, that is, we recover unit efficiency in
the limit that bC/bH-N. For any finite c this is no longer the
case, with the maximal efficiency give by

Z cð Þ
max¼ lim

bC=bH!1
Z cð Þ¼1� E

2 2cþEð Þ ð29Þ

This gives an upper limit on the efficiency of the single qubit
engine protocol described above, which is dependent only on the
Hamiltonian of the qubit and the parameter c. The corrected
Carnot efficiencies for various values of c are shown in Fig. 3.

As E ! 0, Z cð Þ
max-1, but the work extracted tends to zero as the

Gibbs states associated with the two bath temperatures become
indistinguishable. For c-0 we get that Z cð Þ

max is bounded from
below by 1/2, but at c¼ 0 no work can be extracted as the thermal
states are of full rank, giving Z 0ð Þ

max¼ 0. Therefore we find that,
although this engine cannot run at non-zero efficiency in the
single-shot regime, if we allow for arbitrarily small fluctuations it
is possible in principle to reach a maximum efficiency greater that
1/2 (although the fluctuations in work will still be of the order of
the work extracted, given inequality (21)). Similar results relating
to the single-shot regime are discussed in ref. 22.

Discussion
In this article we have derived tight bounds on the minimal
fluctuations in work associated with thermodynamically rever-
sible protocols, for which the average work is given by difference
in free energy between initial and final states. We have found that
thermodynamically reversible protocols have fluctuations that
diverge in size as the relative athermality of initial or final states
increases.

Motivated by this we have presented a framework for
computing the work associated with a thermodynamic process
under arbitrary convex bounds. We have derived the c-bounded
work content and work of formation of arbitrary quantum states,
which can be understood as modified free energies that
interpolate between the standard and single-shot free energies.
By exploring this new territory, we have found that the
phenomenology of single-shot thermodynamics, namely thermo-
dynamic irreversibility and a partial order of states with respect to
work, are to some extent present for any finite c. Furthermore we
have found that it is impossible to extract more that the
deterministic work content of a system without necessitating
fluctuations that are greater than the gain in work (and similarly
for the work cost of state formation). One potential avenue for
extending these results would be to consider a more general
definition of c-bounded work that includes a small probability of
failure in the work extraction process (as proposed in ref. 4)

An interesting open question is to what extent we must allow
work to fluctuate in order to allow for a given state transformation.
Answering this question would require the extension of the results
presented in this article to processes with arbitrary initial and final
states, including the case where both initial and final states contain
coherences between energy levels. In Supplementary Note 1C we
show that, under the assumption that the protocol is independent
on the position state of the weight, the ‘coherence modes’12,13,23

evolve independently under the action of the thermal map. This
lays the ground for future investigations into how the presence of
coherences affects the allowed thermal operations in the case that
work is allowed to fluctuate.

Finally, we have used the c-bounded work to study how
bounding work fluctuations affects the efficiency of a single qubit
nano-engine, and have derived an upper bound on efficiency of
this engine that depends only on c and the engine’s Hamiltonian,
establishing a fundamental trade-off between a the engines

efficiency and the fluctuations in the work it produces. This opens
the door to correcting the efficiency for general thermodynamic
protocols, taking into account the fragility of realistic machines
that cannot tolerate large fluctuations in work.

Given that there are many thermal engine models that can
reach Carnot efficiency in the case the fluctuations in work are
unbounded, it would be of interest to determine the optimal
engine with respect to minimizing fluctuations in work whilst
maximizing efficiency or the power produced. Furthermore, it is
well known that in the thermodynamic limit the relative size of
fluctuations in work to the average tends to zero. It would be of
interest to determine if it is possible to design engines operating
far from the thermodynamic limit that achieve a similar quasi-
deterministic work output with non-zero power. For example it
could be possible, through clever choice of the working system
Hamiltonian, or by controlling interactions between a small
number of systems that constitute the working system, to find
engine models that achieve quasi-deterministic work output
without needing to take the thermodynamic limit. Further work
in this direction would provide invaluable insights for designing
realistic nano-engines that are robust to fluctuations in work.

Methods
Proofs and derivations. The proofs are contained in Supplementary Information.
In Supplementary Note 1 we address the preliminaries and framework within
which we derive our proofs, including the framework of thermal operations with
fluctuating work, changing Hamiltonians, coherences and reducing quantum the
protocols to classical protocols, and proofs that our framework is both general and
optimal. In Supplementary Note 2 we derive the form of the work optimal
protocols with unbounded fluctuations, and derive Result 1. In Supplementary
Note 3 we derive the c-bounded work content, and the corresponding state
partitioning algorithm. In Supplementary Note 4 we derive the c-bounded work of
formation, and the corresponding state partitioning algorithm. In Supplementary
Note 5 we show that the standard and minimum free energy can be recovered in
the limits c-N and c-0 respectively, and derive the trade-off bounds relating the
optimal work to the size of the worst-case fluctuations. In Supplementary Note 6
we derive the c-bounded Carnot for the single qubit heat engine model.

Data availability. Data sharing is not applicable to this article, as no data sets were
generated or analysed during this study.
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23. Ćwikliński, P., Studziński, M., Horodecki, M. & Oppenheim, J. Limitations on
the evolution of quantum coherences: towards fully quantum second laws of
thermodynamics. Phys. Rev. Lett. 115, 210403 (2015).

Acknowledgements
J.R. would like to thank Jochen Gemmer, Mart Perarnau-Llobet, Alvaro Alhabra and
Chris Perry for discussions. J.R. is supported by ESPRC.

Author contributions
Both authors contributed equally to this work

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Richens, J. G. & Masanes, L. Work extraction from quantum
systems with bounded fluctuations in work. Nat. Commun. 7, 13511 doi: 10.1038/
ncomms13511 (2016).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

r The Author(s) 2016

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13511 ARTICLE

NATURE COMMUNICATIONS | 7:13511 | DOI: 10.1038/ncomms13511 | www.nature.com/naturecommunications 7

https://arxiv.org/abs/1601.05799
https://arxiv.org/abs/1601.05799
https://arxiv.org/abs/1606.08368
https://arxiv.org/abs/1504.05056
https://arxiv.org/abs/1506.04468
https://arxiv.org/abs/1506.02322
https://arxiv.org/abs/1506.02322
http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	The framework

	Figure™1Variation of c-bounded work extraction and state formation further from equilibrium.Figure shows the unbounded work W(rgr), the c-bounded work content W(c)(rgr) and the c-bounded work of formation  W F^( c ) (rgr) for the state   =x| 0   0 | ( 1x 
	Deterministic work

	Figure™2Variation of c-bounded work extraction and state formation further from equilibrium as a function of c for fixed states.Figure shows  W F^( c ) (rgr) and W(c)(rgr) versus c for the trit state   =0.7| 0   0 | 0.2| 1   1 | 0.1| 2   2 | with Hamilton
	Figure™3The corrected Carnot efficiency for various values of c for a single qubit heat engine.Figure shows the c-bounded Carnot efficiencies versus TH for single qubit engine with gap  E =0.1 and TC=1. The black line gives the unbounded Carnot efficiency
	Work with unbounded fluctuations
	Work with bounded fluctuations
	Qubit Carnot engine

	Discussion
	Methods
	Proofs and derivations
	Data availability

	HorodeckiM.OppenheimJ.Fundamental limitations for quantum and nanoscale thermodynamicsNat. Commun.420592013SkrzypczykP.ShortA. J.PopescuS.Work extraction and thermodynamics for individual quantum systemsNat. Commun.541852014GemmerJ.Anders.J.From single-sh
	J.R. would like to thank Jochen Gemmer, Mart Perarnau-Llobet, Alvaro Alhabra and Chris Perry for discussions. J.R. is supported by ESPRC
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




