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Abstract 

Background:  Sepsis remains a major challenge in intensive care units, causing unacceptably high mortality rates due 
to the lack of rapid diagnostic tools with sufficient sensitivity. Therefore, there is an urgent need to replace time-con-
suming blood cultures with a new method. Ideally, such a method also provides comprehensive profiling of patho-
genic bacteria to facilitate the treatment decision.

Methods:  We developed a Random Forest with balanced subsampling to screen for pathogenic bacteria and diag-
nose sepsis based on cell-free DNA (cfDNA) sequencing data in a small blood sample. In addition, we constructed a 
bacterial co-occurrence network, based on a set of normal and sepsis samples, to infer unobserved bacteria.

Results:  Based solely on cfDNA sequencing information from three independent datasets of sepsis, we distinguish 
sepsis from healthy samples with a satisfactory performance. This strategy also provides comprehensive bacteria 
profiling, permitting doctors to choose the best treatment strategy for a sepsis case.

Conclusions:  The combination of sepsis identification and bacteria-inferring strategies is a success for noninvasive 
cfDNA-based diagnosis, which has the potential to greatly enhance efficiency in disease detection and provide a 
comprehensive understanding of pathogens. For comparison, where a culture-based analysis of pathogens takes up 
to 5 days and is effective for only a third to a half of patients, cfDNA sequencing can be completed in just 1 day and 
our method can identify the majority of pathogens in all patients.
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profiling
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Background
Sepsis, a life-threatening emergency condition arising 
from various infections of skin, lung, abdomen, and uri-
nary tract, is a challenge for hospitals and causes unac-
ceptably high mortality rates in intensive care medicine 
[1, 2]. In recent decades, great efforts have been devoted 
to sepsis research, and novel therapies have been devel-
oped against pathogenic bacteria. To guarantee an effec-
tive treatment strategy, it is vital to quickly and accurately 

detect the bacteria or other pathogens that cause the sep-
sis. According to a recent guideline, deploying an appro-
priate antibiotic therapy as early as possible (preferably 
within 1 h) is crucial for septic patients [3]. For example, 
in septic shock patients with hypotension, the risk of 
mortality increases by 7.6% with every hour of delay in 
administering effective antibiotic therapy [4]. However, 
the standard procedure of pathogen detection for sep-
sis patients is culture-based (e.g., making blood cultures 
after a confirmatory test). Since this method relies on 
bacterial growth, a significant period of time is required 
(up to 5 days) [3, 5]. Moreover, it sometimes fails to iden-
tify the specific pathogens for a sepsis patient. Only a 
third to a half of people with sepsis yield positive results 
in blood cultures [6]. Therefore, a more rapid approach 
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to diagnosing sepsis samples and comprehensive bacteria 
profiling is urgently required.

Cell-free DNA (cfDNA) refers to small fragments of 
freely circulating DNA detectable in almost all body flu-
ids, including plasma and serum. Most of these DNA 
fragments are human, having been shed into the blood-
stream during the processes of cell apoptosis [7] and cell 
necrosis [8]. However, cfDNA also includes fragments 
from other life forms such as bacteria, viruses, fungi 
[9–11], and even plants via food consumption [12]. With 
the development of next-generation sequencing (NGS) 
technology, cfDNA is a promising, noninvasive tool 
for the early detection of several human diseases. It has 
been used to find predictive biomarkers for cancer [8, 
13–15], as a diagnostic tool for injury [16] and as a way 
of monitoring organ transplant rejection in real time 
[10]. Recently, high levels of cfDNA in blood are being 
observed as a side effect of more and more infectious dis-
eases [17, 18]. These and other uses of cfDNA in plasma 
represent a rapidly developing field in biomedicine.

In this study, we achieved two aims: (1) we developed 
a cfDNA-based strategy that can rapidly diagnose sepsis 
patients and accurately profile the bacteria responsible; 
and (2) we constructed a sepsis-specific bacterial co-
occurrence network to infer unobserved bacterial spe-
cies from the cfDNA sequencing data. Towards the first 
aim, cfDNA was isolated and sequenced from the blood 
samples (Fig.  1a) of healthy and sepsis cohorts. Based 
on these data, candidate pathogenic bacteria were iden-
tified and ranked by statistical models. Our rapid sepsis 
diagnosis method achieved an area under the ROC curve 
(AUC) of 93%. Our second aim of identifying missing 
bacteria is of practical importance, because not all infec-
tion-causing bacteria may be detected in cfDNA due to 
the limited volume of a blood sample. An incomplete 
bacteria profile may bias the treatment decision. We vali-
dated our method for inferring missing bacteria through 
simulation experiments, and found the approach to be 
both effective and robust. In particular, when some bac-
teria species were randomly removed from a simulated 
sample, our method could recall those species at a high 
rate. In fact, even when 80% of species in the sample are 
randomly removed, the recovery rate among all bacterial 
species present is still 60%. This method may therefore 
provide a comprehensive understanding of sepsis-caus-
ing and infection-related bacterial species, greatly facili-
tating therapeutic decisions for sepsis treatment.

Materials and methods
Data collection and processing
The cfDNA sequencing data used in this study were 
taken from 38 sepsis and 118 healthy samples. The raw 
sequencing reads were derived from three previously 

published data sources: 38 sepsis and 15 healthy sam-
ples from the European Nucleotide Archive (ENA, study 
1, No. PRJEB13247 [19]), 103 healthy samples from the 
European Genome-phenome Archive (EGA, study 2, 
No. EGAS00001001754 [20]), 165 asymptomatic sam-
ples and 187 symptomatic from the European Nucleotide 
Archive (ENA, study 3, No. PRJNA507824) [21]. Samples 
from above studies were taken from plasma, then whole 
genome and single-end were sequenced. The raw reads 
from ENA(PRJEB13247) and ENA(PRJNA507824) were 
cleaned of human-like reads and reads with low complex-
ity stretches. For the EGA data, the raw sequencing reads 
were preprocessed to remove human and human-like 
reads using the fast alignment program Bowtie2 [22].

Read alignment and quantification
The nonhuman sequencing reads were aligned to a 
microbial genome sequence database using Centrifuge 
[23], an open-source microbial classification engine that 
enables rapid and accurate labeling of reads and quantifi-
cation of species. Specifically, the mapping was based on 
a database of compressed microbial sequences provided 
by Centrifuge (https​://ccb.jhu.edu/softw​are/centr​ifuge​/
manua​l.shtml​).

Traversing up a taxonomic tree, Centrifuge maps reads 
to taxon nodes and assigns a “species abundance” to each 
taxonomic category. The abundances are the estimated 
fractions α = (α1,α2, . . . ,αS) that maximize a likelihood 
function; i.e.,

with the likelihood L given by

R is the number of the reads, S is the number of species, 
αj is the abundance of species j ( 

∑S
j=1 αj = 1, 0 < αj < 1 ), 

and lj is the average length of the genomes of species j. 
The coefficient Cij is 1 if read i is classified to species j, 
and 0 otherwise. The abundance vector α is obtained 
through an expectation maximization (EM) procedure.

Through this procedure, two bacterial abundance 
matrices were obtained from the sepsis and healthy sam-
ples. For each matrix, a row represents a bacterial spe-
cies, and a column represents a sample.

Identification of candidate pathogenic bacteria
In order to detect an abnormal bacterial abundance in 
a cfDNA sample, we need to first establish the back-
ground distribution of abundances under healthy con-
ditions. We fit the expected abundance of each species 
in healthy samples with a Beta distribution. (This is a 

(1)α = argα Max(L)

(2)L(α) =

R
∏

i=1

S
∑

j=1

(

αj lj
∑s

k αk lk
Cij

)
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family of continuous probability distributions defined 
on the interval [0, 1] and parametrized by two positive 
parameters.) Specifically, for each bacterial species j, 
its observed abundance values across a training set of 
healthy samples were used to fit a species-specific Beta 
distribution defined by the parameters aj and bj.

To determine if bacterial species j is a candidate 
pathogen, we compare the abundance value αj from a 
new sample (healthy or sepsis) to the Beta distribution. 
Specifically, we calculate the probability P to observe an 
abundance higher than αj assuming that the sample is 
healthy:

If P is very small, then we can reject the hypothesis 
that the observed abundance of this bacterial species in 
this sample was produced by the Beta distribution deter-
mined under healthy conditions, and hence conclude that 
the abundance of this species is abnormally high and a 
candidate pathogen for sepsis. A bacterial species is clas-
sified as a candidate pathogen in our study if it meets this 
condition for at least one of the sepsis samples.

(3)P
(

x ≥ αj|a, b
)

=
∫1αj u

aj−1(1− u)bj−1du

∫10 u
aj−1(1− u)bj−1du

,
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Fig. 1  An illustration of our approach to sepsis diagnosis and bacteria inference based on cell-free DNA (cfDNA). a We used two public cfDNA 
datasets to obtain 38 sepsis and 118 healthy samples. All human reads were removed from the datasets using Bowtie2. Through alignment and 
classification, the normalized abundances of bacteria were estimated from the remaining non-human reads using Centrifuge [27]. b Our diagnosis 
strategy is a two-step procedure based solely on cfDNA from blood. First, we selected candidate pathogenic bacterial species through statistical 
analysis (see “Methods”). Second, a Random Forest is used to calculate a diagnosis score for each sample. c Due to the limited volume of a blood 
sample, not all bacterial species will be identified in cfDNA sequencing data. Using the bacterial co-occurrence network, we developed a method 
to infer unobserved bacterial species
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Random Forest with balanced subsampling
Random Forest is an effective classification method that 
generates many binary decision trees [24] and aggre-
gates their results. Each decision tree is trained on a 
bootstrapped subsample of the original training data, 
and searches for decision thresholds that effectively split 
the sample into classes among a randomly selected sub-
set of the input features (in our case, all bacterial species 
that are pathogen candidates). The final decision of the 
Random Forest is reached by aggregating the decisions 
of each tree with majority vote. Random Forest and its 
extension are widely used in the recent research of dis-
ease diagnosis. Ada, a variates of Random Forest was 
used in cfDNA discrimination of cancer types [25]. A 
sparse regression–based random forest was designed to 
predict the Alzheimer’s disease [26].

Due to the imbalanced sizes of the healthy and sepsis 
samples, a traditional Random Forest may yield biased 
predictions. Therefore, we employ repeated balanced 
sub-sampling to build our sepsis diagnosis model. This 
technique divides the training data into multiple rand-
omized sub-samples, while ensuring that the classes in 
each sub-sample are equal in size. In our case, we gen-
erated subsamples of size 30, where 15 are from healthy 
patients and 15 are from sepsis patients. For a sub-sam-
pling group of training sets, a decision tree was fitted. 
We constructed a forest of 500 binary decision trees with 
balanced subsampling strategy, in this way generating an 
unbiased diagnosis model from the aggregative decision.

Co‑occurrence network inference
The bacterial DNA fragments in human blood may be 
shed from many species [27]. These bacteria are natu-
rally present throughout the human body, from skin to 
viscera, and even in environments previously consid-
ered sterile such as blood in circulation [28]. It is of great 
importance to know how DNA fragments from differ-
ent species with different habitats come together. Strong 
inter-taxa associations in the data may indicate a com-
munity (even including different domains of life, such as 
Bacteria and Archaea) originating in a common niche 
space, or perhaps direct symbioses between commu-
nity members. Such information is particularly valuable 
in environments where the basic ecology and life his-
tory strategies of many microbial taxa remain unknown. 
Besides, exploring co-occurrence patterns between dif-
ferent microorganisms can help identify potential biotic 
interactions, habitat affinities, or shared physiologies that 
could guide more focused studies or experimental set-
tings [29]. In particular, can we infer the existence of one 
bacterial species from the occurrence of other species in 
a blood sample?

A co-occurrence network is a visualization of relation-
ships among entities that usually appear together. For 
example, it can be used to study the distribution of biotic 
populations [30], to predict cancer risk [31] or to analyze 
text collections [32]. We constructed a cfDNA-based 
bacteria co-occurrence network, where two species are 
considered co-occurring if their abundances estimated 
from cfDNA are strongly correlated. Each node in the 
network represents a bacterial species, while each edge 
stands for a co-occurring relationship.

In order to construct a bacterial co-occurrence net-
work, we first generated two matrices: (1) the observed 
abundance matrix O (with n species, m samples); and (2) 
the expected abundance matrix N (also with n species, m 
samples). The latter is filled within each local sample as 
predicted by a regional species distribution model, which 
is called a leave-one-out LOESS model [29]. An n× n 
covariance matrix Σ is calculated from either O or N by 
comparing rows (i.e., the abundances of 2 species across 
all samples). From the inverse of this covariance matrix, 
the partial correlation Cij between a pair of bacterial spe-
cies is calculated as follows:

where M is an n×m input matrix (O or N).
Both C(O) and C(N) were computed based on Eq.  (4). 

Then the standard effect of correlation between O and N 
was calculated by rescaling C(O), C(N). Finally, signifi-
cant associations were found by calculating the p value 
of the correlation coefficient for each pair of species i 
and j, with the null hypothesis that the observations are 
uncorrelated. Finally, our co-occurrence network was 
generated by placing edges between each pair of bacterial 
species with a significant link. The detailed algorithm of 
network construction is described in [33].

Results
A novel strategy for rapid sepsis diagnosis based on cfDNA
Following the procedures shown in Fig. 1a, b, we devel-
oped a two-step approach for rapid sepsis diagnosis, 
which has been validated by the cross validation and 
an independent dataset. For the cross-validation, first, 
we identified 3546 bacterial species through alignment 
and classification of cfDNA sequencing reads from 118 
healthy and 38 sepsis samples. A list of corresponding 
P-values by T-test, which were generated for measur-
ing the difference between sepsis and healthy sam-
ples from study 1 (No. PRJEB13247) and study 2 (No. 
EGAS00001001754) respectively, was provided as Addi-
tional file 1: Table S1. All samples are randomly parti-
tioned into two groups: 2/3 (78 healthy samples and 25 

(4)Cij(M) =
−
∑−1

ij (M)
√

∑−1
ii (M)

∑−1
jj (M)
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sepsis samples) for training and 1/3 (40 healthy samples 
and 13 sepsis samples) for testing. For each species, we 
fit a Beta distribution based on its bacterial-abundance 
vector with 78 elements from the healthy training sam-
ples. Then the 25 abundances from the sepsis train-
ing samples were tested one by one against the Beta 

distribution, to generate 25 P-values. Here a species 
was considered as a candidate pathogen if at least one 
satisfying P-value < 0.01. By such a filtering procedure, 
about 220 candidate pathogenic bacteria were selected. 
Figure 2 shows some examples of these candidate path-
ogens, which have significantly different distributions 

Healthy samples Sepsis samples

Escherichia coli Xanthomonas campestris Staphylococcus aureus Mycoplasma mycoides

Enterococcus faecium Mycoplasma mycoides Rhodococcus erythropolis Comamonas testosteroni

Staphylococcus argenteusSphingobium baderi Pseudomonas mendocina Streptococcus parasanguinis
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Fig. 2  Differential abundances of some candidate pathogenic bacterial species in heathy and sepsis samples. The distributions of bacterial 
abundances for 12 candidate pathogens are visualized as violin plots
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between the bacterial abundances of healthy and sepsis 
samples.

Second, based only on the observed abundances of the 
candidate pathogenic bacteria, we trained the Random 
Forest with balanced subsampling to generate an accu-
rate classifier. Finally, we used this classifier to test the 
other one-third of normal and sepsis samples reserved 
for this purpose. The above pipeline was repeated 1000 
times through bootstrap. As shown in Fig. 3a, the average 
out-of-bag error (OOB error) was 0.16 when there were 
a sufficiently large number of decision trees (> 100). The 
performance of the diagnosis strategy is satisfactory, with 
an average AUC of 0.926, sensitivity of 0.91 and speci-
ficity of 0.83. As an alternative, we also tried a logistic 
regression approach as a comparison (average AUC 0.77, 
sensitivity of 0.71 and specificity of 0.80) (Fig.  3b). The 
ranked list of the candidate bacterial species with respect 
to their importance in the Random Forest model is pro-
vided in Additional file 2: Table S2.

For the validation of an independent dataset, the 118 
healthy and 38 sepsis samples respectively from study 1 
(No. PRJEB13247) and study 2 (No. EGAS00001001754) 
were used as the training set, and samples from study 3 
(No. PRJNA507824) was set as an independent valida-
tion. The AUC shows that the proposed method also per-
forms well in the independent dataset (Fig. 3c).

Bacterial co‑occurrence networks based on cfDNA
Using the bacterial abundance matrices from 78 healthy 
and 25 sepsis samples for training, we constructed two 
bacterial co-occurrence networks (Fig.  4a). Each net-
work contains 224 nodes, representing the 224 candi-
date pathogenic bacteria that were selected for having 
significantly different abundance distributions between 
healthy and sepsis samples. As mentioned above, blood 

can contain cfDNA fragments released by the bacteria 
inhabiting all human body sites. Thus, we expect the 
co-occurrence networks of healthy and sepsis samples 
to include some associations among “harmless” spe-
cies that are generally not involved in sepsis. In order 
to focus on sepsis-specific associations, we generated 
a differential network by excluding from the sepsis co-
occurrence network all association patterns also found 
in the healthy co-occurrence network (Fig.  4a). We 
found 19 clusters (Fig. 4b) of species in the differential 
network, which are the strongly connected components 
visible in Fig. 4a. In the 25 sepsis samples, all the spe-
cies in a cluster are strongly correlated in terms of their 
abundance levels. The detailed cluster information is 
provided in Additional file 3: Table S3.

In order to analyze the biological features of the clus-
ters, we characterized the species in each one according 
to three aspects: respiration mode, metabolic habitat, 
and growth rate.

First, among all candidate pathogen species, 35.52%, 
3.66%, and 52.12% are anaerobic, aerobic, and facultative 
respectively (the remaining 8.7% are unknown). Most of 
the clusters show similarity in terms of respiration mode: 
9 clusters exhibit a preference for facultative species 
(clusters 3, 5, 6, 10, 14, 15, 16, 17 and 19), and 7 clusters 
exhibit a preference for anaerobic species (clusters 1, 2, 7, 
11, 12, 13 and 18). The few anaerobic species in the sam-
ple do not dominate any cluster.

Second, before causing infection in blood, these bac-
teria usually originate in specialized metabolic environ-
ments. Bacterial metabolic habitats are divided into 4 
types: host-associated, terrestrial, aquatic, and diverse. 
The species in clusters 3, 4, 5, 9, 14, 15, 17, 18, and 19 
are mainly host-associated, the species in cluster 10 are 
mainly terrestrial, the species in cluster 3 are mainly 

Fig. 3  The performance of a Random Forest classifier with balanced subsampling for identifying sepsis samples and healthy samples. a The 
out-of-bag error converges to 0.16, if the number of decision trees is over 100. b The average AUC curves for our diagnosis strategy (red) and a 
logistic regression scheme (blue) based on the one-third of the samples reserved for testing the model. c The AUC curves of our diagnosis strategy 
(red) and a logistic regression scheme (blue) based on an independent dataset for validating the proposed algorithm
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aquatic, and clusters 1, 6, 7, 10, 12, 13, 16 contain spe-
cies from diverse metabolic environments.

Third, bacterial growth is significantly correlated with 
metabolic variability and the level of co-habitation. 
Doubling-time data have led to the important finding 
that variations in the expression levels of genes involved 
in translation and transcription influence growth rate 
[34, 35]. We partition the clusters into two groups 
according to the doubling time of their member spe-
cies: “fast” and “slow” growing clusters are those whose 
median duplication time is shorter or longer than the 
mean over all species by at least one standard deviation 
[36]. The median doubling time for species distributed 
in cluster 6, 7, 11 and 13, is larger than 1 (fast growing 
clusters), while doubling time for members in cluster 1, 
3, 4, 5, 15, 16 is smaller than 0.6 (slow growing clus-
ters). Note that fast growth rates are typical of species 
that exhibit ecological diversity, so the identification of 
“fast” clusters accords with the metabolic habitats ana-
lyzed in the previous paragraph.

For the pathogens of each cluster, a specific therapy 
of antibiotics could be provided [37]. A list of possi-
ble antibiotics that might be used for each of cluster is 
shown in Additional file 3: Table S3.

Inferring missing bacteria from identified species
A given patient with sepsis can carry multiple patho-
gens [38]. Therefore, knowledge of all bacteria present 
is crucial if we are to provide fast and effective antibi-
otic treatment. At the same time, the pathogenic species 
span a wide range of growth strategies and environmen-
tal requirements (such as aerobic or anaerobic, acidity, 
etc.), which makes it difficult to detect all species in a 
single culture. Moreover, due to the limited volume of a 
blood sample, not all pathogenic species can be identified 
from cfDNA. In short, unobserved bacterial species are a 
major obstacle to effective treatment.

Based on the bacterial co-occurrence network, it is 
possible to infer missing bacterial species from the iden-
tified species. Specifically, having constructed a bacterial 
co-occurrence network, we know that some species usu-
ally have consistent abundance levels in sepsis samples. 
Thus, when some species from a cluster are identified 
in a sepsis sample, statistically it is highly probable that 
all members of the cluster are present. We can infer the 
presence of “missing” bacteria in this way, if the missing 
bacteria belong to a cluster.

To test the effectiveness and robustness of this bac-
teria-inferring scheme, a certain percentage of species 
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were randomly removed from the identified species 
pool for each sample for both cross-validation and the 
validation of an independent dataset. We tried to infer 
the presence of the missing bacteria from the remain-
ing species, based on the bacterial co-occurrence net-
work. Figure 5a, c show that the recovery rate is about 
50–60%, decreasing gradually with higher removal 
rates. And the overall results are quite satisfactory, as 
seen in Fig. 5b, d. The total number of species recovered 

(including those not randomly removed) is still 60%, 
even when 80% of the observed species were randomly 
removed. These results demonstrate the effectiveness of 
a bacterial co-occurrence network to infer the presence 
of unobserved bacteria from identified species. This 
method has great potential, especially in cfDNA-based 
analysis, because in a 10 ml blood sample there is a very 
limited amount of cfDNA, and only a small proportion 
of that is microbial cfDNA.

Fig. 5  The performance of species inference based on the bacteria co-occurrence network. The curve shows the average recovery rate. For 
each testing sepsis sample, we performed 1000 trials. In each trial, we randomly removed 10–80% of observed bacterial species then inferred 
the presence of missing species from the co-occurrence network. The x-axis represents the removal percentage. a The y-axis represents the 
percentage of inferred species that were removed in the cross-validation. b The y-axis represents the total percentage of identified species for the 
cross-validation, including both inferred species and those that were never removed. c The y-axis represents the percentage of inferred species 
that were removed in for the validation based on an independent data. d The y-axis represents the total percentage of identified species for the 
validation of an independent data
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Discussion
Sepsis or bacteremia is a common and serious disease, 
which requires a quick and accurate diagnosis and iden-
tification of pathogens in order to select the appropriate 
antibiotic treatment. The standard procedure includes 
confirmatory tests (e.g., recognizing clinical signs and 
symptoms, Procalcitonin test, SeptiCyte test) and cul-
ture-based pathogen identification. As reported by recent 
studies, the culture-based diagnosis is time-consuming 
and requires strict anaerobic conditions to promote bac-
terial growth. Moreover, only a third to a half of people 
with sepsis yield positive blood cultures [6]. In this work, 
we developed a noninvasive approach to sepsis diagno-
sis and pathogen identification using cfDNA sequencing 
data mapped to bacteria genomes. This approach does 
not require cultivation, greatly enhancing the efficiency 
of diagnosis. Our method achieves AUC of 93% (cross-
validation) and 88% (the independent validation), which 
outperforms by far the blood culture approach. The com-
parison between the bacteria inferred by our method and 
those from blood culture are demonstrated in Additional 
file 4: Table S4. It is seen that the 84.69% pathogenic bac-
teria detected by by blood culture agree with those by our 
method.

The estimated turn-around time of our method is about 
a day, the time currently required for cfDNA sequencing. 
This time will be further reduced in the future, due to 
technology improvements and faster sequencing. There-
fore, our method may provide accurate and rapid identifi-
cation of sepsis samples.

Further, the differential bacterial co-occurrence net-
work supports an inference scheme to find “missing” 
bacteria based on observe and identified species. This 
approach permits comprehensive profiling of all bacteria 
involved in the infection process. It is particularly appli-
cable to the scenario where only small blood samples 
(e.g. 10 ml) are available, and many bacterial species go 
unobserved. This combination of rapid sepsis diagnosis 
and pathogen inference is especially suitable for cfDNA-
based diagnosis, which is now accepted as a promising, 
noninvasive tool in disease detection.

Conclusion
In this work, we identified sepsis-causing bacteria from 
limited sepsis samples. Additional sepsis-causing species 
can be identified and more accurate co-occurrence net-
works can be generated as more and more whole-genome 
deep sequencing data become available, from healthy 
and sepsis cohorts. Therefore, we expect this approach to 
achieve higher accuracy in the near future. In addition, 
we expect that a time series of blood samples taken from 
patients can further enhance the prognosis and diagno-
sis of sepsis. This research is merely a first step towards 

diagnosing sepsis using cfDNA, in that it demonstrates a 
new way to employ cfDNA sequencing data with a net-
work approach to achieve rapid disease diagnosis.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1296​7-019-02186​-x.

Additional file 1: Table S1. All species with P-values. 

Additional file 2: Table S2. Importance of candidate bacterial species by 
Random Forest. 

Additional file 3: Table S3. The cluster information of the bacterial co-
occurrence network. 

Additional file 4: Table S4. Inferring bacteria of the bacterial co-occur-
rence network and blood culture.

Acknowledgements
Not applicable.

Authors’ contributions
XJZ conceived the project; XJZ and RL supervised the project. PC and RL 
performed computational and analysis. SL, JR, WL and FS provided analysis 
tool and data sources. All authors wrote the manuscript. All authors read and 
approved the final manuscript.

Funding
The work was supported by a UCLA start-up package for XJZ; National 
Natural Science Foundation of China (Nos. 11771152, 11901203, 11971176); 
Guangdong Basic and Applied Basic Research Foundation 
(2019B151502062); National Institutes of Health Grant (Nos. R01CA246329, 
U01CA237711); China Postdoctoral Science Foundation funded project (No. 
2019M662895); the Fundamental Research Funds for the Central Universities 
(2019MS111).

Availability of data and materials
The raw sequencing reads were derived from two published data sources: 
European Nucleotide Archive (https​://www.ebi.ac.uk/ena/data/view/PRJEB​
13247​, https​://www.ncbi.nlm.nih.gov/Trace​s/study​/?acc=SRP17​2792) and 
European Genome-phenome Archive (https​://www.ebi.ac.uk/ega/studi​es/
EGAS0​00010​01754​).

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 School of Mathematics, South China University of Technology, Guang-
zhou 510640, China. 2 Department of Pathology and Laboratory Medicine, 
David Geffen School of Medicine, University of California at Los Angeles, Los 
Angeles 90095, USA. 3 Quantitative and Computational Biology Program, 
Department of Biological Sciences, University of Southern California, Los 
Angeles, CA 90089, USA. 4 Google Research, Mountain View, CA, USA. 

Received: 22 January 2019   Accepted: 23 December 2019

References
	1.	 Mayr FB, Yende S, Angus DC. Epidemiology of severe sepsis. Virulence. 

2014;5(1):4–11.

https://doi.org/10.1186/s12967-019-02186-x
https://doi.org/10.1186/s12967-019-02186-x
https://www.ebi.ac.uk/ena/data/view/PRJEB13247
https://www.ebi.ac.uk/ena/data/view/PRJEB13247
https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP172792
https://www.ebi.ac.uk/ega/studies/EGAS00001001754
https://www.ebi.ac.uk/ega/studies/EGAS00001001754


Page 10 of 10Chen et al. J Transl Med            (2020) 18:5 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

	2.	 Walkey AJ, Wiener RS, Lindenauer PK. Utilization patterns and outcomes 
associated with central venous catheter in septic shock: a population-
based study. Crit Care Med. 2013;41(6):1450–7.

	3.	 Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, 
Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, et al. Surviving sepsis 
campaign: international guidelines for management of severe sepsis and 
septic shoc, 2012. Crit Care Med. 2013;41(2):580–637.

	4.	 Wang HE, Shapiro NI, Angus DC, Yealy DM. National estimates of 
severe sepsis in United States emergency departments. Crit Care Med. 
2007;35:1928–36.

	5.	 Vincent JL, Brealey D, Libert N, Abidi NE, O’Dwyer M, Zacharowski K, 
Mikaszewska-Sokolewicz M, Schrenzel J, Simon F, Wilks M, et al. Rapid 
diagnosis of infection in the critically ill, a multicenter study of molecular 
detection in bloodstream infections, pneumonia, and sterile site infec-
tions. Crit Care Med. 2015;43(11):2283–91.

	6.	 Testing for Sepsis: Sepsis alliance; 2018. https​://www.sepsi​s.org/sepsi​s/
testi​ng-for-sepsi​s/. Accessed 13 Sept 2018.

	7.	 Ulz P, Thallinger GG, Auer M, et al. Inferring expressed genes by whole-
genome sequencing of plasma DNA. Nat Genet. 2016;48(10):1273.

	8.	 Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomark-
ers in cancer patients. Nat Rev Cancer. 2011;11(6):426.

	9.	 Long Y, Zhang Y, Gong Y, et al. Diagnosis of sepsis with cell-free DNA by 
next-generation sequencing technology in ICU patients. Arch Med Res. 
2016;47(5):365–71.

	10.	 De Vlaminck I, et al. Circulating cell-free DNA enables noninvasive diag-
nosis of heart transplant rejection. Sci Transl Med. 2014;6:241ra77.

	11.	 De Vlaminck I, et al. Noninvasive monitoring of infection and rejection 
after lung transplantation. Proc Natl Acad Sci USA. 2015;112:13336–41.

	12.	 Spisák S, Solymosi N, Ittzés P, et al. Complete genes may pass from food 
to human blood. PLoS ONE. 2013;8(7):e69805.

	13.	 Kang S, Li Q, Chen Q, et al. CancerLocator: non-invasive cancer diagnosis 
and tissue-of-origin prediction using methylation profiles of cell-free 
DNA. Genome Biol. 2017;18(1):53.

	14.	 Li W, Li Q, Kang S, et al. CancerDetector: ultrasensitive and non-invasive 
cancer detection at the resolution of individual reads using cell-free DNA 
methylation sequencing data. Nucleic Acids Res. 2018;46(15):e89.

	15.	 Jiang P, Chan CW, Chan KA, Cheng SH, Wong J, Wong VW, Wong GL, 
Chan SL, Mok TS, Chan HL, Lai PB. Lengthening and shortening of 
plasma DNA in hepatocellular carcinoma patients. Proc Natl Acad Sci. 
2015;112(11):E1317–25.

	16.	 Altrichter J, Zedler S, Kraft R, et al. Neutrophil-derived circulating free DNA 
(cf-DNA/NETs), a potential prognostic marker for mortality in patients 
with severe burn injury. Eur J Trauma Emerg Surg. 2010;36(6):551–7.

	17.	 Eshoo MW, Crowder CD, Li H, Matthews HE, Meng S, Sefers SE, Sampath 
R, Stratton CW, Blyn LB, Ecker DJ, et al. Detection and identification of 
Ehrlichia species in blood by use of PCR and electrospray ionization mass 
spectrometry. J Clin Microbiol. 2010;48(2):472–8.

	18.	 Kaleta EJ, Clark AE, Cherkaoui A, Wysocki VH, Ingram EL, Schrenzel J, Wolk 
DM. Comparative analysis of PCR-electrospray ionization/mass spectrom-
etry (MS) and MALDI-TOF/MS for the identification of bacteria and yeast 
from positive blood culture bottles. Clin Chem. 2011;57(7):1057–67.

	19.	 Grumaz S, Stevens P, Grumaz C, et al. Next-generation sequencing diag-
nostics of bacteremia in septic patients. Genome Med. 2016;8(1):1–13.

	20.	 Ulz P, Heitzer E, Speicher MR. Co-occurrence of MYC amplification and 
TP53 mutations in human cancer. Nat Genet. 2016;48(2):104.

	21.	 Blauwkamp TA, Thair S, Rosen MJ, Blair L, Lindner MS, Vilfan ID, Kawli T, 
Christians FC, Venkatasubrahmanyam S, Wall GD, Cheung A. Analytical 

and clinical validation of a microbial cell-free DNA sequencing test for 
infectious disease. Nat Microbiol. 2019;4(4):663.

	22.	 Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat 
Methods. 2012;9(4):357–9.

	23.	 Kim D, Song L, Breitwieser FP, et al. Centrifuge: rapid and sensitive clas-
sification of metagenomic sequences. Genome Res. 2016;26(12):1721–9.

	24.	 Svetnik V, Liaw A, Tong C, et al. Random forest: a classification and regres-
sion tool for compound classification and QSAR modeling. J Chem Inf 
Comput Sci. 2003;43(6):1947.

	25.	 Zou J, Wang E. eTumorType, An algorithm of discriminating cancer types 
for circulating tumor cells or cell-free DNAs in blood. Genom Proteom 
Bioinform. 2017;15(2):130–40.

	26.	 Huang L, Jin Y, Gao Y, Thung KH, Shen D, Alzheimer’s Disease Neuroimag-
ing Initiative. Longitudinal clinical score prediction in Alzheimer’s disease 
with soft-split sparse regression based random forest. Neurobiol Aging. 
2016;46:180–91.

	27.	 Kowarsky M, Camunas-Soler J, Kertesz M, et al. Numerous uncharacter-
ized and highly divergent microbes which colonize humans are revealed 
by circulating cell-free DNA. Proc Natl Acad Sci USA. 2017;114(36):9623.

	28.	 Proal AD, Albert PJ, Marshall TG. Inflammatory disease and the human 
microbiome. Discov Med. 2014;17(95):257.

	29.	 Barberán A, Bates ST, Casamayor EO, et al. Using network analysis to 
explore co-occurrence patterns in soil microbial communities. ISME J. 
2012;6(2):343.

	30.	 Widder S, Besemer K, Singer GA, et al. Fluvial network organization 
imprints on microbial co-occurrence networks. Proc Natl Acad Sci USA. 
2014;111(35):12799.

	31.	 Zou J, Wang E. eTumorRisk, an algorithm predicts cancer risk based on 
co-mutated gene networks in an individual’s germline genome. bioRxiv. 
2018. https​://doi.org/10.1101/39309​0.

	32.	 Gegov E, Gegov A, Gobet F, et al. Cognitive modelling of language 
acquisition with complex networks[M]//Computational intelligence. 
Hauppauge: Nova Science Publishers; 2012.

	33.	 Morueta-Holme N, Blonder B, Sandel B, et al. A network approach for 
inferring species associations from co-occurrence data. Ecography. 
2016;39(12):1139–50.

	34.	 Rocha EPC. Codon usage bias from tRNA’s point of view: redundancy, 
specialization, and efficient decoding for translation optimization. 
Genome Res. 2004;14(11):2279–86.

	35.	 Couturier E, Rocha EPC. Replication-associated gene dosage effects 
shape the genomes of fast-growing bacteria but only for transcription 
and translation genes. Mol Microbiol. 2010;59(5):1506–18.

	36.	 Freilich S, Kreimer A, Borenstein E, et al. Metabolic-network-driven analy-
sis of bacterial ecological strategies. Genome Biol. 2009;10(6):R61.

	37.	 Gyssens I C, Bax H I, Schippers E F, et al. Antibacterial therapy of adult 
patients with Sepsis. 2010.

	38.	 Wang Y, Huang X. Sepsis after uterine artery embolization-assisted termi-
nation of pregnancy with complete placenta previa: a case report. J Int 
Med Res. 2018. https​://doi.org/10.1177/03000​60517​72325​7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.sepsis.org/sepsis/testing-for-sepsis/
https://www.sepsis.org/sepsis/testing-for-sepsis/
https://doi.org/10.1101/393090
https://doi.org/10.1177/0300060517723257

	Rapid diagnosis and comprehensive bacteria profiling of sepsis based on cell-free DNA
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Materials and methods
	Data collection and processing
	Read alignment and quantification
	Identification of candidate pathogenic bacteria
	Random Forest with balanced subsampling
	Co-occurrence network inference

	Results
	A novel strategy for rapid sepsis diagnosis based on cfDNA
	Bacterial co-occurrence networks based on cfDNA
	Inferring missing bacteria from identified species

	Discussion
	Conclusion
	Acknowledgements
	References




