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The human microbiome consists of a community of microbes in varying abundances

and is shown to be associated with many diseases. An important first step in many

microbiome studies is to identify possible distinct microbial communities in a given data

set and to identify the important bacterial taxa that characterize these communities. The

data from typical microbiome studies are high dimensional count data with excessive

zeros due to both absence of species (structural zeros) and low sequencing depth

or dropout. Although methods have been developed for identifying the microbial

communities based on mixture models of counts, these methods do not account for

excessive zeros observed in the data and do not differentiate structural from sampling

zeros. In this paper, we introduce a zero-inflated Latent Dirichlet Allocationmodel (zinLDA)

for sparse count data observed in microbiome studies. zinLDA builds on the flexible

Latent Dirichlet Allocation model and allows for zero inflation in observed counts. We

develop an efficient Markov chain Monte Carlo (MCMC) sampling procedure to fit the

model. Results from our simulations show zinLDA provides better fits to the data and

is able to separate structural zeros from sampling zeros. We apply zinLDA to the data

set from the American Gut Project and identify microbial communities characterized by

different bacterial genera.

Keywords: metagenomics, gibbs sampling, zero inflated dirchlet distribution, mixture models, microbial

community

1. INTRODUCTION

The advent and proliferation of next-generation sequencing (NGS) technologies has given rise
to many large-scale high-throughput microbiome studies (Turnbaugh et al., 2007; Gilbert et al.,
2014; McDonald et al., 2018). Classical statistical techniques are not able to evaluate such data due
to its inherent high dimensional, count-based, and sparse nature. Consequently, novel statistical
methods are necessary for accurate and unbiased analysis of such data.

Much of microbiome research has focused on high-dimensional statistical methods, as a single
16S rRNA gene sequencing sample can produce tens of thousands of sequencing reads from
hundreds of different amplicon sequence variants (ASVs). Of particular interest are techniques
for dimensionality reduction. Commonly used methods include principal coordinate analysis
(PCoA) with distance measures, such as weight and unweighted UniFrac distance and Bray-
Curtis dissimilarity, or canonical correlation analysis with sparsity assumptions (Chen et al., 2013;
Hawinkel et al., 2019). More recently, studies have begun to focus on understanding microbial
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dynamics within the humanmicrobiome. Single-species analysis,
that focus on one species at a time in a “parts-list” fashion, are
not able to capture complex and dynamic interactions. These
inter-species interactions form the basis of distinct underlying
subcommunity structures and failing to account for them
contributions to the data heterogeneity commonly seen in
microbiome studies. As such, network-based approaches have
been successfully applied in this area (Faust and Raes, 2012;
Layeghifard et al., 2017). These methods use co-occurrence or
correlation measures to identify pairwise interactions in cross-
sectional studies (Faust et al., 2012; Friedman and Alm, 2012;
Kurtz et al., 2015). Others use temporally conserved covariance to
identify interactions in longitudinal studies (Raman et al., 2019).

Generative probabilistic mixture models are able to act
as a dimensionality reduction technique while simultaneously
describing microbial dynamics via subcommunity identification.
When applied to microbiome data the latent variable(s) in
a mixture model have meaningful biological connotations.
Specifically, they represent distinct subcommunity profiles,
or structures, that give rise to the observed samples. The
simplest of these is the Dirichlet-multinomial mixture model
(Holmes et al., 2012). This model is a generalization of the
Dirichlet-multinomial hierarchical model. Rather than assuming
that all samples in a cohort are generated from a single
community profile, as the Dirichlet-multinomial model does,
the mixture model assumes the cohort contains many different
subcommunity structures and each of the samples is generated
by one of them (Holmes et al., 2012). As such, a sample can
be described by its subcommunity assignment rather than a
high-dimensional vector of ASV counts. Though, the Dirichlet-
multinomial mixture model may still be too restrictive to
accurately capture microbial community structures and all the
heterogeneity of microbiome studies (Sankaran and Holmes,
2019). It is biologically plausible that an individual’s microbiome
is comprised of numerous subcommunities, rather than just
one, mixing together to varying degrees. The Latent Dirichlet
Allocation (LDA) model describes such a generative process (Blei
et al., 2003). Samples are defined by their mixture probabilities
for each of the subcommunities rather than belonging to a
single one. Technically speaking, LDA differs from the Dirichlet-
multinomial mixture model by sampling the latent community
variable repeatedly within a sample, once per sequencing read,
rather than just once for the entire sample (Blei et al., 2003;
Griffiths and Steyvers, 2004).

Latent Dirichlet Allocation has been successful in identifying
functional subcommunities of the human gut and skin
microbiota (Higashi et al., 2018; Sankaran and Holmes, 2019;
Hosoda et al., 2020; Sommeria-Klein et al., 2020). Despite this, it
has been noted that LDA is prone to over-smoothing of microbial
counts, which are known to be sparse (Sankaran and Holmes,
2019). This can be attributed to the Dirichlet distribution being
insufficient to capture the over-dispersion and zero-inflation
of microbiome data. The distribution only has one dispersion
parameter and inherently imposes a negative correlation between
component counts, which may lead to spurious associations
(Tang and Chen, 2019). Moreover, the model assumes that each
species has a non-negative probability of belonging to every

subcommunity. This implies that all species contribute to every
subcommunity, even if only with low probability. Although, it
is more likely that the presence of one species in a community
prevents the presence of another.

As such, it would be advantageous to be able to identify
community structures that are only composed of a subset of
microbial species present in a data set. Thus, estimating some
of the taxa membership probabilities for each subcommunity to
be zero. We propose a zero-inflated Latent Dirichlet Allocation
(zinLDA) model that is flexible enough to capture sparse
subcommunities of microbiota. In the following section we
detail the generative process of the LDA model and our zero-
inflated LDA model. We also provide information on how to
estimate model parameters using Markov chain Monte Carlo
(MCMC) methods. We apply both models to simulation studies
and real data analysis using data from the American Gut Project
to directly compare the two and highlight how our proposed
method provides better fit to microbiome data.

2. MATERIALS AND METHODS

2.1. Notation and Terminology
Data in microbiome studies often comes from high-throughput
sequencing of the 16S rRNA gene. A single biological sample
can be represented by a vector of taxon counts with each
component representing the number of reads aligned to that
specific classification (e.g., ASV, species, genus). The following
definitions and notations will be of help in defining a generative
probabilistic model for microbiome studies:

• wdn is the nth observed sequencing read in the dth biological
sample. Sequencing reads are represented by V-length vectors
with a single non-zero component whose value is equal to one,
where V is the number of unique taxa in the study.

• wi
dn

represents that the nth sequencing read in the dth sample
belongs to the ith unique taxa (i = 1, . . . ,V).

• wd = (wd1, . . . ,wdN) is the dth biological sample consisting of
N sequencing reads.

• A cohort D = (w1, . . . ,wD) is a collection of all biological
samples in the study.

2.2. Latent Dirichlet Allocation (LDA)
Latent Dirichlet Allocation is a probabilistic model that is flexible
enough to describe the generative process for discrete data in
a variety of fields from text analysis to bioinformatics. When
applied to microbiome studies, LDA provides the following
generative process for the taxon counts in a cohortD:

1. For each of the K subcommunities, indexed by j:

a. Choose β(j) ∼ Dir(η)

2. For each biological sample wd in the cohort:

a. Choose θ (d) ∼ Dir(α)

3. For each of the N sequencing reads, wdn:

a. Choose a subcommunity, zdn ∼Multinomial(1, θ (d))

Frontiers in Genetics | www.frontiersin.org 2 January 2021 | Volume 11 | Article 602594

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Deek and Li zinLDA for Microbiome Studies

b. Choose a taxon wdn from P(wdn|zdn,β), a
multinomial probability distribution conditional on
the subcommunity zdn.

Figure 1 provides a graphical model representation of LDA. In
this model, β = [βij] fully describes the taxa distribution for each
subcommunity. The probability that the ith taxa belongs to the jth
subcommunity is denoted by βij. Note that the taxa distribution
is cohort-specific meaning that it is common across all samples
and is only estimated once per cohort. The mixture probabilities
for the subcommunities of the dth sample are denoted by a K-
length vector, θ (d), with θdj representing the mixture probability
of the jth subcommunity in the dth sample. Here,K is the number
of underlying subcommunities and is assumed to be known a-
priori. Additionally, zdn is the subcommunity assignment for
sequencing readwdn. Both hyperparameters η and α are assumed
to be symmetric and are defined once for the whole cohort.

Intuitively, βij = P(wi
dn
|zdn = j) determines which taxa

are important to subcommunity j and θdj = P(zdn = j)
determines which subcommunities are important in the dth
sample. Moreover, the LDA model acts as a “soft” clustering
technique by allowing samples to be composed of multiple
subcommunities. Geometrically, the parameter space of β and
θ can be thought of in terms of a simplex space. The taxa per
subcommunity distribution belongs the V-1 simplex, such that
β(j) ∈ SV−1. Meanwhile, θ (d), the subcommunity distribution
per sample can be represented by a randomly selected point
in the (K-1)-dimensional simplex, SK−1. This is different from
the Dirichlet-Multinomial mixture model in which θ (d) = θ is
assumed to be fixed across all samples and can be represented by
the vertices of SK−1.

2.3. Zero-Inflated Latent Dirichlet
Allocation (zinLDA)
We propose a modification to the Latent Dirichlet Allocation
model that allows the latent subcommunity organization to be
composed of both structural zeros, taxa that truly do not belong
to the community, and sampling zeros, taxa that belong to the
community, but are not captured due to low sequencing depth or
dropout. Understanding and identifying the structural zeros in
the data is biologically interesting as it provides insights into the
absence of certain taxa in a given community.

The zero-inflated generalized Dirichlet (ZIGD) distribution is
able to model both sources of zeros. The generalized Dirichlet
(GD) distribution is an extension of the Dirichlet that allows
for a more flexible covariance structure via the introduction
of additional parameters (Connor et al., 1969). Though, it
should be noted that the GD distribution alone does not model
structural zeros.

To do so, we must modify the unique relationship between the
GD distribution and a set of mutually independent beta random
variables. By adding a zero-inflation probability, π , to each of the
beta random variables we arrive at the zero-inflated generalized
Dirichlet distribution. Formally, a length-V vector of ZIGD
compositions, denoted by β = {β1, . . . βV}, can be formulated
from a set of mutually independent zero-inflated beta random

variables, which we denote by Q = {Q1, . . . ,QV−1}, with zero-
inflation probabilities, π = {π1, . . . πV−1} and the parameters in
the beta distributions denoted by (a, b). The relationship between
the two random variables can be described as follows: β1 =

Q1, βi =
∏i−1

l=1(1 − Ql) for l = 2, . . .V − 1, and βV =
∑V−1

i=1 βi (Tang and Chen, 2019). Furthermore, we introduce an
indicator variable, 1i = I(βi = 0) = I(Qi = 0), to identify
structural zeros.

For every subcommunity j, let there be Lj taxa with βij > 0 ⇔

1ij = 0. Then let Uj denote the set of indices of the non-zero

taxa probabilities for subcommunity j, Uj = {u1j , ..., uLj}, and Ū j

be its complement.
Replacing the Dirichlet(η) prior on β with a ZIGD(π , a, b)

gives a zero-inflated Latent Dirichlet Allocation (zinLDA) model.
The zinLDA model assumes the following generative process for
a cohortD:

1. For each of the K subcommunities, indexed by j:

a. Choose 1(j) ∼ Ber(π)
b. Choose β(j) ∼ ZIGD(π , a, b)

2. For each biological sample wd in the cohort:

a. Choose θ (d) ∼ Dir(α)

3. For each of the N sequencing reads, wdn:

a. Choose a subcommunity, zdn ∼Multinomial(1, θ (d))
b. Choose a taxon, wdn from P(wdn|zdn,β), a

multinomial probability distribution conditional on
the subcommunity zdn.

In this model we assume hyperparameters π , a, b, and α are
symmetric and are defined once for the whole cohort. Comparing
the graphical model representation of zinLDA to that of the LDA
model (Figure 1) underscores the differences between the two,
particularly with respect to modeling β .

We adopt a Bayesian framework for inference and parameter
estimation. As such, inference for the zinLDA model is centered
around the posterior distribution:

P(θ , z,β ,1|w;α,π , a, b) =
P(θ , z,β ,1,w|α,π , a, b)

P(w|α,π , a, b)
. (1)

Calculation of this distribution cannot be done directly because
the marginalization required to find the normalizing constant,
P(w|α,π , a, b), is intractable. As such, approximate methods
are necessary for parameter estimation. Variational inference
may be used to find parameter estimates by maximizing an
approximation to the true posterior. Alternatively, a Markov
chain Monte Carlo procedure, such as Gibbs sampling, may be
used to generate samples from the target posterior distribution
for inference. It is worthy to note that due to the fact that both
the Dirichlet and ZIGD distributions are conjugate prior for
the multinomial distribution using a collapsed Gibbs sampler,
marginalizing over β and θ , gives a tractable solution, even more
so than had collapsing not been performed. For this reason,
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FIGURE 1 | Plate diagrams of Latent Dirichlet Allocation (A) and zero-inflated Latent Dirichlet Allocation (B). Nodes represent parameters and random variables,

shading denotes the observed data. Boxes represent repeated sampling. The outer box is denoted with D for once per biological sample, the inner box with N for per

sequencing read and the upper box with K for per subcommunity.

we proposed a collapsed Gibbs sampler for the joint posterior
distribution of z and 1 over taxa, P(z,1|w), where:

P(z,1|w) =
P(w, z,1)

P(w)
=

P(w|z,1)P(z)P(1|π)
∑

1

∑

z P(w, z,1)
(2)

Integration over β and θ can be done separately as the former
only appears in P(w|z,β ,1) and the latter only in P(z|θ). In
Gibbs sampling, each state of the chain is taken as an assignment
of each zdn and 1ij. These states are sampled conditional
on the observed data and all the other parameters in the
model at their current state. Thus, to perform the sampling,
the full conditional distributions, P(zdn = j|w, z−n,1) and
P(1ij = 1|w, z,1−i), must be known. These distributions
have closed form solutions due to the conjugate prior property
of the Dirichlet and ZIGD distributions and can be found
probabilistically (Supplementary Material):

P(zdn = j|z−n,w,1)

∝























































a+n
(i)
j,−n

a+n
(i)
j,−n+b

(z)
ij

·
m
(d)
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(d)
.,−n+Kα

if i = u1j

a+n
(i)
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a+n
(i)
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t<i,t∈Uj

b
(z)
tj,−n

a+n
(t)
j,−n+b
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m
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∏
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b
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a+n
(t)
j,−n+b

(z)
tj,−n

·
m
(d)
j,−n+α
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(d)
.,−n+Kα

if i = uLj

0 if i /∈ Uj

(3)

P(1ij = 1|1−i,w, z) =











0 if n
(i)
j > 0

πij

πij+(1−πij)
B(a

(z)
ij ,b

(z)
ij )

B(a,b)

if n
(i)
j = 0 (4)

where zdn is the subcommunity assignment for sequencing read

wi
dn
. We define n

(i)
j,−n as the number of times the ith taxa is

assigned to the jth subcommunity and m
(d)
j,−n as the number

of times the jth subcommunity occurs in the dth sample,
both excluding the current subcommunity assignment of zdn.

Additionally, we define a
(z)
ij = a + n

(i)
j and b

(z)
ij = b + n

(i+1)
j

+ ... + n
(V−1)
j .

The chain is initialized with informative values for the zdn
variables by sampling from a multinomial distribution with taxa
probabilities equal to the βij estimates from a standard LDA
model. Once the chain has been run long enough to guarantee
sufficient convergence, a set of the initial runs is removed as a
“burn-in” period, and the remaining are taken as a set of samples
from the target posterior distribution. As such, for each run, we
can calculate estimates of β and θ as follows using the posterior
predictive distribution:

β̂ij = P(w(i)
new|z

(i)
new = j,w, z,1)

=
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j
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a+n
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j

a+n
(i)
j +b

(z)
ij
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t<i,t∈Uj

b
(z)
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a+n
(t)
j +b

(z)
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if u1j < i < uLj

∏

t<i,t∈Uj

b
(z)
tj

a+n
(t)
j +b

(z)
tj

if i = uLj

0 if i /∈ Uj

(5)

θ̂
(d)
j = P(znew = j|z) =

m
(d)
j + α

m(d)
. + Kα

(6)

The final estimate of θ is defined as its posterior mean across
all the runs. The final estimate of β can be found in a two-
part process. First, calculate the posterior mean of 1ij across all
runs, which is equivalent to a posterior estimate of πij. Then
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dichotomize π̂ij according to I(π̂ij ≥ 0.5). Next, assign β̂ij = 0

for any dichotomized π̂ij = 1, otherwise assign β̂ij its respective
posterior mean and normalize within each subcommunity such
that

∑

i βij = 1.

3. RESULTS

3.1. Simulation Study
We conducted a simulation study to compare estimation
accuracy and model fit between the proposed zinLDA and the
standard LDA models. The data was simulated from a true
zinLDA model, following the steps specified by the generative
algorithm given section 2.3. First, we selected the total number
of taxa (V) to be 120 across 150 independent microbial samples.
Next, the total number of reads in each sample were drawn
from a discrete uniform distribution with a lower bound of 5,000
and upper bound of 25,000. These parameters were selected to
reflect real microbiome data sets aggregated to the genus-level
classification. The number of subcommunities (K) was selected
as five. The hyperparameter α of the Dirichlet distribution on
θ was set to 50/K, as suggested for the original LDA model
(Griffiths and Steyvers, 2004). Additionally, the hyperparameters
π , a, and b of the zero-inflated generalized Dirichlet distribution
on β were set to 0.4, 0.05, and 10, respectively. After running the
simulation algorithm, the taxa that had a zero count for every
sample, meaning a prevalence of 0%, were removed as such taxa
would not be observed in a real data analysis. This reduced the
total number of observed taxa (Vobs) to 87.

A zinLDA model with five subcommunities was fit to the
simulated data set. Hyperparameters α,π , a, and b were set
to their true values, as specified under simulation. Likewise, a
standard LDA model with five subcommunities was fit, with
default hyperparameter values of 50/K and 0.1 for α and η,
respectively (Griffiths and Steyvers, 2004). To deal with the
label switching problem commonly seen in Bayesian inference
with mixture models, we use a method previously proposed
to compare labels from an LDA model to their ground-
truth. The pairwise Pearson correlation was calculated for each
true-estimated subcommunity pair. The pair with the highest
correlation is matched, then the pair with the next highest
correlation among the remaining is matched, and so on until
all true-estimated pairs are uniquely matched (Sankaran and
Holmes, 2019).

To determine how well zinLDA is able to capture the latent
community structure we compare the estimated βij for the top
eight taxa per community to their true value and estimated value
from the standard LDAmodel. Figure 2 shows that both zinLDA
and LDA correctly identify all of the topmicrobial taxa for each of
the five subcommunities. Moreover, estimates from both models
show low bias. We investigated how misspecification of the
number of subcommunities influences zinLDA’s ability to recover
the representative taxa. An under-specified model, with one too
few communities, collapses the representative taxa of two of the
subcommunities together. Thus, resulting in both upwardly and
downwardly biased estimates of βij, the taxa over subcommunity
probabilities. The remaining three subcommunities have their
representative taxa recovered and their respective βij estimates

were not affected. Likewise, for an over-specified model, with
one too many communities, it is able to accurately detect the
five true subcommunity structures as specified under simulation,
but identifies an additional nonsensical subcommunity that is
composed of only one taxa (Supplementary Figure 1).

Fit of the two models was assessed through posterior
predictive checks (Gelman et al., 1996). For each model, the
posterior predictive distribution was used to simulate 100 data
sets of the same dimensions as the original. The rationale behind
using posterior predictive checks to assess model fit is as follows:
if the model provides reasonable fit then the data simulated from
the posterior predictive distribution, which is conditional on the
observed data (Xobs) and the current model, should “look similar”
to the observed data. We quantify how similar the observed data
and the posterior predictive simulated data are by the test statistic
T(X) = Xi·, the count for the ith taxa. Figure 3 plots the results
from the posterior predictive checks. Each panel corresponds to
a single biological sample. The y-axis plots T(X) on the asinh
scale. The x-axis plots each of the 87 taxa, ordered from smallest
to largest based on the observed data for that sample. For large
taxon counts we see that bothmodels do well, with median values
of both being similar to the truth, or observed, values. In contrast,
we see that for small taxon counts the zinLDAmodel outperforms
LDA. Specifically, for zero counts the zinLDA model is able to
accurately estimate these counts better than its LDA counterpart.
Across the 50 data sets simulated from the posterior predictive
distribution, the zinLDA exhibits less over-smoothing for small
taxon counts compared to the original LDA. Thus, this is an
indication that the zinLDA model provides better fit to the data
than the LDA.

To quantify how well the zinLDA model is able to distinguish
between rare and absent taxa in each subcommunity we calculate
the sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV). We define a “positive” outcome
as being a structural zero, 1ij = 1, and a “negative” outcome as
being a non-zero probability of belonging to that subcommunity,
1ij = 0. The results show that under these simulation settings
zinLDA can differentiate sampling and structural zeros with
reasonable sensitivity and specificity (Table 1). Upon further
examining the data, we noticed that the model we used to
generate the data resulted in many taxa with very small true non-
zero probabilities, making it very difficult to separate sampling
zeros from structural zeros. To further demonstrate this point,
we ran two additional simulations to see how different model
parameters affect the posterior inference of being structural zeros.
Both simulations reduce the number of taxa (V) to 50, but
one also changes hyperparameter a, of the ZIGD distribution,
to 0.5 from 0.05. Table 1 shows that reducing the number of
taxa without changing the value of a reduces the model’s ability
to differentiate between the two sources of zeros. In contrast,
reducing V and also increasing a significantly increases the
model’s ability to accurately detect structural zeros, with such a
modeling having sensitivity of 0.9 and PPV of 0.92. The sharp
difference in the values of these diagnostic metrics between
the models can be attributed to the fact that V , a, and b all
influence the βij values, which in turn influences the probability
of observing a sampling zero. For example, decreasing V without
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FIGURE 2 | Bar graphs of the top eight taxa, for each of the five sub-communities, with their corresponding βij values. The first column contains the “ground truth”

top taxa from simulation. The second and third columns are the estimated top taxa from the zinLDA and LDA models, respectively.

changing a reduces many of the βij values, thus increasing the
probability of observing a sampling zero. On the other hand,
decreasing V in conjunction with increasing a increases many of
the βij values and therefore decreases the probability of observing
a sampling zero.

3.2. Real Data Applications
The American Gut Project (AGP) is a self-selected and open
platform cohort. Citizen-scientists primarily in the United States,
United Kingdom, and Australia, opted into the study, paid a
fee to offset the cost of sample processing and sequencing, and
gave informed consent (McDonald et al., 2018). All subjects
provided a fecal microbiome sample and self-reported meta-
data. The sequencing protocol used was identical to that of the
Earth Microbiome Project (Gilbert et al., 2014; McDonald et al.,
2018). The AGP microbial 16S rRNA gene sequencing data and

meta-data are publicly available in The European Bioinformatics
Institute repository under the accession ERP012803.

This analysis used a prior subset of the AGP data consisting
of 3,679 subjects. Reads that were ambiguously assigned or
unassigned at the genera level were removed. Moreover, genera
with a prevalence of <20% across all samples were removed.
After this filtering of the microbial genera, any samples with
a total number of reads of zero were removed. This left 3,566
samples and 70 unique genera for downstream analyses.

A random subset of 1,000 subjects from the AGP data
was sampled, a zinLDA model with five subcommunities and
hyperparameter values being specified the same way as in
the simulation study was fit. When possible, the choice of
the number of latent subcommunities should be informed
by biological or clinical reasoning. In the absence of such,
data-driven approaches may be used. In particular for the
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FIGURE 3 | Observed and posterior predictive simulated asinh-transformed taxon counts plotted in order of increasing true abundance. Each panel is a different

biological sample. The solid black line represents the true counts. The pink and blue points are the counts from 50 posterior predictive simulated data sets and the

pink and blue solid line represents the median counts across all 50 data sets, from the LDA and zinLDA models, respectively.

AGP data, K was determined by comparing the log-likelihood,
AIC, and representative taxa across many models, each with a
different number of subcommunities, applied to a set of 1,000
independently selected subjects. These results were robust across
slight changes in the number of subcommunities.

The representative taxa from each subcommunity and
their membership probability (βij) is shown in Figure 4. We
observe that each subcommunity is characterized by one
single dominant taxa, including Faecalibacteruim, Prevotella,
Bacteroides, Acinetobacter, and Akkermansia.

Model fit was assessed via posterior predictive checks and
compared to that of the standard LDA model. Since current
sequencing technology, such as 16S rRNA gene sequencing,
can only provide quantification about relative abundance model
fit was assessed using both the relative abundance and the

TABLE 1 | Comparison of estimated structural zero taxa from the zinLDA model

to true structural zero taxa from simulation across different parameter settings

using sensitivity, specificity, positive predictive value, and negative predictive value.

Sensitivity Specificity PPV NPV

V = 50, a = 0.5 0.90 0.94 0.92 0.93

V = 50, a = 0.05 0.51 0.51 0.40 0.61

V = 87, a = 0.05 0.73 0.67 0.59 0.79

A “positive” results is assumed to be βij = 0.

observed counts (Supplementary Figures 2, 3). The two plots
exhibit similar patterns, indicating the difficulty in fitting the
small count data. Another explanation of observing such similar
model fits is that our analysis did not identify structural zeros
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FIGURE 4 | Bar graphs of the representative taxa for each of the five sub-communities, with their corresponding βij values, for two independent subsets of 1,000

randomly selected subjects from the American Gut Project.

with strong evidence in our data. Supplementary Figure 4 shows
the posterior estimates of the probability of zero count being
a structural zero for each of the taxa in each subcommunity,
indicating relatively weak evidence of being structural zeros.

Finally, to determine whether the model is stable, meaning
it detects true subcommunity clusters of co-occurring taxa
and is not clustering the noise in the observations, we apply
an identical zinLDA model to another set of 1,000 AGP
microbial samples that is independent from the first. The
representative taxa from this validation set is compared to that
of the first cohort (Figure 4). The subcommunities between
the two cohorts were matched using pairwise correlations
as done in simulations. The average cosine similarity of
the matched subcommunities is 0.80. The results show
that the communities identified by zinLAD are very stable
and replicable.

4. DISCUSSION

The micro-organisms that constitute the human microbiome
form subcommunity-like structures via dynamic and complex
interactions with one another. Identifying these structures is
imperative for a better understanding of how these microbes
influence human-host health. We propose a zero-inflated latent
Dirichlet allocation model, a further modification of the LDA
model that amounts to changing the prior distribution on
the taxa per subcommunity distribution to a zero-inflated
generalized Dirichlet from a Dirichlet distribution. Despite this
change our model retains the advantageous conjugate prior
property between the ZIGD and multinomial distributions. As
such, we are able to implement an efficient Gibbs sampling
algorithm, with only one additional step compared to that of
LDA, for parameter estimation.
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zinLDAmodifies the LDAmodel proposed by Blei et al. (2003)
to allow for subcommunities to be composed of a subset of
all the microbes in a cohort of samples. Mathematically, since
a subcommunity is defined as a distribution over taxa, this is
equivalent to assigning some taxa a zero-probability of belonging
to it. This is particularly advantageous in microbial analyses as
it allows for a clear distinction between sampling and structural
zeros within a subcommunity structure. Structural zeros come
from those zero-probability taxa; they are truly absent from the
community. Sampling zeros come from taxa that do belong to the
community, but with low probability, and thus were not captured
due to shallow sequencing depth. Due to this adjustment, zinLDA
model can be used to simulate more realistic sparse count data
than models such as the Dirichlet multinomial or Dirichlet
multinomial mixture models.

We used simulation studies to compare the two models
and investigate where zinLDA outperforms the standard LDA
model. First, we show that the two performed equally well in
identifying the representative taxa for each subcommunity. This
is to be expected as the LDA model already does a good job
in identifying common taxa and the zinLDA estimates of the
community assignment for each sequencing read were initialized
using the results from a standard LDA model. The performance
gain in using zinLDA is seen when examining the low probability
and absent taxa within in each subcommunity. The greatest
performance gains are made when the probability of being
a sampling zero is not too small. Furthermore, we use real
data from the citizen scientists of the American Gut Project
to show that our method can detect potentially meaningful
biological and ecological subcommunities of microbial species.
By assigning each sample a probability of belonging to each of
these subcommunities we are also able to gather information
about population level microbial structures.

As for any Bayesian models, zinLDA requires the
hyperparameters to be pre-specified. In our analysis of the
real data sets, we used the same hyperparameters as in our
simulations and explored various other choices. For the same
number of communities, we observed that the community
structures and the representative taxa were not too sensitive to
the values of these hyperparameters. Determining the number
of clusters or subcommunities is a hard problem, as for any
clustering methods. For real data analysis, we suggest that the

users try different numbers of K, evaluate the sub-community
structures, and then choose one based on both the sizes of the
communities and also possible biological interpretations.

Finally, the zinLDA model can be used to simulate more
realistic microbiome count data that allow for both structural
zeros and sampling zeros. Such simulations can be used to
evaluate various statistical tests developed for microbiome data
analysis, including evaluating power of the tests for differential
abundance and methods for modeling microbiome count data.
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