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Twist-angle dependence of moiré excitons
in WS2/MoSe2 heterobilayers
Long Zhang 1, Zhe Zhang1,2, Fengcheng Wu 3✉, Danqing Wang1, Rahul Gogna4, Shaocong Hou5,

Kenji Watanabe 6, Takashi Taniguchi 7, Krishnamurthy Kulkarni 5, Thomas Kuo1,

Stephen R. Forrest 1,5 & Hui Deng 1,4✉

Moiré lattices formed in twisted van der Waals bilayers provide a unique, tunable platform to

realize coupled electron or exciton lattices unavailable before. While twist angle between the

bilayer has been shown to be a critical parameter in engineering the moiré potential and

enabling novel phenomena in electronic moiré systems, a systematic experimental study as a

function of twist angle is still missing. Here we show that not only are moiré excitons robust

in bilayers of even large twist angles, but also properties of the moiré excitons are dependant

on, and controllable by, the moiré reciprocal lattice period via twist-angle tuning. From the

twist-angle dependence, we furthermore obtain the effective mass of the interlayer excitons

and the electron inter-layer tunneling strength, which are difficult to measure experimentally

otherwise. These findings pave the way for understanding and engineering rich moiré-lattice

induced phenomena in angle-twisted semiconductor van der Waals heterostructures.
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Atomically thin heterostructures created by stacking van
der Waals materials mark a new frontier in condensed
matter physics1–3. When two monolayer crystals of the

same lattice symmetries overlay on each other, a moiré super-
lattice may form due to a small mismatch in their lattice constants
or angular alignment4,5. The latter—the twist angle between the
two layers—provides a powerful tuning knob of the electronic
properties of the heterostructure. Seminal results have been
obtained in twisted bilayer graphene, where superconducting and
correlated insulating states are created by fine control of the twist
angle6–9. In semiconductors, such as transition metal dichalco-
genides (TMDC) heterobilayers, the moiré lattice has a period on
the length scale of an exciton, thereby providing a unique
opportunity to create coupled exciton lattices hitherto unavailable
in any other systems. A wide variety of phenomena, tunable with
the twist angle, may become possible, ranging from single
quantum-dot arrays and topological bands to strongly correlated
states10–14.

To search for the effects of moiré lattices on excitons, split-
exciton states have been reported in TMDC bilayers with very
small twist angles, demonstrating localization of exciton states
likely in moiré supercells15–18. However, increasing the twist
angle has led to the suppression of measurable features of moiré
excitons. In WS2/MoSe2 heterobilayers, it was suggested that the
resonant interlayer hybridization amplifies the moiré superlattice
effects on the electronic structure19; yet only a single resonance
was resolved as the twist angle deviates significantly from 0° or
60°18. Existence of moiré superlattice for exciton in large-twist-
angle bilayers and nontrivial effects of the twist-angle on excitons
remain largely unexplored in experiments.

In this work, we show moiré excitons in heterobilayer of a wide
range of twist angles and demonstrate tuning of their properties by
the moiré lattice or the twist angle. Utilizing the inter- and intra-
layer hybrid excitons in WS2/MoSe2 bilayers, we reveal the for-
mation of moiré reciprocal lattices with Brillouin zones of different
sizes at different twist angles. We furthermore show how the moiré
reciprocal lattices drastically change the properties of the moiré
excitons, such as their resonance energies, oscillator strengths, and
inter-/intralayer mixing. The twist-angle dependence of the moiré
exciton states is well-explained by an analytical theory model based
on band folding in the moiré lattice, which also consistently explain
the dependence on the spin–orbit splitting of the conduction band,
valley selection rules, atomic stacking orders, and the lattice sym-
metries. Comparing the experimental results with the model, we
obtain the effective mass of the interlayer excitons, the interlayer
electron-tunneling strength.

Results
The devices used in this work are WS2/MoSe2 heterobilayers with
different twist angles θ, capped by few-layer hexagonal boron nitride
(hBN). Details of sample fabrication and calibration of θ have been
described elsewhere20,21 and provided in the “Method” section.
Figure 1a shows the optical microscope image of a heterobilayer,
where the sharp edges of two monolayers are aligned. The twist
angle is θ= 59.8° ± 0.3°, determined optically using polarization-
dependent second-harmonic-generation measurements20,21 (see
Supplementary Figs. 1 and 2 and Supplementary Notes 3 and 4
for details).

Identification and analysis of inter- and intralayer hybrid
excitons. We first characterize exciton hybridization in closely
aligned heterobilayers, with a twist angle θ ~ 0° or 60°. In such
bilayers, the Brillouin zones of the two layers closely overlap in
momentum space to form nearly direct bandgaps for both the
inter- and intralayer transitions (top panels of Fig. 1b). At the

same time, the hole band offset is large, but the conduction-
band offset is small between WS2 and MoSe2 (middle panels of
Fig. 1b). Therefore interlayer electron tunneling is expected
between states of the same spin and valley, which leads to
hybridization between the corresponding intra- and interlayer
exciton transitions that share the same hole state (bottom
panels of Fig. 1b).

Making use of the large difference in oscillator strength between
spatially direct and indirect excitons, we identify the formation of
hybrid states via the reflectance contrast (RC) spectra at 4 K:

RC ¼ Rsample �Rsub

Rsub
, where Rsample and Rsub are reflection spectrum

taken from sample and substrate respectively (see Supplementary
Fig. 3 and Note 5). The interlayer exciton has an oscillator
strength two to three orders of magnitude weaker than that of the
intralayer exciton, due to separation of the electron and hole
wavefunction22–24, so it is typically too weak to be measurable in
absorption or RC spectroscopy where the noise level is typically
1% or higher (Supplementary Fig. 4 and Note 6). However, when
interlayer excitons hybridize with intralayer ones via electron or
hole tunneling, the hybrid states acquire an oscillator strength
through the intralayer exciton component. Therefore, we can
identify the hybrid excitons via their spectral weight in the
absorption spectra of the heterobilayer.

As shown in Fig. 1c, the MoSe2 monolayer region of the device
(as marked on Fig. 1a) shows a strong intralayer MoSe2 A exciton
resonance near 1.65 eV, while the WS2 monolayer has no exciton
resonances nearby. In the bilayer, stacking of the WS2 layer is
expected to lead to a red shift of MoSe2 A exciton resonance18 while
also introducing an interlayer exciton transition, between an
electron in WS2 and a hole in MoSe2. The interlayer exciton has
a negligible oscillator strength and should not be observable in RC.
However, two clearly resolved resonances appear in our bilayer,
both with significant spectral weight (top two spectra in Fig. 1c).
The same two resonances are also measured in photoluminescence
(see Supplementary Fig. 5 and Note 7). We therefore identify them
as the inter- and intralayer hybrid states, the lower (LHX) and
upper hybrid excitons (UHX). Both LHX and UHX inherit an
oscillator strength from their intralayer component18, with the ratio
fLHX/fUHX controlled by their intralayer exciton fractions, which in
turn is controlled by the energy detuning δ= EIX− EX between the
uncoupled interlayer (EIX) and intralayer (EX) resonances. There-
fore fLHX/fUHX greater or less than one corresponds to positive or
negative detuning δ. There are multiple pairs of intra- and interlayer
excitons that can hybridize. We focus on the transition region of
MoSe2 A exciton first and label these states as MoA excitons, of
which the hole is always in the highest MoSe2 valence band. Other
pairs will be analyzed later.

As clearly seen in Fig. 1c, in the R-stacking bilayers (θ= 2. 1°),
fLHX/fUHX >1, suggesting the uncoupled interlayer state lies above
the intralayer one, or δR > 0. In contrast, in the H-stacking bilayer
(θ= 59.8°), fLHX/fUHX <1, suggesting δH < 0. These results are
consistent with the spin selection rules of the excitonic transitions
illustrated in Fig. 1b25. Assuming the interlayer exciton-binding
energy is about the same in R- and H-stacking bilayers26, and the
difference δR− δH is comparable to the spin–orbit splitting of
WS2 conduction band (Fig. 1b).

To analyze the results quantitatively, we first obtain the
energies, ELHX and EUHX, and oscillator strengths of the hybrid
states by fitting the RC spectra using the transfer matrix method,
where the hybrid excitons are modeled as Lorentz oscillators (see
“Methods”, Supplementary Fig. 3 and Note 5)25,27. The fitted
spectrum agrees well with the data, as shown in Fig. 1c.
Describing the hybrid modes with the coupled oscillator model,

we have ELHX � EUHX ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2 þ δ2

p
, and f LHX

f UHX
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ 4J2

p
þ δffiffiffiffiffiffiffiffiffiffiffiffi

δ2 þ 4J2
p

� δ
(see
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Supplementary Note 1 for details). Thereby using the fitted ELHX,

UHX and fLHX,UHX, we can obtain δ and J. As summarized in
Fig. 1d, we obtain J ~ 20meV for both R- and H-stacking and
δR− δH= 25.9 ± 0.5 meV, consistent with the spin–orbit splitting
of WS228, confirming the hybrid states are formed by spin-
conserved interlayer electron tunneling.

Twist-angle dependence of moiré-lattice-induced hybrid exci-
tons. To study tuning of the hybrid excitons by the moiré lattice,
we perform the same measurements and analysis as discussed
above on 30 samples with different twist angles, and obtain how
the exciton energies, oscillator strengths and interlayer tunneling
vary with the changing moiré lattice. We define θ0 < 30° as
the angular deviation from aligned bilayers of R- or H-stacking.
θ0= ∣θ∣ for R stacking and θ0= ∣60°− θ∣ for H-stacking.

As shown in Fig. 2a, the MoA hybrid exciton doublets are
clearly resolved for θ0 up to 6°, which would correspond to a
tuning of the moiré lattice constant by nearly threefold29. The
spectral weights of the doublets evolve continuously with the twist
angle, reflecting the continuous increase of fLHX/fUHX and δ with
θ0 (middle panel of Fig. 2c). At the same time, the interlayer
coupling J decreases continuously (bottom panel of Fig. 2c).
These observations show clearly moiré lattice induce hybridiza-
tion and tuning of intralayer and interlayer excitons, as we
explain below.

We illustrate in Fig. 2b the MoA exciton bands at different
twist angles, corresponding to the six samples shown in Fig. 2a.
The intralayer MoSe2A exciton transition (red band) remains
direct, with the band minimum at zero center-of-mass momen-
tum qX ~ 0, irrespective of the twist angle. It is close in energy
with the interlayer exciton formed by a hole from the same MoSe2
valence band but an electron from a WS2 conduction band. This
interlayer exciton band has the band minimum also at zero
center-of-mass momentum: qIX ~ 0, when θ ~ 0° (θ1 in Fig. 2a, b)
or 60° (θ6 in Fig. 2a, b), neglecting the small lattice constant
mismatch.

As the two lattices rotate relative to each other by θ (θ2 to θ5 in
Fig. 2a, b), the Brillouin zones of MoSe2 and WS2 also rotate by θ.
The interlayer exciton band minimum shifts away from the
intralayer exciton band minimum by momentum KW− KM for R
stacking, where KM and KW are, respectively, the Brillouin zone
corners for MoSe2 and WS2 layers. Due to this momentum
mismatch, hybridization between intralayer MoSe2A excitons and
the interlayer state at the band minimum is not allowed.

However, interlayer electron tunneling in the moiré lattice can
lead to the formation of new moiré miniband states to hybridize
with the optically bright intralayer excitons. As illustrated in
Figs. 2b and 3c, three interlayer excitons qi

�� �
IX

overlap with the
optically bright intralayer exciton, where the center-of- mass
momentum qi, measured relative to the band minimum of
interlayer exciton, correspond to q1= KM− KW for R stacking,
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Fig. 1 Hybrid excitons in rotationally aligned WS2/MoSe2 bilayers. a An optical microscope image of a hexagonal boron nitride (hBN)-capped
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with q2,3 connected to q1 by 2π/3 and 4π/3 rotations, respectively,
via moiré reciprocal lattice vectors. These three interlayer states
are offset from their band minimum by the kinetic energy
_2q2i =ð2MIXÞ, for i= 1, 2, 3, and MIX the total mass of interlayer
exciton. These three states can couple due to the moiré lattice and
therefore, superpose to form moiré miniband states, of which one
interlayer exciton state shares the same angular momentum as the
intralayer MoSe2A exciton at qX ~ 0, giving rise to the hybrid
doublet we observe in angularly misaligned bilayers (see
Supplementary Note 2).

When θ deviates more from 0° or 60°, the interlayer exciton
formed in the moiré lattice continuously blueshifts because of the
increasing kinetic energy, which explains the measured continuous
blueshift of the LHX and UHX resonances, and the continuous
increase of the spectral weight of LHX compared to UHX.

Theoretical analysis of moiré-lattice-induced hybrid excitons.
To analyze our results more quantitatively, we develop an analytical
microscopic theory based on the above understanding (see Supple-
mentary Note 2 for details). Comparing it with the measured twist-
angle dependence of the hybrid states, we obtain the key band
parameters of the bilayer, including the interlayer exciton effective
mass and interlayer coupling strength.

We first compare the measured detuning δ with θ0 and the
interlayer exciton kinetic energy. As discussed above, δ is given by:

δðθ0Þ ¼ δ0 þ
_2q21
2MIX

; ð1Þ

where δ0 is the detuning at θ= 0° or 60° for bilayers close to R- and
H-stacking, respectively. q1 is equal to 4π/(3aM), and aM is the

moiré period approximated by a0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ20 þ ϵ2

q
, for a0 the monolayer

lattice constant and ϵ the lattice constant mismatch ja0 � a00j=a0
between the two layers. Equation (1) shows that δ increases
quadratically with θ0. As θ0 increases from 0° to 6°, aM changes by
nearly threefold, and δ− δ0 changes by sevenfold29. Fitting the
measured δ vs. θ0 with Eq. (1), we find the interlayer exciton total
mass MIX to be (6.9 ± 3.2)m0 and (1.41 ± 0.28)m0 for R- and H-
stacking heterobilayers, respectively, for m0 the electron free mass.
These values are greater than the sum of the monolayer electron
and hole effective masses. One possible reason is that the electron
and hole effective masses in the bilayer may have been modified due
to effects such as lattice relaxation30.

We note that strain may lead to deviation in the twist angle and
detuning. To minimize the effect of strain, we use devices of high
structural integrity as verified by imaging and SHG (see
Supplementary Note 4 and Supplementary Fig. 2 for details).
The clear trends in the twist-angle dependence shown in Fig. 2
suggest that the effect of strain is relatively small and mainly leads
to additional fluctuations in the measurement results above the
measurement uncertainties (indicated by the error bars).

From our microscopic theory, we can also estimate the
conduction-band interlayer tunneling parameter w from the
coupling strength J through the relation

J ¼
ffiffiffi
3

p
w

A
X
k

ϕ�
kþmh;IX

MIX
q1
ψk; ð2Þ

where ϕk and ψk are, respectively, the relative-motion wavefunc-
tion for interlayer and intralayer excitons with the normalization
ð1=AÞPkjψkj2 ¼ 1 and ð1=AÞPkjϕkj2 ¼ 1. Here, A is the
system area, and mh,IX is the hole mass for the interlayer exciton.
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Because of the momentum shift (mh,IX/MIX)q1 in the integral
of Eq. (2), J decreases with increasing θ0, which agrees with
the experimentally observed angle dependence of J (Fig. 3c). At
small θ0, J can be approximated by

ffiffiffi
3

p
w. Using our experimen-

tally measured value of J at θ0 ~ 0, we estimate the interlayer
tunneling w to be 11.5–14.0 meV for both R- and H-stacking
bilayers.

When the twist angle θ0 is greater than 6°, the hybrid exciton
doublets become hard to be resolved, likely because there is a
large blue detuning and the UHX has a vanishing oscillator
strength (see Supplementary Fig. 6 and Note 8).

Moiré excitons in commensurate moiré lattices at twist angles
near 21.8° and 38.2°. Remarkably, pronounced and well-resolved
doublets reappear in heterobilayers with θ= 20.1° ± 0.3 and 40.3°
± 0.3, as shown in Fig. 3. In the bilayer with 20.1° twist angle, the
LHX has a smaller spectral weight than UHX has, corresponding
to a negative detuning (δ=− 5.6 meV), which is similar to H-
stacking bilayers formed at θ ~ 60°. In contrast, in the bilayer with
40.3° twist angle, the LHX has a larger spectral weight than UHX
has, corresponding to a positive detuning (δ= 11.8 meV), which
is similar to R-stacking bilayers formed at θ ~0°. In both devices,
the coupling strength J ~8meV is weaker than but of the same
order of magnitude as aligned bilayers with θ close to 0° or 60°.

The revival of hybrid excitons in these two bilayers can be
understood as a direct result of interlayer tunneling induced by a
moiré lattice that is nearly commensurate with the monolayer
lattices. The two twist angles are close to the two special
commensurate angles 21.8° and 38.2°, respectively22, where the

corresponding periodic moiré reciprocal lattices have the largest
reciprocal lattice constant, 1=

ffiffiffi
7

p
of the monolayer reciprocal

lattice constant. Corners of the Brillouin zones of the two
monolayers become connected by primitive moiré reciprocal
lattice vectors, as illustrated in Fig. 3d and e. The MoSe2and
WS2band minima overlap again in the moiré reciprocal lattice,
allowing strong nearly resonant tunneling between the intra- and
interlayer states. Specifically, when θ ≈ 21.8°, K-valley of MoSe2
and K0-valley of WS2 are connected by moiré reciprocal lattice
vectors and are folded into equivalent momentum in the moiré
Brillouin zone (Fig. 3d). The corresponding hybridized excitons
have the same valley configuration as those in bilayers with
θ ~ 60°, which is consistent with the observed negative detuning.
When θ ≈ 38.2°, K-valley of MoSe2 and K-valley of WS2 are
folded into equivalent momentum in the moiré Brillouin zone
(Fig. 3e), and the corresponding hybridized excitons have the
same valley configuration as those in bilayers with θ ~ 0°,
consistent with the observed positive detuning. Moreover, since
interlayer tunneling only needs one Umklapp scattering by a
moiré reciprocal lattice vector, the tunneling strength remains of
the same order of magnitude as in angularly aligned bilayers.
Therefore, the strong revival of the hybrid excitons and their
similarities with the angularly aligned bilayers show again the
critical role of moiré lattice in interlayer tunneling.

Moiré excitons formed with different intralayer excitons. In the
above discussion, we have focused on hybrid states formed with
the MoSe2A excitons, which feature large spectral weight, rela-
tively narrow linewidths, and well-resolved doublets at small
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detunings. Hybrid states can also form with higher-energy bands,
including the A excitons of WS2 (WA), and B excitons of WS2
and MoSe2. The B excitons have broader linewidths than the A
excitons; as a result, the doublets are not well resolved. The A
excitons of WS2 have a broader linewidth than A excitons of
MoSe2 and generally a larger detuning. We observe well-resolved
WA doublets only in bilayers with θ ~ 0°, corresponding to
hybrid excitons formed by a hole in the WS2 valence band and an
electron tunneling between the MoSe2 and WS2 conduction
bands (Fig. 4).

It is interesting to compare the detuning for MoA and WA states
for θ ~ 0°, which we label as δMoA and δWA, respectively. As shown
in the schematic electronic band diagram in Fig. 4a, neglecting
exciton-binding energies, the detuning of the interlayer transition
from the intralayer one is the same magnitude but opposite
signs between the MoA and WA states. The sum of the two
detuning should be zero. However, this is different from our
observation that both the LHX states have larger spectral weight for
both MoA and WA states. This can be understood as due to the
weaker binding energy of interlayer excitons compared to intralayer
ones, resulting from electron–hole separation. The difference in
intra- and interlayer exciton-binding energies, ΔER

B ¼ EBX � EBIX,
adds to both δMoA and δWA. Assuming ΔER

B is approximately the
same for the MoA and WA state, the sum of δMoA and δWA

becomes twice of ΔEB, or, ΔER
B ¼ 1=2ðδMoA þ δWAÞ. From our

measurements of MoA and WA states in bilayers with θ < 1°, we
estimate ΔER

B of 10–16meV (Fig. 4b). In comparison, values
between 17meV and 100meV have been reported based on first
principle calculations31–34 or measurements on homo-bilayers35–37.
The relatively small values of 10–16meV we measured may
possibly be due to difference in the materials or a smaller interlayer
exciton Bohr radius as a result of strong interlayer tunneling.

Discussion
In summary, we demonstrate hybrid states formed between
momentum-direct, moiré-induced interlayer, and intralayer
excitons in twisted WS2/MoSe2 bilayers, opening the door to
studies of excitonic phenomena in twist bilayers.

Deviation of the twist angle from 0° or 60° not only does not
suppress moiré excitons but provides a sensitive tuning knob of the

moiré excitons’ properties. Persistence of the moiré excitons, or, the
moiré lattice, is clearly manifested in the interlayer tunneling
strength, which remains within the same order of magnitude over
the measured range of twist angles. It is possible because momen-
tum conservation between the twisted layers is restored by the
moiré lattice, or Umklapp scattering by the moiré reciprocal lattice
vector. Remarkably, while large detuning between the interlayer and
intralayer states suppressed hybridization over a range of angles,
pronounced hybrid moiré excitons due to strong interlayer tun-
neling reappears near twist angles of 21.8° and 38.2°. At these
angles, moiré-lattices are formed commensurate with the mono-
layer lattices, bringing angularly shifted valleys of the two mono-
layers into equivalent momentum in the same moiré Brillouin zone,
thereby enabling strong interlayer tunneling. The resulting hybrid
exciton states resemble the features in heterobilayers with θ= 60°
and 0°, respectively. These results are direct manifestations of the
discrete translational symmetry of the underlying moiré super-
lattice, which enables transitions that otherwise would not conserve
momentum.

Since the hybrid excitons are formed in moiré reciprocal lat-
tices, their properties dependent sensitively on the moiré period,
or the twist angle. Utilizing the twist angle degree of freedom, we
demonstrate tuning of the moiré exciton properties and fur-
thermore obtain fundamental parameters of the bilayer system
that are difficult to measure otherwise, including conduction-
band splitting of WS2 induced by spin–orbital coupling, the
effective mass of the interlayer excitons in R- and H-stacking
bilayers, interlayer electron-tunneling strength, and the difference
of binding energies between intra- and interlayer excitons at the
presence of interlayer tunneling.

These hybrid excitons inherit large oscillator strengths from
the intralayer component that may allow strong exciton–photon
coupling while, at the same time, inherit static dipole moment
from the spatially indirect interlayer component that leads to
long-range interactions. In a moiré lattice, both the oscillator
strength and dipole interactions depend sensitively on, and can be
tuned by the twist angle. The twisted WS2/MoSe2 bilayers may
provide tunable, nonlinear, exciton and polariton lattice systems
for exotic states of matter, such as topological excitons and
exciton crystals, with novel applications in nanophotonics and
quantum information science10–13,38–53.
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Methods
Sample fabrication. Monolayer MoSe2, WS2, and few-layer hBN flakes are
obtained by mechanical exfoliation from bulk crystals. A polyethylene ter-
ephthalate (PET) stamp was used to pick up the top hBN, WS2 monolayer, MoSe2
monolayer, and the bottom hBN under a microscope. After picking up all the
layers, PET stamp was then stamped onto the sapphire substrate, and the PET was
dissolved in dichloromethane for six hours at room temperature.

Optical measurements. For low-temperature measurements, the sample is kept in
a 4 K cryostat (Montana Instrument). The excitation and collection are carried out
with a home-built confocal microscope with an objective lens with a numerical
aperture (NA) of 0.42. For reflection contrast measurement, white light from a
tungsten halogen lamp is focused on the sample with a beam size of 10 μm in
diameter. The spatial resolution is improved to be 2 μm by using pinhole combined
with confocal lenses. The signal is detected using a Princeton Instruments spec-
trometer with a cooled charge-coupled camera.

Data availability
Data are available from the authors upon reasonable request.

Code availability
Code is available from the authors upon reasonable request.
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