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Classical null hypothesis significance testing is limited to the rejection of the point-null
hypothesis; it does not allow the interpretation of non-significant results. This leads to a
bias against the null hypothesis. Herein, we discuss statistical approaches to ‘null effect’
assessment focusing on the Bayesian parameter inference (BPI). Although Bayesian
methods have been theoretically elaborated and implemented in common neuroimaging
software packages, they are not widely used for ‘null effect’ assessment. BPI considers
the posterior probability of finding the effect within or outside the region of practical
equivalence to the null value. It can be used to find both ‘activated/deactivated’ and
‘not activated’ voxels or to indicate that the obtained data are not sufficient using a
single decision rule. It also allows to evaluate the data as the sample size increases and
decide to stop the experiment if the obtained data are sufficient to make a confident
inference. To demonstrate the advantages of using BPI for fMRI data group analysis, we
compare it with classical null hypothesis significance testing on empirical data. We also
use simulated data to show how BPI performs under different effect sizes, noise levels,
noise distributions and sample sizes. Finally, we consider the problem of defining the
region of practical equivalence for BPI and discuss possible applications of BPI in fMRI
studies. To facilitate ‘null effect’ assessment for fMRI practitioners, we provide Statistical
Parametric Mapping 12 based toolbox for Bayesian inference.

Keywords: null results, fMRI, Bayesian analyses, human brain, statistical parametric mapping

INTRODUCTION

In the neuroimaging field, it is a common practice to identify statistically significant differences
in local brain activity using the general linear model approach for mass-univariate null hypothesis
significance testing (NHST) (Friston et al., 1994). NHST considers the probability of obtaining the
observed data, or more extreme data, given that the null hypothesis of no difference is true. This
probability, or p-value, of 0.01, means that, on average, in one out of 100 ‘hypothetical’ replications
of the experiment, we find a difference no less than the one found under the null hypothesis. We
conventionally suppose that this is unlikely, therefore, we ‘reject the null’; that is, NHST employs
‘proof by contradiction’ (Cohen, 1994). Conversely, when the p-value is large, it is tempting to
‘accept the null.’ However, the absence of evidence is not evidence of absence (Altman and Bland,
1995). Using NHST, we can only state that we have ‘failed to reject the null.’ Therefore, in the
classical NHST framework, the question of interpreting non-significant results remains.
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The most pervasive misinterpretation of non-significant
results is that they provide evidence for the null hypothesis
that there is no difference, or ‘no effect’ (Nickerson, 2000;
Greenland et al., 2016; Wasserstein and Lazar, 2016). In fact,
non-significant results can be obtained in two cases (Dienes,
2014): (1) the data are insufficient to distinguish the alternative
from the null hypothesis, or (2) an effect is indeed null or
trivial. To date, the extent to which the problem of making ‘no
effect’ conclusions from non-significant results have affected the
field of neuroimaging remains unclear, particularly in functional
magnetic resonance imaging (fMRI) studies1. Regarding other
fields of science such as psychology, neuropsychology, and
biology, it was found that in 38–72% of surveyed articles, the null
hypothesis was accepted based on non-significant results only
(Finch et al., 2001; Schatz et al., 2005; Fidler et al., 2006; Hoekstra
et al., 2006; Aczel et al., 2018).

Not mentioning non-significant results at all is another
problem. Firstly, some authors may consider non-significant
results disappointing or not worth publishing. Secondly, papers
with non-significant results are less likely to be published.
This publishing bias is also known as the ‘file-drawer problem’
(Rosenthal, 1979; Ioannidis et al., 2014; de Winter and Dodou,
2015; for evidence in fMRI studies, see Jennings and Van Horn,
2012; Acar et al., 2018; David et al., 2018; Samartsidis et al., 2020).
Prejudice against the null hypothesis systematically biases our
knowledge of true effects (Greenwald, 1975).

This problem is further compounded by the fact that NHST is
usually based on the point-null hypothesis, that is, the hypothesis
that the effect is exactly zero. However, the probability thereof
is zero (Meehl, 1967; Friston et al., 2002a). This means that
studies with a sufficiently large sample size will find statistically
significant differences even when the effect is trivial or has no
practical significance (Cohen, 1965, 1994; Serlin and Lapsley,
1985; Kirk, 1996).

Having the means to assess non-significant results would
mitigate these problems. To this end, two main alternatives
are available: Firstly, there are frequentist approaches that shift
from point-null to interval-null hypothesis testing, for example,
equivalence testing based on the two one-sided tests (TOST)
procedure (Schuirmann, 1987; Wellek, 2010). Secondly, Bayesian
approaches that are based on posterior parameter distributions
(Lindley, 1965; Greenwald, 1975; Kruschke, 2010) and Bayes
factors (Jeffreys, 1939/1948; Kass and Raftery, 1995; Rouder
et al., 2009). The advantage of frequentist approaches is that
they do not require a substantial paradigm shift (Lakens, 2017;
Campbell and Gustafson, 2018). However, it has been argued that
Bayesian approaches may be more natural and straightforward
than frequentist approaches (Edwards et al., 1963; Lindley, 1975;
Friston et al., 2002a; Wagenmakers, 2007; Rouder et al., 2009;

1Here are some examples of ‘no effect’ conclusions that can be found in the fMRI
literature: (a) brain area was not activated, (b) brain area was not involved in the
function, (c) no effect was found in the brain area (p > 0.05), (d) both groups
showed no differences, which can be interpreted as evidence against the alternative
hypothesis; (e) patients have similar responses to both conditions (p > 0.05), that
is, they have difficulties in differentiating these conditions; (f) lack of significant
correlation during treatment suggest a protective impact of the therapy on brain
areas.

Dienes, 2014; Kruschke and Liddell, 2017b). It has long been
noted that we tend to perceive lower p-values as stronger evidence
for the alternative hypothesis, and higher p-values as evidence for
the null, i.e., the ‘inverse probability’ fallacy as it is referred to by
Cohen (1994). This is what we obtain in Bayesian approaches by
calculating posterior probabilities. Instead of considering infinite
‘hypothetical’ replications and employing probabilistic ‘proof by
contradiction,’ Bayesian approaches directly provide evidence for
the null and alternative hypotheses given the data, updating
our prior beliefs in light of new relevant information. Bayesian
inference allows us to ‘reject and accept’ the null hypothesis
on an equal footing. Moreover, it allows us to talk about ‘low
confidence,’ indicating the need to either accumulate more data
or revise the study design (see Figure 1).

Despite the importance of this issue, and the high level
of theoretical elaboration and implementation of Bayesian
methods in common neuroimaging software programs, for
example, Statistical Parametric Mapping 12 (SPM12) and
FMRIB’s Software Library (FSL), to date, only a few fMRI
studies implemented the Bayesian inference to assess ‘null effects’
(for example, see subject-level analysis in Magerkurth et al.,
2015, group-level analysis in Dandolo and Schwabe, 2019; Feng
et al., 2019). Therefore, this study is intended to introduce
fMRI practitioners to the methods for assessing ‘null effects.’ In
particular, we focus on Bayesian parameter inference (Friston
and Penny, 2003; Penny and Ridgway, 2013), as implemented
in SPM12. Although Bayesian methods have been described
elsewhere, the distinguishing feature of this study is that we
aim to demonstrate the practical implementation of Bayesian
inference to the assessment of ‘null effects,’ and reemphasize
its contributions over and above those of classical NHST. We
deliberately aim to avoid mathematical details, which can be
found elsewhere (Genovese, 2000; Friston et al., 2002a, 2007;
Friston and Penny, 2003; Penny et al., 2003, 2005, 2007;
Penny and Ridgway, 2013; Woolrich et al., 2004). Firstly, we
briefly review the frequentist and Bayesian approaches for the
assessment of the ‘null effects.’ Next, we compare the classical
NHST and Bayesian parameter inference using the Human
Connectome Project (HCP) and the UCLA Consortium for
Neuropsychiatric Phenomics datasets, focusing on group-level
analysis. We then consider the choice of the threshold of the effect
size for Bayesian parameter inference and estimate the typical
effect sizes in different fMRI task designs. To demonstrate how
the common sources of variability in empirical data influence
NHST and Bayesian parameter inference, we examined their
behavior for different sample sizes and spatial smoothing. We also
used simulated data to assess BPI performance under different
effect sizes, noise levels, noise distributions and sample sizes.
Finally, we discuss practical research and clinical applications of
Bayesian inference.

THEORY

In this section, we briefly describe the classical NHST framework
and review statistical methods which can be used to assess
the ‘null effect.’ We also considered two historical trends
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FIGURE 1 | Possible results for the same data, obtained using classical NHST and Bayesian parameter inference. Classical NHST detects only areas with a
statistically significant difference (‘number one’). Bayesian parameter inference based on the logarithm of posterior probability odds (LPO) provides us with additional
information that is not available in classical NHST: (1) it provides relative evidence for the null (H0) and alternative (H1) hypotheses, (2) it detects areas with a trivial
effect size (‘number zero’), (3) it indicates ‘low confidence’ areas surrounding the ‘number one’ and ‘number zero.’ To make this conceptual illustration, we generated
100 images consisted of 50 × 50 voxels smoothed by 2 voxel full width at half maximum (FWHM) Gaussian kernel. Data were drawn from normal distributions with
different mean, m, and standard deviation, SD. For the ‘number one,’ m = 0.1, SD = 0.37. For the ‘number zero,’ m = 0, SD = 0.6. For the ‘low confidence’ area,
m = 0.01, SD = 0.37. LPOs were calculated using an effect size threshold of 0.02. The code to recreate the illustration is available online
https://github.com/Masharipov/BPI_2021/tree/main/conceptual_illustration.

in statistical analysis: the shift from point-null hypothesis
testing to interval estimation and interval-null hypothesis
testing (Murphy and Myors, 2004; Wellek, 2010; Cumming,
2013), and the shift from frequentist to Bayesian approaches
(Kruschke and Liddell, 2017b).

Classical Null Hypothesis Significance
Testing Framework
Most task-based fMRI studies rely on the general linear model
approach (Friston et al., 1994; Poline and Brett, 2012). It provides
a simple way to separate blood-oxygenated-level dependent
(BOLD) signals associated with particular task conditions from
nuisance signals and residual noise when analyzing single-subject
data (subject-level analysis). At the same time, it allows us to
analyze mean BOLD signals within one group of subjects or
between different groups (group-level analysis). Firstly, we must
specify a general linear model and estimate its parameters:

Y = Xβ+ ε (1)

where Y are the data (further, D), X is the design matrix, which
includes regressors of interest and nuisance regressors, β are the
model parameters (‘beta values’), and ε is residual noise or error,
which is assumed to have a zero-mean normal distribution. At the
subject level of analysis, the data are BOLD-signals. At the group
level, the data are linear contrasts of parameters estimated at the
subject level, which typically reflect individual subject amplitudes
of BOLD responses evoked in particular task conditions. In
turn, the parameters of the group-level general linear model
reflect the group mean BOLD responses evoked in particular task
conditions and groups of subjects. The linear contrast of these
parameters, θ = cβ, represents the experimental effect of interest
(hereinafter ‘the effect’), expressed as the difference between
conditions or groups of subjects.

Next, we test the effect against the point-null hypothesis, H0:
θ = γ (usually, θ = 0). To do this, we use test statistics that
summarize the data in a single value, for example, the t-value. For
the one-sample case, the t-value is the ratio of the discrepancy
of the estimated effect from the hypothetical null value to its
standard error. Finally, we calculate the probability of obtaining
the observed t-value or a more extreme value, given that the null
hypothesis is true (p-value). This is also commonly formulated as
the probability of obtaining the observed data or more extreme
data, given that the null hypothesis is true (Cohen, 1994). It can
be simply written as a conditional probability P(D+|H0), where
‘D+’ denotes the observed data or more extreme data which can
be obtained in infinite ‘hypothetical’ replications under the null
(Schneider, 2014, 2018). If this probability is lower than some
conventional threshold, or alpha level (for example, α = 0.05),
then we can ‘reject the null hypothesis’ and state that we found a
statistically significant effect. When this procedure is repeated for
a massive number of voxels, it is referred to as ‘mass-univariate
analysis.’ However, if we consider m = 100 000 voxels with no true
effect and repeat significance testing for each voxel at α = 0.05, we
would expect to obtain 5000 false rejections of the null hypothesis
(false positives). To control the number of false positives, we must
reduce the alpha level for each significance test by applying the
multiple comparison correction (Genovese et al., 2002; Nichols
and Hayasaka, 2003; Nichols, 2012).

To date, the classical NHST has been the most widely used
statistical inference method in neuroscience, psychology, and
biomedicine (Szucs and Ioannidis, 2017, 2020; Ioannidis, 2019). It
is often criticized for the use of the point-null hypothesis (Meehl,
1967), also known as the ‘nil null’ (Cohen, 1994) or ‘sharp null’
hypothesis (Edwards et al., 1963). It was argued that the point-
null hypothesis could be appropriate only in hard sciences such
as physics, but it is always false in soft sciences; this problem is
sometimes known as the Meehl’s paradox (Meehl, 1967, 1978;
Serlin and Lapsley, 1985, 1993; Cohen, 1994; Kirk, 1996). In the
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case of fMRI research, we face complex brain activity which is
influenced by numerous psychophysiological factors. This means
that with a large amount of data, we find a statistically significant
effect in all voxels for any linear contrast (Friston et al., 2002a).
For example, Gonzalez-Castillo et al. (2012) showed a statistically
significant difference between simple visual stimulation and
rest in over 95% of the brain when averaging single-subject
data from 100 runs (approximately 8 h of scanning), which
consisted of five blocks of stimulation (20 s of visual stimulation,
40 s of rest). Approximately half of the brain areas showed
statistically significant positive effects or ‘activations,’ whereas
the other half showed statistically significant negative effects or
‘deactivations.’

Whole-brain ‘’activations/deactivations’ can also be found
when analyzing large datasets such as the HCP (N > 1000) or UK
Biobank (N > 10 000) datasets. For example, Smith and Nichols
(2018) showed significant positive and negative effects for the
emotion processing task (‘Emotional faces vs. Shapes’ contrast)
in 81% of voxels using data from UK Biobank (N = 12 600)
and conservative Bonferroni multiple comparison correction.
When we increase the sample size, the effect estimate does not
change much. Still, the standard error in the denominator of
the t-value becomes increasingly smaller, resulting in negligible
effects becoming statistically significant. Thus, the classical NHST
ignores the magnitude of the effect. Attempts to overcome this
problem led to the proposal of making a distinction between
‘statistical significance’ and ‘material significance’ (Hodges and
Lehmann, 1954) or ‘practical significance’ (Cohen, 1965; Kirk,
1996). That is, we can test whether the effect size is larger or
smaller than some practically meaningful value using interval-
null hypothesis testing (Friston et al., 2002a,b; Friston, 2013).
In this case, we use the terms ‘activations’ and ‘deactivations’
for those voxels that show a practically significant positive or
negative effect.

Frequentist Approach to Interval-Null
Hypothesis Testing
Interval-null hypothesis testing is widely used in medicine
and biology (Meyners, 2012). Consider, for example, a
pharmacological study designed to compare a new treatment
with an old treatment that has already shown its effectiveness.
Let βnew be the mean effect on brain activity of the new treatment
and βold the mean effect of the old treatment. Then, θ = (βnew –
βold) is the relative effect of the new treatment. The practical
significance is defined by the effect size (ES) threshold γ. If a
larger effect on brain activity is preferable, then we can test
whether there is a practically meaningful difference in a positive
direction (H1: θ > γ vs. H0: θ ≤ γ). This procedure is known
as the superiority test (see Figure 2A). We can also test whether
the effect of the new treatment is no worse (practically smaller)
than the effect of the old treatment (H1: θ > –γ vs. H0: θ ≤ –γ).
This procedure is sometimes known as the non-inferiority test
(see Figure 2B). If a smaller effect on brain activity is preferable,
we can use the superiority or non-inferiority test in the opposite
direction (see Figures 2C,D). The combination of these two
superiority tests allows us to find a practically meaningful

difference in both directions (H1: θ > γ and θ < –γ vs. H0: –
γ ≤ θ ≤ γ), that is, the minimum-effect test (see Figure 2E).
The combination of the two non-inferiority tests allows us to
reject the hypothesis of practically meaningful differences in any
direction (H1: –γ ≤ θ ≤ γ vs. H0: θ > γ and θ < –γ). This is the
most widely used approach to equivalence testing, known as the
two one-sided tests (TOST) procedure (see Figure 2F). For more
details on the superiority and minimum-effect tests, see Serlin
and Lapsley (1985, 1993), Murphy and Myors (1999, 2004). For
more details on the non-inferiority test and TOST procedure see
Schuirmann (1987), Rogers et al. (1993), Wellek (2010), Meyners
(2012), Lakens (2017).

The interval [–γ; γ] defines trivially small effect sizes that
we consider to be equivalent to the ‘null effect’ for practical
purposes. This interval is also known as the ‘equivalence interval’
(Schuirmann, 1987) or ‘region of practical equivalence (ROPE)’
(Kruschke, 2011). The TOST procedure, in contrast to classical
NHST, allows us to assess the ‘null effects.’ If we reject the
null hypothesis of a practically meaningful difference, we can
conclude that the effect is trivially small. The TOST procedure
can also be intuitively related to frequentist interval estimates,
known as confidence intervals (‘confidence interval approach,’
Westlake, 1972; Schuirmann, 1987). Confidence intervals reflect
the uncertainty in the point estimation of the parameters defined
by its standard error. The confidence level of (1 – α) means
that among infinite ‘hypothetical’ replications, (1 – α)% of the
confidence intervals will contain the true effect under the null.
Therefore, the TOST procedure is operationally identical to
considering whether the (1 – 2α)% confidence interval falls
entirely into the ROPE, as it uses two one-sided tests with an
alpha level of α.

Interval-null hypothesis testing can be used in fMRI studies
not only to compare the effects of different treatments. For
example, we can apply superiority tests in the positive and
negative directions to detect ‘activated’ and ‘deactivated’ voxels
and additionally apply the TOST procedure to detect ‘not
activated’ voxels. However, even though we can solve the Meehl’s
paradox and assess the ‘null effects’ by switching from point-
null to interval-null hypothesis testing within the frequentist
approach, this approach still has fundamental philosophical and
practical difficulties which can be effectively addressed using
Bayesian statistics.

Difficulties of the Frequentist Approach
The pitfalls of the frequentist approach have been actively
discussed by statisticians and researchers for decades. Here, we
briefly mention a few of the main problems associated with the
frequency approach.

(1) NHST is a hybrid of Fisher’s approach that focuses
on the p-value (thought to be a measure of evidence against
the null hypothesis), and Neyman-Pearson’s approach that
focuses on controlling false positives with the alpha level while
maximizing true positives in long-run replications. These two
approaches are argued to be incompatible and have given rise
to several misinterpretations among researchers, for example,
confusing the meaning of p-values and alpha levels (Edwards
et al., 1963; Gigerenzer, 1993; Goodman, 1993; Royall, 1997;
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FIGURE 2 | The alternative (H1) and null (H0) hypotheses for different types of interval-null hypotheses tests. (A,B) One-sided tests in the positive direction (‘the
larger is better’). (C,D) One-sided tests in the negative direction (‘the smaller is better’). (E) Combination of both superiority tests. (F) Combination of both
non-inferiority tests.

Finch et al., 2001; Berger, 2003; Hubbard and Bayarri, 2003;
Turkheimer et al., 2004; Schneider, 2014; Perezgonzalez, 2015;
Szucs and Ioannidis, 2017; Greenland, 2019).

(2) The logical structure of NHST is the same as that
of ‘proof by contradiction’ or ‘indirect proof,’ which becomes
formally invalid when applied to probabilistic statements (Pollard
and Richardson, 1987; Cohen, 1994; Falk and Greenbaum,
1995; Nickerson, 2000; Sober, 2008; Schneider, 2014, 2018;
Wagenmakers et al., 2017; but see Hagen, 1997). Valid ‘proof by
contradiction’ can be expressed in syllogistic form as: (1) ‘If A,
then B’ (Premise No 1), (2) ‘Not B’ (Premise No 2), (3) ‘Therefore
not A’ (Conclusion). Probabilistic ‘proof by contradiction’ in
relation to NHST can be formulated as: (1) ‘If H0 is true, then
D+ are highly unlikely, (2) ‘D+ was obtained,’ (3) ‘Therefore
H0 is highly unlikely.’ This problem is also referred to as
the ‘illusion of probabilistic proof by contradiction’ (Falk and
Greenbaum, 1995). To illustrate the fallacy of such logic, consider
the following example from Pollard and Richardson (1987): (1)
‘If a person is an American (H0), then he is most probably not a
member of Congress,’ (2) ‘The person is a member of Congress,’
(3) ‘Therefore the person is most probably not an American.’
Based on this, one ‘rejects the null’ and makes an obviously
wrong inference, as only American citizens can be a member
of Congress. At the same time, using Bayesian statistics, we
can show that the null hypothesis (‘the person is an American’)

is true (see the Bayesian solution of the ‘Congress example’
in the Supplementary Materials). The ‘illusion of probabilistic
proof by contradiction’ leads to widespread confusion between
the probability of obtaining the data, or more extreme data,
under the null P(D+|H0) and the probability of the null under
the data P(H0|D) (Pollard and Richardson, 1987; Gigerenzer,
1993; Cohen, 1994; Falk and Greenbaum, 1995; Nickerson,
2000; Finch et al., 2001; Hoekstra et al., 2006; Goodman, 2008;
Greenland et al., 2016; Wasserstein and Lazar, 2016; Amrhein
et al., 2017). The latter is a posterior probability calculated
based on Bayes’ rule. The fact that researchers usually treat
the p-value as a continuous measure of evidence (the Fisherian
interpretation) only exacerbates this problem. ‘The lower the
p-value, the stronger the evidence against the null’ statement
can be erroneously transformed to statements such as ‘the lower
the p-value, the stronger the evidence for the alternative’ or ‘the
higher the p-value, the stronger the evidence for the null.’ NHST
can only provide evidence against, but never for, a hypothesis.
In contrast, posterior probability provides direct evidence for a
hypothesis; hence, it has a simple intuitive interpretation.

(3) The p-value is not a plausible measure of evidence
(Berger and Berry, 1988; Berger and Sellke, 1987; Cornfield,
1966; Goodman, 1993; Hubbard and Lindsay, 2008;
Johansson, 2011; Royall, 1986; Wagenmakers, 2007;
Wagenmakers et al., 2008, 2017; Wasserstein and Lazar, 2016;
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bet see Greenland, 2019). The frequentist approach considers
infinite ‘hypothetical’ replications of the experiment (sampling
distribution); that is, the p-value depends on unobserved (‘more
extreme’) data. One of the most prominent theorists of Bayesian
statistics, Harold Jeffreys, put it as follows: ‘What the use of P
implies, therefore, is that a hypothesis that may be true may be
rejected because it has not predicted observable results that have
not occurred’ (Jeffreys, 1939/1948, p. 357). In turn, the sampling
distribution depends on the researcher’s intentions. These
intentions may include different kinds of multiplicities, such as
multiple comparisons, double-sided comparisons, secondary
analyses, subgroup analyses, exploratory analyses, preliminary
analyses, and interim analyses of sequentially obtained data with
optional stopping (Gopalan and Berry, 1998). Two researchers
with different intentions may obtain different p-values based on
the same dataset. The problem is that these intentions are usually
unknown. When null findings are considered disappointing,
it is tempting to increase the sample size until one obtains a
statistically significant result. However, a statistically significant
result may arise when the null is, in fact, true, which can be shown
by Bayesian statistics. That is, the p-value usually exaggerates
evidence against the null hypothesis. The discrepancy that may
arise between frequentist and Bayesian inference is also known
as the Jeffreys–Lindley paradox (Jeffreys, 1939/1948; Lindley,
1957). In addition, it is argued that a consistent measure of
evidence should not depend on the sample size (Cornfield,
1966). However, identical p-values provide different evidence
against the null hypothesis for small and large sample sizes
(Wagenmakers, 2007). In contrast, evidence provided by
posterior probabilities and Bayes factors depends only on the
exact observed data and the prior, and does not depend on the
testing or stopping intentions or the sample size (Wagenmakers,
2007; Kruschke and Liddell, 2017b).

(4) Although frequentist interval estimates (Cohen, 1990,
1994; Cumming, 2013) and interval-based hypothesis testing
(Murphy and Myors, 2004; Wellek, 2010; Meyners, 2012; Lakens,
2017) greatly facilitate the mitigation of the abovementioned
pitfalls in data interpretation, they are still subject to some
of the same types of problems as the p-values and classic
NHST (Cortina and Dunlap, 1997; Nickerson, 2000; Belia et al.,
2005; Wagenmakers et al., 2008; Hoekstra et al., 2014; Morey
et al., 2015; Greenland et al., 2016; Kruschke and Liddell,
2017a). Confidence intervals also depend on unobserved data
and the intentions of the researcher. Moreover, the meaning of
confidence intervals seems counterintuitive to many researchers.
For example, one of the most common misinterpretations of the
(1 – α)% confidence interval is that the probability of finding an
effect within the confidence interval is (1 – α)%. In fact, it is a
Bayesian interval estimate known as a credible interval.

Nevertheless, we would like to emphasize that we do
not advocate abandoning the frequency approach. Correctly
interpreted frequentist interval-based hypothesis testing with
a priori power analysis defining the sample size and proper
multiplicity adjustments often lead to conclusions similar to
those of Bayesian inference (Lakens et al., 2018). However,
it may be logically and practically difficult to carry out an
appropriate power analysis and make multiplicity adjustments

(Berry and Hochberg, 1999; Cramer et al., 2015; Streiner, 2015;
Schönbrodt et al., 2017; Sjölander and Vansteelandt, 2019). These
procedures may be even more complicated in fMRI research
than in psychological or social studies (see discussion on power
analysis in Mumford and Nichols, 2008; Joyce and Hayasaka,
2012; Mumford, 2012; Cremers et al., 2017; Poldrack et al., 2017;
multiple comparisons in Nichols and Hayasaka, 2003; Nichols,
2012; Eklund et al., 2016; and other types of multiplicities in
Turkheimer et al., 2004; Chen et al., 2018, 2019, 2020; Alberton
et al., 2020). For example, at the beginning of a long-term study,
one may want to check whether stimulus onset timings are
precisely synchronized with fMRI data collection and perform
preliminary analysis on the first five subjects. The question
of whether the researcher must make an adjustment for this
technical check when reporting the results for the final sample
become important in the frequentist approach. Such preliminary
analyses (or other forms of interim analyses) are generally not
considered a source of concern in Bayesian inference because
posterior probabilities do not depend on the sampling plan (for
discussion, see Berry, 1988; Berger and Berry, 1988; Edwards
et al., 1963; Wagenmakers, 2007; Kruschke and Liddell, 2017b;
Rouder, 2014; Schönbrodt et al., 2017). Or, for example, one
may want to find both ‘activated/deactivated’ and ‘not activated’
brain areas and use two superiority tests in combination with
the TOST procedure. It is not trivial to make appropriate
multiplicity adjustments in this case. In contrast, Bayesian
inference suggests a single decision rule without the need for
additional adjustments. Moreover, to our knowledge, practical
implementations of superiority tests and the TOST procedure
in common software for fMRI data analysis do not yet exist. At
the same time, Bayesian analysis has already been implemented
in SPM122 and is easily accessible to end-users. It consists of
two steps: Bayesian parameter estimation and Bayesian inference.
In general, it is not necessary to use Bayesian analysis at the
subject level of analysis to apply it at the group level. One can
combine computationally less demanding frequentist parameter
estimation for single subjects with Bayesian estimation and
inference at the group level. In the next sections, we consider the
group-level Bayesian analysis implemented in SPM12.

Bayesian Parameter Estimation
Bayesian statistics is based on Bayes’ rule:

P (H |D) =
P (D |H) P (H)

P (D)
(2)

where P(H|D) is the probability of the hypothesis given
the obtained data or posterior probability. P(D|H) is the
probability of obtaining the exact data given the hypothesis
or the likelihood (notice the difference from P(D+|H), which
includes more extreme data). P(H) is the prior probability of
the hypothesis (our knowledge of the hypothesis before we
obtain the data). P(D) is a normalizing constant ensuring that
the sum of posterior probabilities over all possible hypotheses
equals one (marginal likelihood). In the case of mutually
exclusive hypotheses, the denominator of Bayes’s rule is the

2https://www.fil.ion.ucl.ac.uk/spm/software/spm12
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sum of the probabilities of obtaining the data under any of
the possible hypotheses, multiplied by its prior probability.
For example, if we consider two mutually exclusive hypotheses
H0 and H1, then P(D) = P(D|H0) P(H0) + P(D|H1)P(H1)
and P(H0|D) + P(H1|D) = 1. When we consider continuous
hypotheses, the denominator is obtained by integrating over
all hypotheses (parameter spaces). For relatively simple models,
these integrals can be solved analytically. However, for more
complex models, the integrals become analytically intractable. In
this case, there are two main approaches to obtain the posterior
probability: (1) use computationally demanding numerical
integration (Markov chain Monte Carlo methods); (2) use less
accurate but computationally efficient analytical approximations
to the posterior distribution (e.g., Expectation Maximization or
Variational Bayes techniques). Describing these procedures go
beyond the scope of this paper and described elsewhere (for their
implementations in fMRI analysis, see Genovese, 2000; Friston
et al., 2002a, 2007; Friston and Penny, 2003; Penny et al., 2003,
2005, 2007; Penny and Ridgway, 2013; Woolrich et al., 2004).

In verbal form, Bayes’ rule can be expressed as:

Posterior ∝ Likelihood× Prior

This means that we can update our prior beliefs about the
hypothesis based on the obtained data.

One of the main difficulties in using Bayesian statistics,
in addition to the computational complexity, is the choice of
appropriate prior assumptions. The prior can be chosen based
on theoretical arguments or from independent experimental
data (full Bayes approach). At the same time, if the data are
organized hierarchically, which is the case for neuroimaging
data, priors can be specified based on the obtained data itself
using an empirical Bayes approach. The lower level of the
hierarchy corresponds to the experimental effects at any given
voxel, and the higher level of the hierarchy comprises the effect
over all voxels. Thus, the variance of the experimental effect
over all voxels can be used as the prior variance of the effect
at any given voxel. This approach is known as the parametric
empirical Bayes (PEB) with the ‘global shrinkage’ prior (Friston
and Penny, 2003). The prior variance is estimated from the
data under the assumption that the prior probability density
corresponds to a Gaussian distribution with zero mean. In other
words, a global experimental effect is assumed to be absent. An
increase in local activity can be detected in some brain areas; a
decrease can be found in others, but the total change in neural
metabolism in the whole brain is approximately zero. This is
a reasonable physiological assumption because studies of brain
energy metabolism have shown that the global metabolism is
‘remarkably constant despite widely varying mental and motoric
activity’ (Raichle and Gusnard, 2002), and ‘the changes in the
global measurements of blood flow and metabolism’ are ‘too
small to be measured’ by functional imaging techniques such as
PET and fMRI (Gusnard and Raichle, 2001).

Now, we can rewrite Bayes’ rule (eq. 2) for the effect θ = cβ:

P (θ | D) =
P (D | θ) P (θ)

P (D)
(3)

In the process of Bayesian updating with the ‘global shrinkage’
prior, the effect estimate ‘shrinks’ toward zero. The greater the
uncertainty of the effect estimate (variability) in a particular
voxel, the less confidence in this estimate, and the more it shrinks
(see Figure 3).

The assumption of a Gaussian prior, likelihood, and posterior
essentially reduces computational demands for Bayesian analysis.
However, the normality assumption can be violated for empirical
data. For example, violations can be observed in the presence
of outliers, particularly with small sample sizes or unbalanced
designs, which diminishes the validity of the statistical analysis.
This problem is not specific to Bayesian analysis but is inherent
to all group-level analyses that assume a normal distribution
of the effect. Nevertheless, in fMRI studies, the most common
approach is to use the Gaussian general linear models (Poline
and Brett, 2012), which have been shown to be robust against
violations of the normality assumption (Knief and Forstmeier,
2021). Still, we need to be ensured that these assumptions are not
violated substantially. If that is the case, one can use Bayesian
estimation based on non-Gaussian distributions. In this work,
we consider Bayesian estimation with Gaussian ‘global shrinkage’
prior implemented in SPM12.

After Bayesian parameter estimation, we can apply one of the
two main types of Bayesian inference (Penny and Ridgway, 2013):
Bayesian parameter inference (BPI) or Bayesian model inference
(BMI). BPI is also known as Bayesian parameter estimation
(Kruschke and Liddell, 2017b). However, we deliberately separate
these two terms, as they correspond to two different steps of
data analysis in SPM12. BMI is also known as Bayesian model
comparison, Bayesian model selection, or Bayesian hypothesis
testing (Kruschke and Liddell, 2017b). We chose the term BMI
as it is consonant with the term BPI.

Bayesian Parameter Inference
The BPI is based on the posterior probability of finding the
effect within or outside the ROPE. Let effects larger than
the ES threshold γ be ‘activations,’ those smaller than –γ be
‘deactivations,’ and those falling within the ROPE [–γ; γ] be
‘no activations.’ Then, we can classify voxels as ‘activated,’
‘deactivated,’ or ‘not activated’ if:

Pact = P (θ > γ | D) ≥ Pthr (4.1)

Pdeact = P (θ < −γ | D) ≥ Pthr (4.2)

Pnull = P (−γ ≤ θ ≤ γ | D) ≥ Pthr (4.3)

where Pthr is the posterior probability threshold (usually
Pthr = 95%). Note that Pact + Pdeact + Pnull = 1.

If none of the above criteria are satisfied, the data in
a particular voxel are insufficient to distinguish voxels that
are ‘activated/deactivated’ from those that are ‘not activated.’
Hereinafter, we refer to them as ‘low confidence’ voxels
(Magerkurth et al., 2015). This decision rule is also known as
the ‘ROPE-only’ rule (Kruschke and Liddell, 2017a), see also
Greenwald (1975); Wellek (2010), Liao et al. (2019). To the
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FIGURE 3 | Schematic of Bayesian updating with the ‘global shrinkage’ prior.

best of our knowledge, the application of this decision rule to
neuroimaging data was pioneered by Friston et al. (2002a; 2002b;
Friston and Penny, 2003). For convenience and visualization
purposes, we can use the natural logarithm of the posterior
probability odds (LPO), for example:

LPOnull = ln
(

Pnull

Pact + Pdeact

)
= ln

(
Pnull

1− Pnull

)
(5)

This allows us to more effectively discriminate voxels with a
posterior probability close to unity (Penny and Ridgway, 2013).
LPOnull > 3 corresponds to Pnull > 95%. In addition, LPO also
allows us to identify the connection between BPI and BMI.
The maps of the LPO are termed posterior probability maps
(PPMs) in SPM12.

Another possible decision rule considers the overlap between
ROPE and the 95% highest density interval (HDI). HDI is a
type of credible interval (Bayesian analog of the confidence
interval), which contains only the effects with the highest
posterior probability density. If the HDI falls entirely inside the
ROPE, we can classify voxels as ‘not activated.’ In contrast, if the
HDI lies completely outside the ROPE, we can classify voxels as
either ‘activated’ or ‘deactivated.’ If the HDI overlaps with the
ROPE, we cannot make a confident decision (we can consider
them to be ‘low confidence’ voxels). This decision rule is known
as the ‘HDI+ROPE’ rule (Kruschke and Liddell, 2017a). It is
more conservative than the ‘ROPE-only’ rule because it does not
consider the effects from the low-density tails of the posterior
probability distribution. Differences between the ‘HDI+ROPE’
rule and the ‘ROPE-only’ are most evident for strongly skewed
distributions. In such cases, the ROPE may contain more than
95% of the posterior probability distribution, but the 95% HDI
may overlap with the ROPE. In the case of a Gaussian posterior
probability distribution, both decision rules should produce
similar results. The ‘HDI+ROPE rule is advocated by Kruschke
and Liddell (2017a) and the ‘ROPE-only’ rule is preferred by
Friston et al. (2002a; 2002b; Friston and Penny, 2003), Wellek
(2010); Liao et al. (2019). These decision rules are illustrated in
Figure 4.

Bayesian Model Inference
With BPI, we consider the posterior probabilities of the linear
contrast of parameters θ = cβ. Instead, we can consider
models using BMI.

Let Halt and Hnull be two non-overlapping hypotheses
represented by models Malt and Mnull. These models are defined
by two parameter spaces: (1) Malt : θ > γ and θ < –γ, and (2)
Mnull: –γ ≤ θ ≤ γ.

Now, we can rewrite Bayes’ rule (eq. 2) for Malt and Mnull

P (Malt | D) =
P (D | Malt) P (Malt)

P (D)
(6.1)

P (Mnull | D) =
P (D | Mnull) P (Mnull)

P (D)
(6.2)

If we divide equation (6.1) by (6.2), P(D) is canceled out, and we
obtain:

P (Malt | D)

P (Mnull | D)
=

P (D | Malt)

P (D | Mnull)

P (Malt)

P (Mnull)
(7)

In verbal form equation (7) can be expressed as:
Posterior Odds = Bayes Factor × Prior Odds
The Bayes factor (BF) is a multiplier that converts prior model

probability odds to posterior model probability odds. It indicates
the relative evidence for one model against another. For example,
if BFnull =

p(D|Mnull)
p(D|Malt)

= 2, then the observed data are twice as
likely under the null model than under the alternative.

A connection exists between the BPI (eq. 3–5), and BMI (eq.
7) (see Morey and Rouder, 2011; Liao et al., 2019):

BFnull =

(
P(−γ ≤ θ ≤ γ|D)

1− P(−γ ≤ θ ≤ γ|D)

) (
1− P(−γ ≤ θ ≤ γ)

P(−γ ≤ θ ≤ γ)

)
(8)

or, in verbal form:

BF(ROPE)null =
Posterior(θ ∈ ROPE)

Posterior (θ /∈ ROPE)

Prior(θ /∈ ROPE)

Prior(θ ∈ ROPE)

For convenience, BF may also be expressed in the form of a
natural logarithm:

LogBF(ROPE)null = LPOnull + ln
(

Prior(θ /∈ ROPE)

Prior(θ ∈ ROPE)

)
(9)
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FIGURE 4 | Possible variants of the posterior probability distributions of the effect θ = cβ in (A) ‘activated’ voxels, (B) ‘deactivated’ voxels, (C) ‘not activated’ voxels,
(D) ‘low confidence’ voxels. The ‘ROPE only’ rule considers only the colored parts of the distributions. The ‘HDI+ROPE’ rule considers overlap between the ROPE
and 95% HDI.

logBF(ROPE)null ∝ LPOnull (10)

The calculation of BF may be computationally challenging, as it
requires integration over the parameter space. However, if the
ROPE has zero width (point-null hypothesis), then the BF has
an analytical solution known as the Savage–Dickey ratio (SDR)
(Wagenmakers et al., 2010; Friston and Penny, 2011; Rosa et al.,
2012; Penny and Ridgway, 2013). BF(SDR)null is calculated by
dividing the prior probability density by the posterior probability
density at θ = 0. The interpretation of the BF(SDR)null is simple:
if the effect size is less likely to equal zero after obtaining the data
than before, then BF(SDR)null < 1: that is, we have more evidence
for Malt . See schematic illustration of BMI based on interval-null
and point-null hypotheses and its relation to BPI in Figure 5.

Relations Between Frequentist and
Bayesian Approaches
Now we can point out the conceptual links between the
frequentist and Bayesian approaches.

(1) Parameter estimation: When we have no prior
information, that is, all parameter values are a priori
equally probable (‘flat’ prior), the PEB estimation reduces
to the frequentist parameter estimation (maximum likelihood
estimation; Friston et al., 2002a).

(2) Multiplicity adjustments: One of the major concerns
in frequentist inference is the multiplicity problem. In general,

after the Bayesian parameter estimation, it is not necessary to
classify any voxel as ‘activated/deactivated ’ or ‘not activated.’ If
we consider unthresholded maps of posterior probabilities, LPOs,
or LogBFs, the multiple comparisons problem does not arise
(Friston and Penny, 2003). However, if we apply a decision rule
to classify voxels, we should control for wrong decisions across
multiple comparisons (Woolrich et al., 2009, see also possible loss
functions in Muller et al., 2006; Kruschke and Liddell, 2017a).
The advantage of PEB with the ‘global shrinkage’ prior is that
it automatically accounts for multiple comparisons without the
need for ad hoc multiplicity adjustments (Berry, 1988; Friston
and Penny, 2003; Gelman et al., 2012). The frequentist approach
processes every voxel independently, whereas the PEB algorithm
considers joint information from all voxels. Frequentist inference
uncorrected for multiple independent comparisons is prone to
label noise-driven, random extremes as ‘statistically significant.’
Bayesian analysis specifies that extreme values are unlikely
a priori, and thus they shrink toward a common mean (Lindley,
1990; Westfall et al., 1997; Berry and Hochberg, 1999; Friston
et al., 2002a,b; Gelman et al., 2012; Kruschke and Liddell, 2017b).
If we consider thresholded maps of posterior probabilities, for
example, Pact > 95%, then as many as 5% of ‘activated’ voxels
could be falsely labeled so. This is conceptually similar to the
false discovery rate (FDR) correction (Berry and Hochberg, 1999;
Friston et al., 2002b; Friston and Penny, 2003; Storey, 2003;
Muller et al., 2006; Schwartzman et al., 2009). In practice, BPI
with γ = 0 should produce similar results (in terms of the number
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FIGURE 5 | Schematic of BFs used in BMI and their relation to LPO used in BPI. (A) BPI based on the ‘ROPE-only’ decision rule. (B) BF(ROPE) is related to the
areas under the functions of the posterior and prior probability densities inside and outside the ROPE. (C) BF(SDR) is the relation between the posterior and prior
probability at θ = 0. LPOs and BFs provide relative evidence for the null and alternative hypotheses.

of ‘activated/deactivated’ voxels) as classical NHST with FDR
correction. If we increase the ES threshold, fewer voxels will be
classified as ‘activated/deactivated,’ and at some γ value, BPI will
produce results similar to the more conservative Family Wise
Error (FWE) correction3.

(3) Interval-based hypothesis testing: Frequentist interval-
based hypothesis testing is conceptually connected with BPI,
particularly, the ‘HDI+ROPE’ decision rule. The former
considers the intersection between ROPE and the confidence
intervals. The latter considers the intersection between ROPE and
the HDI (credible intervals).

(4) BPI and BMI: BMI based on BF(ROPE) is conceptually
linked to BPI based on the ‘ROPE-only’ decision rule. The
interval-based Bayes factor BF(ROPE) is proportional to the
posterior probability odds. When ROPE is infinitesimally narrow,
BF can be approximated using the SDR. Note that even though
BF(SDR) is based on the point-null hypothesis, it can still provide
evidence for the null hypothesis, in contrast to BPI with γ = 0.
However, BF(SDR) in PEB settings has not yet been tested using
empirical fMRI data. Because the point-null hypothesis is always
false (Meehl, 1967), BPI and BF(ROPE) may be preferred over
BF(SDR).

Definition of the Effect Size Threshold
The main difficulty in applying interval-based methods is the
choice of the ES threshold γ. To date, only a few studies have
been devoted to determining the minimal relevant effect size.
One of them suggested a method to objectively define γ at
the subject level of analysis which was calibrated by clinical
experts and may be implemented for pre-surgical planning
(Magerkurth et al., 2015). At the same time, the problem of
choosing the ES threshold γ for the group-level Bayesian analysis
remains unresolved.

3FDR correction controls the rate of false discoveries (false positives in frequentist
terminology) among all significant voxels. FWE correction controls the rate of any
false positives in the whole brain.

Several ways in which to define the ES threshold are available.
Firstly, we can conduct a pilot study to determine the expected
effect sizes. Secondly, we can use data from the literature to
determine the typical effect sizes for the condition of interest.
Thirdly, we can use the default ES thresholds that are commonly
accepted in the field. One of the first ES thresholds proposed
in the neuroimaging literature was γ = 0.1% (Friston et al.,
2002b). This is the default ES threshold for the subject-level BPI
in SPM12. For the group-level BPI, the default ES threshold
is one prior standard deviation of the effect γ = 1 prior SDθ

(Friston and Penny, 2003). Fourthly, γ can be selected in such
a way as to ensure maximum similarity of the activation patterns
revealed by classical NHST and Bayesian inference. This would
allow us to reanalyze the data using Bayesian inference, reveal
similar activation patterns as was previously the case for classic
inference, and detect the ‘not activated’ and ‘low confidence’
voxels. Lastly, we can consider the posterior probabilities at
multiple ES thresholds or compute the ROPE maps (see below).

The ES threshold can be expressed as unstandardized (raw
β values or percent signal change) and standardized values (for
example, Cohen’s d). Raw β values calculated by SPM12 at the
first level of analysis represent the BOLD signal in arbitrary
units. However, they can be scaled to a more meaningful unit,
the BOLD percent signal change (PSC) (Poldrack et al., 2011;
Chen et al., 2017). Unstandardized and standardized values have
disadvantages and advantages. Different ways exist in which
to scale β values to PSC (Pernet, 2014; Chen et al., 2017),
which is problematic when comparing the results of different
studies. Standardized values represent the effect size in terms
of the standard deviation units, which supposedly facilitate the
comparison of results between different experiments. However,
standardized values are relatively more unstable between
measurements and less interpretable (Baguley, 2009; Chen et al.,
2017). Moreover, Cohen’s d is closely related to the t-value (for
one sample case, d = t/

√
N) and may share some drawbacks

with t-values. Reimold et al. (2005) showed that spatial smoothing
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has a nonlinear effect on voxel variance. Using t-values or Cohen’s
d for inference in neuroimaging may lead to spatially inaccurate
results (spatial shift of local maxima in t-maps or Cohen’s d maps
compared to PSC-maps). In this study, we focused on PSCs.

It is also important to note that effect sizes (both BOLD
PSC and Cohen’s d) depend on the MRI scanner (e.g., field
strength, coil sensitivity), acquisition parameters (e.g., echo time,
spin echo vs. gradient echo sequences) and field inhomogeneity
(UIudag et al., 2009). For example, the effect sizes may be
underestimated in brain areas near air–tissue interfaces because
of field inhomogeneities. This fact further complicates the
selection of the ES threshold. However, this does not mean that
we should ignore the effect size and return to the point-null
hypothesis. One may choose different ES thresholds for different
regions of interest, scanners or acquisition parameters.

METHODS

Datasets
Seven block-design tasks were considered from the HCP dataset,
including working memory, gambling, motor, language, social
cognition, relation processing, and emotion processing tasks
(Barch et al., 2013). Two event-related tasks, including the stop-
signal and task-switching tasks were considered from the UCLA
dataset (Poldrack et al., 2016). The length, conditions, and
number of scans of the tasks are provided in the Supplementary
Materials (Supplementary Table 1). A subset of 100 unrelated
subjects (S1200 release) was selected from the HCP dataset
(54 females, 46 males, mean age = 29.1 ± 3.7 years) for
assessment. A total of 115 subjects from the UCLA dataset
were included in the analysis (55 females, 60 males, mean
age = 31.7 ± 8.9 years) after removing subjects with no data for
the stop-signal task, a high level (>15%) of errors in the Go-trials,
and those of which the raw data were reported to be problematic
(Gorgolewski et al., 2017). See the fMRI acquisition parameters in
the Supplementary Materials, Par. 1.

Preprocessing
The minimal preprocessing pipelines for the HCP and UCLA
datasets were described by Glasser et al. (2013) and Gorgolewski
et al. (2017), respectively. Spatial smoothing was applied to the
preprocessed images with a 4 mm full width at half maximum
(FWHM) Gaussian smoothing kernel. Additionally, to compare
the extent to which the performance of classical NHST and
BPI depended on the smoothing, we applied 8 mm FWHM
smoothing to the emotion processing task. Spatial smoothing was
performed using SPM12. The results are reported for the 4 mm
FWHM smoothing filter, unless otherwise specified.

Parameter Estimation
Frequentist parameter estimation was applied at the subject
level of analysis. A detailed description of the general linear
models for each task design is available in the Supplementary
Materials, Par. 2. Fixation blocks and null events were not
modeled explicitly in any of the tasks. Twenty-four head motion
regressors were included in each subject-level model (six head

motion parameters, six head motion parameters one time point
before, and 12 corresponding squared items) to minimize head
motion artifacts (Friston et al., 1996). Raw β values were
converted to PSC relative to the mean whole-brain ‘baseline’
signal (Supplementary Materials, Par. 3). The linear contrasts
of the β values were calculated to describe the effects of interest
θ = cβ in different tasks. The sum of positive terms in the
contrast vector, c, is equal to one. The list of contrasts calculated
in the current study to explore typical effect sizes is presented
in Supplementary Table 1. At the group level of analysis, the
Bayesian parameter estimation with the ‘global shrinkage’ prior
was applied using SPM12 (v6906). We performed a one-sample
test on the linear contrasts created at the subject level of analysis.

Classical Null Hypothesis Significance
Testing and Bayesian Parameter
Inference
Classical inference was performed using voxel-wise FWE
correction with α = 0.05. This is the default SPM threshold
and is known to be conservative and to guarantee protection
from false positives (Eklund et al., 2016). Although voxel-wise
FWE correction may be too conservative for small sample
sizes, it is recommended when large sample sizes are available
(Woo et al., 2014).

Bayesian parameter inference, accessible via the SPM12 GUI,
allows the user to declare only whether the voxels are ‘activated’
or ‘deactivated.’ The classification of voxels as being either ‘not
activated’ or ‘low confidence’ requires the posterior mean and
variance. At the group level of analysis, SPM12 does not save the
posterior variance image. However, the posterior variance can be
reconstructed from the image of the noise hyperparameter using
a first-order Taylor series approximation (Penny and Ridgway,
2013). Therefore, in the current study, BPI was performed using
the developed SPM12-based toolbox4. For the ‘ROPE-only’ rule,
the posterior probability threshold was Pthr = 95% (LPO > 3). For
the ‘HDI+ROPE’ rule, we used the 95% HDI.

We compared the number of ‘activated’ voxels (as a percentage
of the total number of voxels) detected by Bayesian and
classical inference. We also compared the number of ‘activated,’
‘deactivated,’ and ‘not activated’ voxels detected using BPI with
the ‘ROPE-only’ and ‘HDI+ROPE’ decision rules and different
ES thresholds. To estimate the influence of the sample size on the
results, all the above-mentioned analyses were performed with
samples of different sizes: 5 to 100 subjects from the HCP dataset
(the emotion processing task, ‘Emotion > Shape’ contrast) and
5 to 115 subjects from the UCLA dataset (the stop signal task,
‘Correct Stop > Go’ contrast), in steps of 5 subjects. Ten random
groups were sampled for each step.

Effect Size Thresholds
We considered three ES thresholds: firstly, the default ES
threshold for the subject-level γ = 0.1% (BOLD PSC); secondly,
the default ES threshold for the group-level γ = 1 prior SDθ;
thirdly, the γ(Dicemax) threshold, which ensures maximum

4https://github.com/Masharipov/Bayesian_inference
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similarity of the activation patterns revealed by classical NHST
and BPI. The similarity was assessed using the Dice coefficient:

Dice (γ) =
2 ∗ Voverlap (γ)

Vclassic + Vbayesian (γ)
(11)

where Vclassic is the number of ‘activated’ voxels detected using
classical NHST, Vbayesian (γ) is the number of ‘activated’ voxels
detected using BMI with the ES threshold γ, and Voverlap is the
number of ‘activated’ voxels detected by both methods. A Dice
coefficient of 0 indicates no overlap between the patterns, and 1
indicates complete overlap. Dice coefficients were calculated for
γ ranging from 0 to 0.4% in steps of 0.001%.

Estimation of Typical Effect Sizes
In the current study, we aimed to provide a reference set of typical
effect sizes for different task designs (block and event-related) and
different contrasts (‘task-condition > control-condition,’ ‘task-
condition > baseline,’) in a set of a priori defined regions of
interest (ROI). Effect sizes were expressed in PSC and Cohen’s d.
ROI masks were defined using anatomical and a priori functional
masks. For more details, see Supplementary Materials, Par. 4.

Evaluating Bayesian Parameter Inference
on Contrasts With No Expected
Practically Significant Difference
Bayesian parameter inference should be able to detect the ‘null
effect’ in the majority of voxels when comparing samples with
no expected practically significant difference. For example, there
may be two groups of healthy adult subjects performing the
same task or two sessions with the same task instructions.
To test this, we used fMRI data from the emotion processing
task. To emulate two ‘similar’ independent samples, 100 healthy
adult subjects’ contrasts (‘Emotion > Shape’) were randomly
divided into two groups of 50 subjects. A two-sample test
comparing the ‘Group #1’ and ‘Group #2’ was performed with
the assumption of unequal variances between the groups (SPM12
default option). To emulate ‘similar’ dependent samples, we
randomized ‘Emotion > Shape’ contrasts from right-to-left (RL)
and left-to-right (LR) phase encoding sessions in the ‘Session #1’
and ‘Session #2’ samples. Each sample consisted of 50 contrasts
from the RL session and 50 from the LR session. A paired test
designed to compare ‘Session #1’ and ‘Session #2’ was equivalent
to the one-sample test on 50 ‘RL > LR session’ and 50 ‘LR > RL
session’ contrasts.

Normality Check
To check for violations of the normality assumption we
performed Shapiro-Wilk test (Shapiro and Wilk, 1965) for each
voxel for one block-design task (‘Emotion >Shape’ contrast)
and one event-related task (‘Correct Stop > Go’ contrast). We
reported the number of voxels that were significantly non-
Gaussian (using α = 0.001 uncorrected for multiple comparisons
and α = 0.05 with Bonferroni correction). We also calculated
median kurtosis and skewness across voxels. Kurtosis is a
measure of the heaviness of the tails. Skewness is a measure of
asymmetry of distribution.

Simulations
The main limitation of using empirical data to assess the
performance of statistical methods lies in the lack of knowledge
of the ground truth. Therefore, we performed group-level
simulations to better understand how the sample size and effect
size threshold affect BPI results given different known effect
sizes and noises. Simulations also allowed us to assess the
robustness of BPI to the violations of the normality assumption.
We generated the parameter maps (contrast images) similar
to Nichols and Hayasaka (2003); Schwartzman et al. (2009)
and Cremers et al. (2017). Each contrast image consisted of
‘activated’ and ‘deactivated’ voxels and ‘trivial’ background voxels
surrounding them. Locations of ‘activated’ and ‘deactivated’
voxels were specified based on the NeuroSynth meta-analysis
results (Yarkoni et al., 2011) obtained using the search terms
‘task’ and ‘default,’ respectfully (association test, α = 0.01 with
FDR correction). Data were drawn from the Pearson system
distribution (Johnson et al., 1994) with kurtosis, Ku = 2.2, 3, 7 and
skewness, Sk =−0.7, 0, 0.7. The normal distribution corresponds
to Ku = 3 and Sk = 0. Other combinations of Ku and Sk resulted in
four-parameter beta distributions. The mean effect in practically
significant (‘activated’ and ‘deactivated’) voxels was θ =± 0.1, 0.2,
0.3%. For practically non-significant or ‘trivial’ voxels, the mean
effect was θ = ± 0.04%, which can be considered equivalent to
the null value for practical purposes (‘not activated’ voxels). Noise
standard deviation was SD = 0.2, 0.3, 0.4%. The mean effect size
and noise were consistent with those observed in the empirical
data (see Supplementary Tables 11–19). Contrast-to-noise ratio
was varied from 0.25 to 1.5. For each combination of the Pearson
system distribution parameters, we generated 1000 images.

To evaluate sample size dependencies, we randomly drawn
images from the full sample (N = 1000) ranging from N = 10
to 100 (with step 10) and from N= 150 to 500 (step 50). This
procedure was repeated ten times for each step. The analysis
was limited to the single axial slice (z = 36 mm) containing 579
‘activated’ voxels, 500 ‘deactivated’ voxels and 3067 ‘trivial’ or ‘not
activated’ voxels. For classical NHST and BPI, we calculated the
number of ‘activated’ voxels in relation to the total number of
voxels. For BPI, we additionally calculated:

(1) Correct decision rate. The number of correctly classified
‘activated,’ ‘deactivated,’ and ‘not activated’ voxels to its true
number (c.f. ‘hit rate’ in detection theory or ‘true positive
rate’ in frequentist framework).

(2) Incorrect decision rate. The number of voxels incorrectly
classified as ‘activated,’ ‘deactivated,’ and ‘not activated’ to
the true number of voxels not belonging to ‘activated,’
‘deactivated,’ and ‘not activated’ categories, respectfully (c.f.
‘false alarm rate’ in detection theory or ‘false positive rate’
in frequentist framework);

(3) Low confidence decision rate. The number of ‘low
confidence’ voxels to the total number of voxels.

The code for the simulations is available online5.

5https://github.com/Masharipov/BPI_2021/tree/main/simulations
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RESULTS

Results for Contrasts With No Expected
Practically Significant Difference
Classical NHST did not show a significant difference between
‘Group #1’ and ‘Group #2’ (see Supplementary Figure 1). BPI
with the ‘ROPE-only’ decision rule and default ES threshold
γ = 1 prior SDθ = 0.190% classified 83.4% of voxels as having
‘no difference’ in which the null hypothesis was accepted (see
Supplementary Figure 1). The ‘HDI+ROPE’ rule classified
76.2% of voxels as having ‘no difference.’

Classical NHST did not reveal a significant difference between
‘Session #1’ and ‘Session #2’ (see Supplementary Figure 2). The
prior SDθ was 0.005%. In this case, using the default ES threshold
γ = 1 prior SDθ did not allow the detection of any ‘no difference’
voxels, because the ROPE was unreasonably narrow. The ‘null
effect’ was detected in all voxels beginning with a γ = 0.013%
threshold using the ‘ROPE-only’ and ‘HDI+ROPE’ decision rules
(see Supplementary Figure 2).

In this way, when comparing two ‘similar’ independent
samples (two groups of healthy subjects performing the same
task), BPI with the default group-level threshold (one prior
SDθ) allowed us to correctly label voxels as having ‘no
difference’ for the majority of the voxels of the brain. However,
when comparing two ‘similar’ dependent samples (two sessions
from the same task), the one prior SDθ threshold became
inadequately small.

Therefore, the default one prior SDθ threshold is not suitable
when the difference between dependent conditions is very small
(paired sample test or one-sample test). In such cases, one can
use an a priori defined ES threshold based on previously reported
effect sizes or provide an ES threshold at which most of the
voxels can be labeled as having ‘no difference,’ allowing the
critical reader to decide whether this speaks in favor of the
absence of differences.

Comparison of Classical Null Hypothesis
Significance Testing and Bayesian
Parameter Inference Results
Generally, classical NHST with voxel-wise FWE correction and
BPI with the ‘ROPE-only’ decision rule and default group-level
ES threshold γ = 1 prior SDθ revealed similar (de)activation
patterns in all considered contrasts (see Figure 6, Table 1,
and Supplementary Tables 2–10). The median ES threshold
based on Dicemax and median default group-level ES threshold
across all considered contrasts were close in magnitude to the
default subject-level ES threshold γ = 0.1%: γ(Dicemax) = 0.118%
and γ = 1 prior SDθ = 0.142%. The median Dicemax across
all the considered contrasts reached 0.904. At the same time,
BPI allowed us to classify ‘non-significant’ voxels as ‘not
activated’ or ‘low confidence.’ As it can be clearly seen from
Figure 6, areas with ‘non-activated’ voxels surround clusters
with ‘activated/deactivated’ voxels. Both are separated by areas
comprising ‘low confidence’ voxels.

As expected, compared with the ‘HDI+ROPE’ rule,
using the ‘ROPE-only’ rule slightly increases the number of

FIGURE 6 | Examples of results obtained with classical NHST and BPI. Four
contrasts were chosen for the illustration purposes (two event-related and two
block-design tasks). Classical NHST was implemented using voxel-wise FWE
correction (α = 0.05). BPI was implemented using the ‘ROPE-only’ decision
rule, Pthr = 95% (LPO > 3) and γ = 1 prior SDθ. Axial slice z = 18 mm
(MNI152 standard space).

‘activated/deactivated’ and ‘not activated’ voxels (see Table 1 and
Supplementary Tables 2–10). The ‘HDI+ROPE’ rule labeled
more voxels as ‘low confidence.’

Comparison of Bayesian Parameter
Inference Results With Different Effect
Size Thresholds
Here, we focus on the ‘ROPE-only’ rule. We first consider the
results for the emotional processing task and then consider other
tasks. Using the default single-subject ES threshold γ = 0.1%
for the emotional processing task (‘Emotion > Shape’ contrast),
58.8% of all voxels can be classified as ‘not activated,’ 30.8%
as ‘low confidence,’ and 10.1% as ‘activated’ (see Figure 7 and
Supplementary Table 2). The default group-level ES threshold
γ = 1 prior SDθ = 0.135% allowed us to classify 75.0% of all
voxels as ‘non-activated,’ 17.5% as ‘low confidence,’ and 7.4% as
‘activated’ (see Figure 7 and Supplementary Table 2). Both types
of thresholds were comparable to those of classical NHST for the
detection of ‘activated’ voxels. The maximum overlap between
‘activations’ patterns revealed by classical NHST and BPI was
observed at γ(Dicemax) = 0.116% (see Figure 8 and Table 1).

For the ‘2-back > 0-back,’ ‘Left Finger > baseline,’ ‘Right
Finger > baseline,’ and ‘Social > Random’ contrasts, the
three ES thresholds that were considered—0.1%, one prior
SDθ, γ(Dicemax)—produced similar results (see Table 1 and
Supplementary Tables 3, 5, 7). For the event-related stop-signal
task (‘Correct Stop > baseline’ and ‘Correct Stop > Go’ contrasts),
one prior SDθ and γ(Dicemax) were close in terms of their values
but smaller than 0.1% (see Table 1). Block designs tend to
evoke higher BOLD PSC than event-related designs; therefore,
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TABLE 1 | Maximum Dice coefficient and corresponding effect size thresholds for each task.

Contrast, θ Prior SDθ, % ‘ROPE-only’ decision rule ‘HDI+ROPE’ decision rule

γ(Dicemax), % Dicemax γ(Dicemax), % Dice

Emotion processing

Emotion > Shape 0.135 0.116 0.904 0.104 0.912

Working memory

2-back > baseline 0.325 0.136 0.925 0.125 0.932

2-back > 0-back 0.089 0.095 0.891 0.089 0.903

Language

Story > Math 0.255 0.119 0.896 0.108 0.904

Motor

Left finger > baseline 0.149 0.148 0.897 0.135 0.907

Right finger > baseline 0.171 0.160 0.886 0.144 0.897

Tongue > baseline 0.268 0.205 0.904 0.181 0.913

Gambling

Reward > baseline 0.254 0.132 0.917 0.122 0.924

Loss > baseline 0.249 0.134 0.918 0.118 0.925

Reward > Loss 0.032 0.044 0.894 0.037 0.886

Social cognition

Social > baseline 0.325 0.139 0.939 0.124 0.944

Social > Random 0.104 0.114 0.896 0.104 0.907

Relational processing

Relational > baseline 0.390 0.154 0.935 0.143 0.940

Relational > Match 0.051 0.073 0.892 0.066 0.894

Stop-signal task

Correct Stop > baseline 0.069 0.066 0.895 0.061 0.906

Correct Stop > Go 0.064 0.052 0.906 0.047 0.917

Task-switching

Switch > baseline 0.133 0.075 0.907 0.067 0.916

Switch > No switch 0.030 0.037 0.924 0.033 0.925

Summary

Median 0.142 0.118 0.904 0.106 0.913

a lower prior SDθ should be expected for event-related designs
and higher prior SDθ for block designs. Within a single design, in
contrasts such as ‘task-condition > baseline,’ higher BOLD PSC
and prior SDθ would be expected than in contrasts in which the
experimental conditions are compared directly. For example, the
contrast ‘2-back > baseline’ has prior SDθ = 0.325% and contrast
‘2-back > 0-back’ has prior SDθ = 0.089%.

As previously noted, some contrasts did not elicit robust
activations: ‘Reward > Loss,’ ‘Relational > Match,’ (Barch
et al., 2013) and ‘Switch > No switch’ (Gorgolewski et al.,
2017). The corresponding γ(Dicemax) thresholds were
0.044, 0.073, and 0.037% (see Table 1 and Supplementary
Tables 6, 8, 10). The prior SDθ were 0.032, 0.051, and
0.030%. Correspondingly, BPI with the γ = 1 prior
SDθ threshold classified 0, 18.4, and 42.2% of voxels
as ‘not activated.’ This demonstrates that when we
compare conditions with similar neural activity and
minor differences, it becomes more difficult to separate
‘activations/deactivations’ from the ‘null effects’ using the γ = 1
prior SDθ threshold.

Typical Effect Sizes in Functional
Magnetic Resonance Imaging Studies
A complete list of effect sizes (BOLD PSC and Cohen’s d)
estimated for different tasks and a priori defined ROIs is
presented in the Supplementary Materials (Supplementary
Tables 11–19). Here, we focus only on the BOLD PSC. The violin
plots for some of these are shown in Figure 9.

For example, the median BOLD PSC in the left amygdala
ROI, one of the key brain areas for emotional processing, was
0.263%, which is approximately twice as large as one prior SDθ

(see Figure 7). Thus, using this PSC as the ES threshold in future
studies may cause the ROPE to become too wide compared to the
effect sizes typical for tasks with such designs. Therefore, such a
threshold can be used to detect large and highly localized effects.
However, it may fail to detect small but widely distributed effects
previously described for HCP data (Cremers et al., 2017).

In general, median PSCs within ROIs were up to 1%
for block designs and 0.5% for event-related designs. The
maximum PSCs reached 2.5% and were usually observed in
the primary visual cortex (V1) for visual tasks comparing
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FIGURE 7 | Number of voxels classified into the four categories depending on
the ES threshold γ. The results for the emotion processing task
(‘Emotion>Shape’ contrast) are presented for illustration. L AMY, left
amygdala.

experimental conditions with baseline activity. For ‘moderate’
physiological effects, PSC varied in the range 0.1−0.2%, for

FIGURE 8 | Dependence of the Dice coefficient on the ES threshold γ.
Results for the emotion processing task (‘Emotion>Shape’ contrast). The red
lines denote γ(Dicemax ). L AMY, left amygdala.

example, for the ‘2-back > 0-back’ contrast, the median
PSC in the right dorsolateral prefrontal cortex (R DLPFC in
Figure 9) was 0.137%. Likewise, for the ‘Social > Random’
contrast, the right inferior parietal lobule (R IPL) median
PSC was 0.137%, for the ‘Correct Stop > Go,’ the right
inferior frontal gyrus/frontal operculum (R IFG/FO) median

FIGURE 9 | Typical BOLD PSC in fMRI studies. The box plots inside the violins represent the first and third quartile, and the black circles represent median values.
Contrasts from the same task are indicated in one color. L/R, left/right; AMY, amygdala; V1, primary visual cortex; DLPFC, dorsolateral prefrontal cortex; BA,
Brodmann area; STG, superior temporal gyrus; A1, primary auditory cortex; NAc, nucleus accumbens; IPL, inferior parietal lobule; IFG/FO, inferior frontal
gyrus/frontal operculum.
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PSC was 0.120%. For more ‘strong’ physiological effects,
the PSC was in the range 0.2−0.3%, for example, for the
‘Emotion > Shape’ contrast, the median PSC in the left
amygdala was 0.263%, and for the ‘Story > Math’ contrast,
the median PSC in the left Brodmann area 45 (Broca’s
area) was 0.269%. For the motor activity, for example the
‘Right Finger > baseline’ contrast, the median PSC in the
left precentral gyrus was 0.239%, in the left postcentral
gyrus was 0.362%, in the left putamen was 0.290%, and
in the right cerebellum was 0.401%. For the contrasts that
did not elicit robust activations (Barch et al., 2013), the
PSC was approximately 0.05–0.1%; for example, for the
‘Reward > Loss’ contrast, the median PSC in the left nucleus
accumbens was 0.043%, and for the ‘Relational > Match’
contrast, the median PSC in the left dorsolateral prefrontal
cortex was 0.062%.

Region of Practical Equivalence Maps
We considered BPI with two consecutive thresholding steps:
(1) calculate the LPOs (or PPMs) with a selected ES threshold
γ, (2) apply the posterior probability threshold pth = 95%
or consider the overlap between the 95% HDI and ROPE.
We can reverse the thresholding sequence and calculate
the ROPE maps.

For the ‘activated/deactivated’ voxels, the ROPE map contains
the maximum ES thresholds that allow voxels to be classified as
‘activated/deactivated’ based on the ‘ROPE-only’ or ‘HDI+ROPE’
decision rules. For the ‘not activated’ voxels, the map contains the
minimum effect size thresholds that allow voxels to be classified
as ‘not activated.’

The procedure for calculating the ROPE map can be
performed as follows. Let us consider a gradual increase
in the ROPE radius (i.e., the half-width of ROPE or the
ES threshold γ) from zero to the maximum effect size in
observed volume. (1) For voxels in which PSC is close to
zero, at a certain ROPE radius, the posterior probability of
finding the effect within the ROPE becomes higher than
95%. This width is indicated on the ROPE map for ‘not
activated’ voxels. (2) For voxels in which the PSC deviates
from zero, at a certain ROPE radius, the posterior probability
of finding the effect outside the ROPE becomes lower
than 95%. This width is indicated on the ROPE map for
‘activated/deactivated’ voxels. The same maps can be calculated
for the ‘HDI+ROPE’ decision rule.

Examples of the ROPE maps are shown in Figure 10. From
our point of view, ROPE maps, as well as unstandardized effect
size (PSC) maps, may facilitate an intuitive understanding
of the spatial distribution of a physiological effect under
investigation (Chen et al., 2017). They can also be a
valuable addition to standard PPMs, allowing researchers
to flexibly choose the ES threshold based on expected
effect size for specific experimental conditions, ROIs and
MR acquisition parameters. The default ES thresholds
may be more conservative to brain areas near air–tissue
interfaces due to signal dropout. The researcher may
choose a lower ES threshold to increase sensitivity to
these brain areas.

Effects of Spatial Smoothing on Classical
Null Hypothesis Significance Testing and
Bayesian Parameter Inference
Two main effects of spatial smoothing were identified. Firstly,
higher spatial smoothing increased the number of both
‘activated/deactivated’ and ‘not activated’ voxels classified by BPI,
reducing the number of ‘low confidence’ voxels. Secondly, higher
smoothing blurred the spatial localisation of local maxima of
t-maps and PPMs (LPO-maps) to a different extent. Consider,
for example, the emotion processing task (‘Emotion > Shape’
contrast). The broadening of two peaks in the left and right
amygdala was more noticeable on the t-map than on the PPM
(see Figure 11).

Smoothing was previously shown to have a nonlinear effect
on the voxel variances and thus to affect more t-maps than
β value maps, sometimes leading to counterintuitive artifacts
(Reimold et al., 2005). This is especially noticeable at the border
between two different tissues or between the two narrow peaks
of the local maxima. If the peak is localized close to white
matter voxels with low variability, then smoothing can shift the
peak to the white matter. If low-variance white matter voxels
separate two close peaks, then after smoothing, they may serve
as a ‘bridge’ between the two peaks. To avoid this problem,
Reimold et al. (2005) recommended using masked β value maps.
In the present study, we suggest that PPMs based on BOLD PSC
thresholding can mitigate this problem. Importantly, smoothing
artifacts can also arise on Cohen’s d maps. Therefore, PPMs
based on PSC thresholding may be preferable to PPMs based on
Cohen’s d thresholding.

Sample Size Dependencies for Classical
Null Hypothesis Significance Testing and
Bayesian Parameter Inference
An enlargement of the sample size led to an increase in the
number of ‘activated’ and ‘not activated’ voxels, and a decrease in
the number of ‘low confidence’ voxels. This is due to a decrease
in the posterior variance. The curve of the ‘activated’ voxels
rose much slower than that of the ‘not activated’ voxels. For
the emotion processing task (‘Emotion > Shape’ contrast, block-
design, two sessions, 352 scans), the largest gain in the number
of ‘activated’ and ‘not activated’ voxels can be noted from 20 to
30 subjects (see Figure 12A). With a sample size of N > 30,
the number of ‘activated’ and ‘not activated’ voxels increased less
steeply. The ‘not activated’ and ‘low confidence’ voxels curves
intersected at N = 30 subjects. After the intersection point, the
graphs reached a plateau.

Considering only half of the emotional processing task data
(one session, 176 scans), the intersection point shifted from
N = 30 to N = 60 (see Figure 12B). For the event-related task
(‘Correct Stop > Go’ contrast, the stop-signal task, 184 scans), all
considered dependencies had the same features as for the block-
design task, and the point of intersection was at N = 60 subjects
(see Figure 12C). For the fixed ES threshold, the moment at
which the graphs reach a plateau depends on task design, data
quality and the amount of data at the subject level, that is, on
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FIGURE 10 | The ROPE maps. Four contrasts were chosen for the illustration purposes (two event-related and two block-design tasks). The ROPE maps are
presented using different colors for the ‘activated,’ ‘deactivated,’ and ‘not activated’ voxels. The green bars represent the minimum ROPE radii at which voxels with
a PSC close to zero can be classified as ‘not activated’ based on the ‘ROPE-only’ decision rule. The red and blue bars represent the maximum ROPE radii at which
voxels of which the PSC deviates from zero can be classified as ‘activated’ and ‘deactivated,’ respectively.

the number of scans, blocks, and events. The task designs from
the HCP and UCLA datasets have relatively short durations (for
example, the stop-signal task has approximately 15 ‘Correct Stop’
trials per subject). Studies with a shorter scanning time generally
require a larger sample size to enable inferences to be made with
confidence. Lowering the ES threshold would also require larger
sample size to reach a plateau.

Classical NHST with the voxel-wise FWE correction showed
a steady linear increase in the number of ‘activated’ voxels with
increasing sample size (see Figure 13). With a further increase
in the sample size, the number of statistically significant voxels
revealed by classical NHST is expected to approach 100% (see,
for example, Gonzalez-Castillo et al., 2012; Smith and Nichols,
2018). In contrast, the BPI with the γ = 1 prior SDθ threshold
demonstrated hyperbolic dependencies. We observed a steeper
increase at small and moderate sample sizes (N = 15−60).
The curve of the ‘activated’ voxels flattened at large sample
sizes (N > 80). BPI offers protection against the detection of

‘trivial’ effects that can appear as a result of an increased sample
size if classical NHST with the point-null hypothesis is used
(Friston et al., 2002a; Friston, 2012; Chen et al., 2017). This is
achieved by the ES threshold γ, which eliminates physiologically
(practically) negligible effects. Figure 13 presents an illustration
of the Jeffreys-Lindley paradox, that is, the discrepancy between
results obtained using classical and Bayesian inference, which is
usually manifested at higher sample sizes (Jeffreys, 1939/1948;
Lindley, 1957; Friston, 2012).

Normality Check
For the block-design task (‘Emotion > Shape’ contrast),
the number of significantly non-Gaussian voxels was
17% with αuncorr = 0.001 and 2% with αBonf = 0.05.
The median kurtosis and skewness across voxels was
Ku = 3.77 and Sk = 0.05. For the event-related task (‘Correct
Stop > Go’ contrast), the number of significantly non-
Gaussian voxels was 19% with αuncorr = 0.001 and 4% with
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FIGURE 11 | Influence of spatial smoothing on classical NHST and BPI: results for the emotion processing task (‘Emotion > Shape’ contrast). Classical NHST was
implemented using voxel-wise FWE correction (α = 0.05). BPI was implemented using the ‘ROPE-only’ decision rule, Pthr = 95% (LPO > 3) and γ = 1 prior
SDθ = 0.135%. Axial slice z = –14 mm (MNI152 standard space). Slice images have different outlines due to spatial smoothing (higher spatial smoothing increases
the size of implicit masks for single subjects and group of subjects). In the panels on the right, 1-D images are presented for t-values and LPOs along the x-axis for
y = –4 mm. The red arrows indicate a noticeable broadening of two peaks of local maxima (left and right amygdala) at higher smoothing.

αBonf = 0.05. The median kurtosis and skewness across
voxels was Ku = 3.77 and Sk = 0.05. In general, the data
are consistent with the normality assumption, though some
voxels violate it.

Simulations
The simulations results reproduced the results obtained from
the empirical data (see Figure 14 for an overview of the
simulations). Further, they allowed us to demonstrate how
various factors affect BPI performance with the known
ground truth.

Dependence of the Number of ‘Activated’ Voxels on
the Sample Size
The number of ‘activated’ voxels revealed by BPI with the
γ = 1 prior SDθ threshold approaches the true number
of practically significant voxels and stops increasing (see
Figure 15). Classical NHST shows further increase of ‘activated’
voxels with the sample size increase, as it considers only
statistical significance. This is more evident for low and
medium noise cases (SD = 0.2, 0.3%). For the high noise
case (SD = 0.4%), the sample size should be larger than
N = 500 for the discrepancy between NHST and BPI results to
become evident.

Dependence of the Correct and Low Confidence
Decision Rates on the Sample Size
For the weak effect size (θ = 0.1%), the BPI with the γ = 1
prior SDθ threshold is more sensitive for ‘activated’ than for ‘not
activated’ voxels (see Figure 16). This is because γ = 1 prior SDθ

threshold is smaller for the weak effect size. For the moderate and
strong effects (θ = 0.2, 0.3%), this difference in sensitivity become
less evident. The low confidence decisions are prevalent in the
‘weak effect plus high noise’ case. It becomes more challenging
to distinguish between ‘activated’ and ‘not activated’ voxels when
the data are noisy, and the PSC in the ‘activated’ voxels is close
to the PSC in ‘trivial’ voxels. For the intermediate case (moderate
effect plus medium noise), the correct decision rates for ‘activated’
and ‘not activated’ voxels reached 80% at the sample sizes N = 80
and N = 150, correspondingly. For larger effect sizes and lower
noise, a smaller sample size will be required to achieve the correct
decision rate of 80% (and vice versa). The ‘ROPE-only’ decision
rule is more sensitive to both ‘activated’ and ‘not activated’ voxels
than the ‘HDI+ROPE’ decision rule.

Robustness of Bayesian Parameter Inference to
Violations of the Normality Assumption
Non-normal distributions with positive and negative skewness
increase incorrect decision rates for ‘deactivated’ and ‘activated’
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FIGURE 12 | Dependencies of the number of ‘activated,’ ‘not activated,’ and ‘low confidence’ voxels on the sample size. BPI was implemented using γ = 1 prior
SDθ. (A) The emotional processing task (‘Emotion > Shape’ contrast, two sessions). (B) The emotional processing task (‘Emotion > Shape’ contrast, one session).
(C) The stop-signal task (‘Correct Stop > Go’ contrast). The error bars represent the mean and standard deviation across ten random groups.

voxels, correspondingly (Figure 17). Application the ‘ROPE-
only’ decision rule results in higher incorrect decision rates than
the ‘HDI+ROPE’ decision rule. However, even in the worst
case (weak effect plus high noise), the incorrect decision rates
for BPI with the γ = 1 prior SDθ threshold did not exceed
5%. This result shows that BPI is robust to violations of the
normality assumption. The ‘ROPE-only’ rule may be preferable
to the ‘HDI+ROPE’ rule, as both rules protect against incorrect
decisions, but the ‘ROPE-only’ rule is more sensitive to the true
effects using γ = 1 prior SDθ threshold.

Dependence of the Correct and Incorrect Decision
Rates on the Effect Size Threshold
The optimal ES threshold should provide high sensitivity to
both ‘activated’ and ‘not activated’ voxels (e.g., higher than 80%)

while protecting against incorrect decisions (e.g., lower than 5%).
The range of ES thresholds that meets these criteria decreases
for lower true effects and higher noise (see Figure 18). At the
sample size N = 200, the default γ = 1 prior SDθ threshold
falled in the range of optimal ES thresholds in the majority
of the cases. For the weak effect plus high noise case, one
should choose between high sensitivity to ‘activated’ or ‘not
activated’ voxels. In this scenario, to achieve high sensitivity
to both types of voxels, it is necessary to obtain a very large
sample size (N > 500). In all considered cases, the default ES
threshold provided approximately equal correct decision rates
for ‘activated’ and ‘not activated’ voxels and protected against
incorrect decisions. This result confirmed that the default IS
threshold is optimal in most scenarios, except for the scenario
with low effect and high noise level.
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FIGURE 13 | Dependencies of the number of ‘activated’ voxels on the sample size. Classical NHST was implemented using FWE correction (α = 0.05). BPI was
implemented using γ = 1 prior SDθ. (A) The emotional processing task (block design, ‘Emotion > Shape’ contrast). (B) The stop-signal task (event-related design,
‘Correct Stop > Go’ contrast). The error bars represent the mean and standard deviation across ten random groups.

Example of Practical Application of
Bayesian Parameter Inference
In contrast to classical NHST, Bayesian inference allows us to:

(1) Provide evidence that there is no practically meaningful
BOLD signal change in the brain area when comparing the
two task conditions.

(2) Establish double dissociations; that is to state that one area
responds to A but not B condition and another responds to
B but not A condition (Friston et al., 2002a).

(3) Provide evidence for practically equivalent engagement of
one area under different experimental conditions in terms
of local brain activity.

(4) Provide evidence for the absence of a practically
meaningful difference in BOLD signals between groups of
subjects or repeated measures.

To illustrate a possible application of Bayesian inference
in research practice, we used a working memory task. Let us
consider an overlap between the ‘2-back > baseline’ and ‘0-
back > baseline’ contrasts (see Figure 19, purple areas). We
cannot claim that brain areas revealed by this conjunction
analysis were equally engaged in the ‘2-back’ and ‘0-back’
conditions. To provide evidence for this notion, we can use BPI
and attempt to identify voxels with a practically equivalent BOLD
signal in the ‘2-back’ and ‘0-back’ conditions (see Figure 19,
green areas). Overlap between the ‘2-back > baseline’ and ‘0-
back > baseline’ and the ‘2-back = 0-back’ effects was found in
several brain areas: visual cortex (V1, V2, V3), frontal eye field
(FEF), superior eye field (SEF), parietal eye field (PEF, or posterior
parietal cortex), lateral geniculate nucleus (LGN) and left primary
motor cortex (M1) (see Figure 19, white areas). This result can

be easily explained by the fact that both experimental conditions
require the subject to analyze perceptually similar visual stimuli
and push response buttons with the right hand, which should not
depend much on the working memory load. At the same time, it
does not follow directly from simple conjunction analysis.

DISCUSSION

Over-reliance on classical NHST promotes publication bias
toward statistically significant findings. However, the null result
can be just as valuable and exciting as the statistically significant
result. Furthermore, not every statistically significant result
has a practical significance. In recent years, statistical practice
has seen a gradual shift from point-null hypothesis testing to
interval-null hypothesis testing and interval estimation, as well
as from frequentist to Bayesian approaches. Frequentist and
Bayesian interval-based approaches allow us to assess the ‘null
effects’ and thus overcome prejudice against the null hypothesis.
While both approaches may lead to similar results (if specially
calibrated to get it), we discussed conceptual and practical
reasons for preferring the Bayesian approach. One of the main
conceptual difficulties of the frequentist approach is that it
is based on the probabilistic ‘proof by contradiction,’ which
results in the ‘inverse probability’ fallacy: that is a widespread
misinterpretation of p-values and confidence intervals as
posterior probabilities and credible intervals. Although the
Bayesian approach does not automatically guarantee correct
interpretations, it can be more intuitive and straightforward than
the frequentist approach (particularly, Bayesian inference
based on the posterior probability distributions of the
parameters or BPI).
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FIGURE 14 | Simulations overview. (A) Ground truth axial slice z = 36 mm (MNI152 standard space). ‘Activated’ and ‘deactivated’ voxels are marked in red and blue
colors, respectfully. ‘Trivial’ voxels that should be classified as ‘not activated’ (practically equivalent to the null value) are marked in green. Data were drawn from the
normal (Ku = 3, Sk = 0, the red line) and non-normal distributions. (B) Classical NHST results for N = 200 images, moderate effect and medium noise (θ = 0.2%,
SD = 0.3%), obtained using voxel-wise FWE correction (α = 0.05). (C) BPI results for N = 200 images, moderate effect and medium noise (θ = 0.2%, SD = 0.3%),
obtained using the ‘ROPE-only’ decision rule, Pthr = 95% (LPO > 3) and γ = 1 prior SDθ.

At the same time, from the frequentist point of view, the main
conceptual disadvantage of the Bayesian approach is the need to
specify our prior beliefs about the model parameters. Sometimes
it is argued that we do not want our result to depend on a
subjective prior decision. However, in the frequentist framework,
we also make prior assumptions when subjectively choosing a
model or ignoring the prior distributions of model parameters
(implicitly use ‘flat’ prior). From this point of view, the explicit
choice of the prior may be rather an advantage. We can choose
prior from theoretical arguments (e.g., biophysical or anatomical
priors) or derive prior from the hierarchically organized data
(empirical Bayes approach). In this way, we limit the subjectivity
of the choice of the prior.

Another potential obstacle to using Bayesian statistics is
its computational complexity. Integrals in Bayes’ rule can be
solved analytically only for relatively simple models. In other
cases, numerical integration approaches should be used to
calculate the posterior probability, which are particularly time-
consuming, especially when considering thousands of voxels.
Alternatively, one can use computationally efficient analytical
approximations to the posterior distributions, which, however,
can be less accurate for high-dimensional parameter spaces
(multivariate analysis).

Despite profound development of Bayesian techniques, to
date, the ‘null effect’ assessment is uncommon in neuroimaging
field and, in particular, in fMRI studies. One of the possible
reasons for this may be the lack of tools available to the
end-user. To facilitate the ‘null effect’ assessment for fMRI
practitioners, we developed SPM12 based toolbox for group-level

Bayesian inference4. We evaluated the BPI approach on empirical
and simulated data and discussed its possible application
in fMRI studies.

Bayesian parameter inference allows us to simultaneously find
‘activated/deactivated,’ ‘not activated,’ and ‘low confidence’ voxels
using a single decision rule. The ‘not activated’ decision means
that the effect is practically non-significant and can be considered
equivalent to the null for practical purposes. The ‘low confidence’
decision means we need more data to make a confident inference,
that is, we need to increase the scanning time, sample size,
data quality or revisit the task design. The use of parametrical
empirical Bayes with the ‘global shrinkage’ prior enables us to
check the results as the sample size increases and allows us to
decide whether to stop the experiment if the obtained data are
sufficient to make a confident inference. All the above features
are absent from the classical NHST framework, limited to the
point-null hypothesis with a pre-determined stopping rule.

An important advantage of Bayesian inference is that we
can use graphs such as those shown in Figure 12 to determine
when the obtained data are sufficient to make a confident
inference. We can plot such graphs for the whole brain or
for a priori defined ROIs. When the curves reach a plateau,
the data collection can be stopped. If the brain area can be
labeled as either ‘activated/deactivated’ or ‘not activated’ at a
relatively small sample size, it will be still so at larger sample
sizes. If the brain area can be labeled as ‘low confidence,’ we
must increase the sample size to make a confident inference.
At a certain sample size, it could possibly be labeled as either
‘activated/deactivated’ or ‘not activated.’ In the worst case, we can

Frontiers in Neuroinformatics | www.frontiersin.org 21 December 2021 | Volume 15 | Article 738342

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-15-738342 November 27, 2021 Time: 14:4 # 22

Masharipov et al. Providing Evidence for the Null Hypothesis in fMRI

FIGURE 15 | Simulations results for the dependencies of the number of ‘activated’ voxels on the sample size. Data were drawn from normal distributions with
different mean effect θ and noise SD. Classical NHST was implemented using FWE correction (α = 0.05). BPI was implemented using γ = 1 prior SDθ. The error bars
represent the mean and standard deviation across ten random groups. Horizontal lines indicate the true number of practically significant voxels.
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FIGURE 16 | Simulations results for the dependencies of the correct and low confidence decision rates on the sample size. Data were drawn from normal
distributions with different mean effect θ and noise SD. BPI was implemented using γ = 1 prior SDθ. The plots for ‘deactivated’ voxels closely follow the plots for
‘activated’ voxels and have therefore been omitted for visualization purposes. The error bars represent the mean and standard deviation across ten random groups.
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FIGURE 17 | Simulations results for the dependencies of the incorrect decision rate on the sample size. Data were drawn from normal (Ku = 3, Sk = 0) and
non-normal distributions with weak effect and high noise (θ = 0.1%, SD = 0.4%). BPI was implemented using γ = 1 prior SDθ. The error bars represent the mean and
standard deviation across ten random groups.
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FIGURE 18 | Simulations results for the dependencies of the correct and incorrect decision rates on the ES threshold γ. Data were drawn from normal distributions
with different mean effect θ and noise SD. Sample size N = 200 images, results for one random group. The plots for ‘deactivated’ voxels closely follow the plots for
‘activated’ voxels and have therefore been omitted for visualization purposes. Vertical lines indicate the default ES threshold γ = 1 prior SDθ. The light blue areas
indicate ES thresholds at which the incorrect decision rates do not exceed 5% for both ‘activated’ and ‘not activated’ voxels. The dark blue areas indicate ES
thresholds at which the correct decision rates exceed 80% for both ‘activated’ and ‘not activated’ voxels.
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FIGURE 19 | Example of possible application of BPI based on the working memory task. L/R, left/right; V1, V2, V3, primary, secondary, and third visual cortex; FEF,
frontal eye field; SEF, superior eye field; PEF, parietal eye field; LGN, lateral geniculate nucleus; M1, primary motor cortex.

reach the plateau and still label the brain area as ‘low confidence.’
However, even in this case, we can make a definite conclusion:
the task design is not sensitive to the effect and should be
revised. Empirical Bayes with the ‘global shrinkage’ prior allows
us to monitor the evidence for the alternative or null hypotheses
after each participant without special adjustment for multiplicity
(Edwards et al., 1963; Berger and Berry, 1988; Wagenmakers,
2007; Rouder, 2014; Kruschke and Liddell, 2017b; Schönbrodt
et al., 2017). The optional stopping of the experiment not only
allows more freedom in terms of the experimental design, but
also saves limited resources and is even more ethically justified
in certain cases6 (Edwards et al., 1963; Wagenmakers, 2007). To
strike a balance between analytical flexibility and subjectivity of
analysis, one may pre-register hypotheses, models, priors and
desired level of evidence to reach without being limited by
predefined sample size.

In contrast, frequentist inference depends on the researcher’s
intention to stop data collection and thus requires a definition of
the stopping rule based on a priori power analysis. The sequential
analysis and optional stopping in frequentist inference inflate
the number of false positives and require special multiplicity
adjustments. Moreover, even if the a priori defined sample size
is reached, the researcher can still obtain a non-significant result.
In this case, the researcher can follow two controversial paths
within the classical NHST framework. Firstly, the sample size
could be further increased to force an indecisive result to a
decisive conclusion. The problem is that this conclusion would
always be against the null hypothesis. Thus, an unbounded
increase in the sample size introduces a discrepancy between
classical NHST and Bayesian inference, also known as the
Jeffreys-Lindley paradox. Secondly, one may argue that high
a priori power and non-significant results provide evidence for

6This is especially true for PET studies. The BPI method described in this work
can also be applied to PET data to reduce the sample size and thus exposure to
radioactivity (Svensson et al., 2020).

the null hypothesis (see, for example, Cohen, 1990). However,
even high a priori power and non-significant results do not
provide direct evidence for the null hypothesis. In fact, a high-
powered non-significant result may arise when the obtained data
provide no evidence for the null over the alternative hypothesis,
according to Bayesian inference (Dienes and Mclatchie, 2017).
This does not mean that power analysis is irrelevant from a
Bayesian perspective. Although power analysis is not necessary
for Bayesian inference, it can still be used within the Bayesian
framework for study planning (Kruschke and Liddell, 2017b).
At the same time, power analysis is a critical part of frequentist
inference, as it depends on researcher intentions, such as the
stopping intention.

The main difficulty with the application of BPI is the need
to define the ES threshold. However, the problem of choosing a
practically meaningful effect size is not unique to fMRI studies, as
it arises in every mature field of science. It should not discourage
us from using BPI, as the point-null hypothesis is never true
in the soft sciences. From our perspective, there are several
ways to address this problem. Firstly, the ES threshold can
be chosen based on previously reported effect sizes in studies
with a similar design or perform a pilot study to estimate the
expected effect size.

Based on the fMRI literature, the largest BOLD responses
are evoked by sensory stimulation and vary within 1–5% of the
overall mean whole-brain activity. In contrast, BOLD responses
induced by cognitive tasks vary within 0.1–0.5% (Friston et al.,
2002b; Poldrack et al., 2011; Chen et al., 2017). The results
obtained in this study support this notion. Primary sensory effects
were >1%, and motor effects were >0.3%. Cognitive effects can
be classified into three categories.

(1) ‘Strong’ effects of 0.2−0.3% (for example, emotion
processing in the amygdala, language processing in Broca’s
area),
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(2) ‘Moderate’ effects of 0.1−0.2% (for example, working
memory load in DLPFC, social cognition in IPL, response
inhibition in IFG/FO),

(3) ‘Weak’ effects of 0.05–0.1% in contrasts without robust
activations (for example, reward processing in the nucleus
accumbens, relational processing in DLPFC).

However, choosing the ES threshold based on previous
studies can be challenging because fMRI designs become
increasingly complex over time, and it can be difficult to
find previous experiments reporting unbiased effect size with
a similar design. In this case, one can use the ES threshold
equal to one prior SD of the effect (Friston and Penny, 2003),
which can be thought as a neuronal ‘background noise level’
or a level of activity that is generic to the whole brain
(Eickhoff et al., 2008). As empirical and simulation analysis
results show, BPI with this ES threshold generally works
well for both ‘activated/deactivated’ and ‘not activated’ voxel
detection. However, it may not be suitable in cases with the
weak effects and high noise. In addition, researchers who rely
more on the frequentist inference may use the γ(Dicemax)
threshold to replicate the results obtained previously with
classical NHST and additionally search for ‘not activated’
and ‘low confidence’ voxels. Finally, the degree to which the
posterior probability is contained within the ROPEs of different
widths could be specified or the ROPE maps in which the
thresholding sequence is inverted could be calculated. The
ROPE maps can be shared in public repositories, such as
Neurovault, along with PPMs, and subsequently thresholded by
any reasonable ES threshold.

The ability to provide evidence for the null hypothesis may
be especially beneficial for clinical neuroimaging. Possible issues
that can be resolved using this approach are:

(1) Let the brain activity in certain ROIs due to a
neurodegenerative process decrease by more than γ

per year on average without any treatment. To prove that a
new treatment effectively protects against neurodegenerative
processes, we can provide evidence that, within 1 year of
treatment, brain activity was reduced by less than X%.

(2) Assume that an effective treatment should change the brain
activity in certain ROIs by at least X%. Then, we can prove
that a new treatment is practically ineffective if the activity
has changed by less than X%.

(3) Consider two groups of subjects taking a new treatment
and a placebo, respectively. Using BPI, we can provide
evidence that the result of the new treatment is does not
differ from that of the placebo.

(4) Consider two groups of subjects taking an old effective
treatment and a new treatment. Using BPI, we can provide
evidence that the new treatment is no worse than the old
effective treatment.

(5) Consider a new treatment for a disease that is not related to
brain function. Using BPI, we can provide evidence that the
new treatment does not have side effects on brain activity.

CONCLUSION

Herein, a discussion of the use of the Bayesian and frequentist
approaches to assess the ‘null effects’ in fMRI studies was
presented. We demonstrated that group-level Bayesian inference
may be more intuitive and convenient in practice than
frequentist inference. Crucially, Bayesian inference can detect
‘activated/deactivated,’ ‘not activated,’ and ‘low confidence’ voxels
using a single decision rule. Moreover, it allows for interim
analysis and optional stopping when the obtained sample size
is sufficient to make a confident inference. We considered
the problem of defining a threshold for the effect size and
provided a reference set of typical effect sizes in different
fMRI designs. Bayesian inference and assessment of the ‘null
effects’ may be especially beneficial for basic and applied clinical
neuroimaging. The developed SPM12-based toolbox with a
simple GUI is expected to be useful for the assessment of ‘null
effects’ using BPI.

LIMITATIONS AND FUTURE WORK

Firstly, we did not consider BMI, which is currently
mainly used for the analysis of effective connectivity.
A promising area of future research would be to compare
the advantages of BMI and BPI when analyzing local
brain activity. Secondly, the ‘global shrinkage’ prior must
be compared with other possible priors, in particular
with priors that take into account the spatial dependency
between voxels. Thirdly, we used Bayesian statistics only
at the group level. Future studies could consider the
advantages of using the Bayesian approach at both the subject
and group levels.
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