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Abstract
Multiprotein complexes execute and coordinate diverse cellular processes such as organelle biogenesis, vesicle trafficking,
cell signaling, and metabolism. Knowledge about their composition and localization provides useful clues about the mecha-
nisms of cellular homeostasis and system-level control. This is of great biological importance and practical significance in
heterotrophic rice (Oryza sativa) endosperm and aleurone–subaleurone tissues, which are a primary source of seed vita-
mins and stored energy. Dozens of protein complexes have been implicated in the synthesis, transport, and storage of seed
proteins, lipids, vitamins, and minerals. Mutations in protein complexes that control RNA transport result in aberrant en-
dosperm with shrunken and floury phenotypes, significantly reducing seed yield and quality. The purpose of this study was
to broadly predict protein complex composition in the aleurone–subaleurone layers of developing rice seeds using co-
fractionation mass spectrometry. Following orthogonal chromatographic separations of biological replicates, thousands of
protein elution profiles were subjected to distance-based clustering to enable large-scale multimerization state measure-
ments and protein complex predictions. The predicted complexes had predicted functions across diverse functional catego-
ries, including novel heteromeric RNA binding protein complexes that may influence seed quality. This effective and open-
ended proteomics pipeline provides useful clues about system-level posttranslational control during the early stages of rice
seed development.

Introduction

Rice (Oryza sativa) is one of the three major food crops of
the world (FAO, 2003), and its aleurone tissue and endo-
sperm are an essential source of human nutrition.
Endosperm development consists of coenocytic nuclear

division, cytokinesis, and differentiation into the starchy en-
dosperm and aleurone layer (Olsen, 2004; Wu et al., 2016).
Like most cereal grains, rice has an aleurone composed of a
single layer of cells that differentiates from the endosperm
epidermis at 5 days after flowering (DAF) and is completely
formed at 7 DAF (Krishnan and Dayanandan, 2003; Wu
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et al., 2016). During the grain filling stage, the aleurone and
subaleurone tissues store proteins, lipids, vitamins, and min-
erals, whereas the endosperm mainly accumulates starch
(Krishnan and Dayanandan, 2003; Becraft and Yi, 2010; Wu
et al., 2016). The subaleurone tissue consists of four to six
cell layers that are biochemically distinct from the rest of
the starchy endosperm. These cells are much lower in starch
content and accumulate the bulk of storage proteins, espe-
cially glutelins and prolamines. The aleurone also protects
the endosperm during the grain filling stage, and its induced
desiccation tolerance maintains stored starch in the endo-
sperm and ensures seed survival (Fath et al., 2000; Young
and Gallie, 2000; Bethke et al., 2001). Given the importance
of the aleurone–subaleurone for human nutrition and seed
development, we focused on this tissue in this high-
throughput analysis of protein complex formation and com-
position using quantitative proteomics.

Data on protein multimerization and binding partner
identity are some of the most valuable to analyze regulatory
pathways and interactions among them. Genetic data indi-
cate that subunits of a protein complex and interacting pro-
teins share similar phenotypes and function as parts of
signaling input–output modules (Yanagisawa et al., 2018).
Protein multimerization is the cornerstone of cellular com-
plexity, enabling mechanical tasks and the flow of genetic in-
formation that could never be achieved by individual
proteins (Alberts, 1998; Marsh and Teichmann, 2015). For
example, multiprotein complexes coordinate gene expres-
sion (Burd and Dreyfuss, 1994), organelle biogenesis (Li et al.,
2019), vesicle trafficking (Kaksonen et al., 2005), metabolism
(Weng et al., 2012), and signal transduction (Basu et al.,
2008). Recent proteomic profiling studies indicated that
more than one-third of all proteins exist as parts of stable

protein complexes (Aryal et al., 2014, 2017; McBride et al.,
2017, 2019; Lee and Szymanski, 2021). Due to the wide-
spread occurrence and crucial roles of protein multimeriza-
tion, numerous large-scale projects to characterize protein–
protein interaction networks have been conducted by yeast
two-hybrid analysis (Van Leene et al., 2007; Arabidopsis
Interactome Mapping Consortium, 2011; Jones et al., 2014).
However, comparisons of global protein–protein interaction
studies have shown that combinations of approaches are
needed. Overlap among interactome dataset types is low,
and technical bias and the limitations of individual methods
determine the extent to which they capture the full spec-
trum of physical interactions, which vary greatly in terms of
affinity, cell type, or subcellular localization (Wodak et al.,
2009; Rattray and Foster, 2019; Salas et al., 2020).

Protein correlation profiling, also known as co-fraction-
ation–mass spectrometry (CF–MS), is gaining momentum
as an effective approach to broadly analyze
the multimerization behaviors of endogenous proteins
(Kristensen et al., 2012; Aryal et al., 2014; McWhite et al.,
2020; Salas et al., 2020). The major advantage of CF–MS is
that it analyzes native protein complexes in an unbiased
way, with no requirement for genetic transformation or
gene cloning. It is a guilt-by-association protein chromatog-
raphy method based on the expected indistinguishable elu-
tion profiles of subunits of stable protein complexes
regardless of the separation method. This MS-based profiling
of cell lysates separated by size exclusion chromatography
(SEC) provides broad information on whether or not a pro-
tein is likely to multimerize (Aryal et al., 2014, 2017; Gilbert
and Schulze, 2019), form distinct complexes at different sub-
cellular locations (McBride et al., 2017), or evolve unique
properties in diverse species (Lee and Szymanski, 2021).
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The chance co-elution of noninteracting proteins is a con-
founding factor that increases the rate of false-positive pre-
dictions. One approach to improve accuracy is to carry out
multiple fractionations and use presumed gold standards of
evolutionarily conserved protein complexes in combination
with machine learning-based predictions (Havugimana et al.,
2012; Wan et al., 2015; McWhite et al., 2020). There is uncer-
tainty about the extent to which gold-standard complexes
exist as stable, fully assembled complexes (Aryal et al., 2014;
McBride et al., 2017; Lee and Szymanski, 2021); however, the
increasing number of validated known complexes will
further empower these approaches. Our group predicted
multimerization and complex composition based on experi-
mental profile data alone (Aryal et al., 2014, 2017; McBride
et al., 2017, 2019). In this workflow, biological replicates and
automated peak detection algorithms (McBride et al., 2017,
2019) are used to remove unreliable profiles. The filtered
data are used in distance-based clustering analyses to group
proteins with the most similar elution profiles. This overall
approach has been validated repeatedly using known com-
plexes or subcomplexes, co-immunoprecipitation, and profil-
ing a mutant in which the expression of a predicted novel
subunit was knocked out (Aryal et al., 2014; McBride et al.,
2017, 2019). This approach generates a valuable data re-
source for the community to develop and test hypotheses
about protein interactions and system-level controls.

Here, we adopted this technology to predict protein com-
plex assemblies from a dissected tissue with great develop-
mental and agronomic importance: the aleurone–
subaleurone cell layers of developing rice seeds. This pipeline
begins with 1 mg of soluble protein extracts, whereupon
2,610 proteins were reproducibly profiled across two SEC
and two ion-exchange chromatography (IEX) column sepa-
rations. This combination of orthogonal separation strategies
greatly reduces chance co-elution and can generate reliable
protein complex composition predictions. The clustering
analysis and systematic classification method predicted 771
protein complexes (proteins of interest can be searched in
Supplemental Data Set S1), 170 of which correspond to self-
interacting proteins. Numerous novel protein complexes in-
volved in translation, cellular homeostasis, and tissue-specific
physiology were predicted. These protein complexes could
play essential roles in determining the fate of the aleurone,
regulating endosperm development, and in the biosynthesis
of seed reserves. These findings will facilitate a deeper under-
standing of seed development and quality.

Results and discussion

A high-quality CF–MS dataset
We used the CF–MS approach, coupled with biological rep-
licates of SEC and IEX fractionations, to profile endogenous
protein complexes in the aleurone–subaleurone layers of de-
veloping rice seeds (Figure 1). The expressed proteome in
the developing seeds at 10 DAF was resolved under native
conditions through SEC and orthogonal IEX separations to
reduce chance co-elution and false-positive predictions

(McBride et al., 2019). We subjected biological duplicates of
24 SEC and 71 IEX fractions to label-free shotgun proteomics
to obtain abundance profiles of thousands of resolved pro-
teins. The abundance profiles of all peptides and proteins
are provided in Supplemental Data Set S2. These elution
profiles were subjected to Gaussian fitting to smooth the
raw data and deconvolve multiple peaks, which likely reflect
an individual protein being present in multiple protein com-
plexes (McBride et al., 2017). With a 1% false discovery rate
(FDR) for both the peptide and protein levels, 3,746 and
3,633 endogenous rice aleurone–subaleurone proteins were
reproducibly identified from the SEC and IEX fractions, re-
spectively (Figure 2, A and B). Overall, the SEC and IEX pro-
file data were highly reproducible, as the Pearson correlation
coefficients (PCCs) fell onto a diagonal across the SEC and
IEX fractions (Figure 2, C and D). The elution peak locations

Figure 1 The CF–MS pipeline, composed of SEC and IEX separations,
used to predict protein complex composition in the rice seed aleu-
rone–subaleurone layers. The soluble cell fraction enriched from the
isolated aleurone–subaleurone layers at 10 DAF is separated on a siz-
ing column and a mixed-bed ion exchange column under nondena-
turing conditions. Each column fraction is analyzed by LC–MS/MS for
protein identification and quantification. Gaussian fitting is applied to
choose reproducible peaks in the SEC and IEX datasets. Mapp values
are calculated for the reproducible SEC peaks. Profile-based clustering
analysis is conducted to predict protein complex composition using
the concatenated SEC and IEX datasets.
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were also reproducible between replicates (Figure 2, E and
F). When we compared the peak locations for individual
proteins, �88% and 73% of the total protein peaks fell
within two SEC fractions (representing �40% size difference)
and within four IEX fractions, respectively. The reproducible
peak locations and their apparent mass (Mapp) values are
provided (Supplemental Data Set S3). To eliminate noisy
profile data, the set of 2,610 proteins identified with repro-
ducible peaks between both SEC and IEX replicates was cho-
sen for protein complex prediction (Figure 2G).

Protein multimerization in the rice aleurone–
subaleurone proteome
To estimate the proportion of proteins that eluted at larger
than expected masses, we compared the distribution of
expected monomeric masses (Mmono) with the distribution
of Mapp (Figure 2H). The scatter plot of Mapp and Mmono

was strongly skewed toward elevated Mapp values, suggesting
widespread multimerization. Using protein multimerization
state, that is, Rapp (Rapp¼Mapp/Mmono) as a diagnostic for
multimerization of individual proteins, more than half of the
proteins fell into this class, with 37.1% detected as relatively
small complexes and 22.5% as large complexes with Rapp val-
ues of �5 (Figure 2I). Similar distributions of stable protein
complexes were reported in different tissues and plant spe-
cies (Aryal et al., 2014; McBride et al., 2017, 2019), although
the types and sizes of complexes can vary within an ortholo-
gous group (Lee and Szymanski, 2021).

To gain insights into the types of proteins in the rice aleu-
rone–subaleurone proteome, we performed gene ontology
(GO) enrichment analysis, which revealed 70 significantly
enriched terms at a 5% FDR (Figure 2, J and K; Supplemental
Figure S1). In the molecular function GO category, enzyme
activities including catalytic activity and enzyme regulator ac-
tivity were overrepresented in the developing aleurone–suba-
leurone layer cells, reflecting many interesting enzymes, lipid
binding, RNA binding, and signaling proteins present in the
tissue (Figure 2J). In the biological process category, four GO
terms were the most highly enriched: cellular biosynthetic
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Figure 2 The CF–MS pipeline generated a highly reproducible dataset
of protein complexes for the rice aleurone–subaleurone proteome. A–
G, Reproducibility of the CF–MS datasets. Protein overlap between
two biological replicates in SEC (A) and IEX (B). PCC of protein abun-
dances across the SEC (C) and IEX (D) fractions. Column fraction
shifts were measured based on the distances between the elution

peaks of the replicates for all proteins in the SEC (E) and IEX (F) frac-
tions. Reproducible proteins present within 2- or 4-fraction shifts are
boxed with the ratio of reproducibility shown. G, Reproducible pro-
teins that overlapped between the SEC and IEX datasets were selected
for the prediction of protein complex composition. H, I, Protein com-
plexes are common in the rice aleurone–subaleurone proteome. The
quantification of protein multimerization was performed using Mapp

and Rapp. H, A scatter plot of the Mmono and Mapp of the reproducible
proteins. Open circles in light blue are proteins with Rapp� 1.6, while
those in grey are proteins with Rapp< 1.6. I, Distribution of protein
multimeric states. Proteins are classified as M (monomer:
0.62� Rapp< 1.6), S (small complex: 1.6� Rapp< 5), or L (large com-
plex: Rapp� 5). J, K, The aleurone–subaleurone proteome shows func-
tions in diverse processes. Overrepresented GO terms are highlighted
according to the significance levels. Molecular function GO terms (J)
and biological process GO terms (K) are visualized. Full GO analysis
results are provided in Supplemental Figure S1.

2968 | THE PLANT CELL 2021: Page 2968 of 2980 Y. Lee et al.

https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koab182#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koab182#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koab182#supplementary-data
https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koab182#supplementary-data


�

��

�
��

�

�

�

�
�
�
�

�

�
�
�������

�

��

�

�

��

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

��

�

�

��

��

�

��

��

�

��

��

�

��

�

�

��

�

�

�

�

�

��
�

�

��

�

��
�

�

��

�

�

��

�
�

�

�

�
�

��

�
�

�

�

�
�
�

�

�
�

�

�
�

�
�
�

�

�

�

�
�

�

�

�
�

�

�

�

�

�
�

�

�

�
��

�

�
�

�
����
���
��
��
���

�

�

�

�

�

�

��

� � ��

0
5

10
15

�

�

��

��

�

�
��
�
�

�����
���

�
��

�
�
��

��
�

��

�

�
���
�
��
�
����
���
���� ������������

����������
�����������
�
���������������
�
���������������������

�������������� � � ��
�� � ��� � ������������������������������������������������������������������������������������������������������������������������������������������������������������������������

20 300 600 900 1200 1500

0
1

2
3

4
5

6 ����

�

�����

�
�

�

�
�

�

�
�
�

��

�������
��
�
��

��

�����
�����

��

�

��
�
����
���
�
�
�

��
��

���
��
�
�
������������������������ �

����� ���

������������������������������ �������� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������0
2

4
6

8
10

M
ea

n 
di

st
an

ce
 a

m
on

g
pr

ot
ei

ns
 w

ith
in

 a
 c

lu
st

er

Number of clustersNumber of clusters

M
ea

n 
di

st
an

ce
 a

m
on

g
pr

ot
ei

ns
 w

ith
in

 a
 c

lu
st

er
A B C

Number of clusters

Pu
rit

y

Number of clusters

In
ta

ct
ne

ss

F G

Number of clusters

M
ea

n 
di

st
an

ce
 a

m
on

g
pr

ot
ei

ns
 w

ith
in

 a
 c

lu
st

er

D

H

E
CCT (Cluster 576)

0.
2

0.
4

0.
6

0.
8

1.
0

Sc
al

ed
 a

bu
nd

an
ce

F1F1 F1 F71 F1 F24 F1 F24F71
IEX SEC

F1F1 F1 F71 F1 F24 F1 F24F71
IEX SEC

0.
0

677-721 kDa

19S (Cluster 500, 501 & 502)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sc
al

ed
 a

bu
nd

an
ce

Cluster

502

501
500

789-900 kDa

19S subunits
19S subunits
19S subunits
non-19S subunits

CCT subunits
non-CCT subunits

0 500 1000 1500

0.
6

0.
7

0.
8

0.
9

1.
0

14−3−3
19S
20S core
CCT
Coatomer
eIF4F
Exosome

0 500 1000 1500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

14−3−3
19S
20S core
CCT
Coatomer
eIF4F
Exosome

5 - 9

4

3
2

1-member
cluster

10 ≤ members 
in a cluster

20 300 600 900 1200 1500 20 300 600 900 1200 1500

Figure 3 The strong resolving power of clustering analysis evaluated by the intrinsic and extrinsic tests. A–C, Intrinsic tests used to evaluate the re-
solving power for independent and concatenated protein profile datasets. Box-and-whisker plots visualize the distributions of average distances of
elution profiles within the clusters in the SEC only (A), IEX only (B), and combined SEC and IEX (C) datasets as a function of ascending cluster
number. D and E, The concatenated profiles of known protein complexes are visualized over the two IEX (pink) and two SEC (light blue) separa-
tions. Solid lines indicate elution profiles of CCT (D) and 19S proteasome complex (E) subunits. Dashed lines represent elution profiles of proteins
that are not subunits of the known complexes. Numbers shown above the SEC peaks show Mapp values of subunits in a given complex. Numbers
to the right of the profiles are cluster numbers when multiple clusters are plotted. F and G, Extrinsic tests evaluating the resolving power for the
independent and combined protein profile datasets as a function of ascending cluster number. F, The intactness of known complexes was mea-
sured. G, The purities of the known complexes were evaluated. Individual intactness and purity plots are provided in Supplemental Figure S2. H,
The distribution of cluster size in the resulting clustering. The pie chart shows the distribution of predicted protein complexes based on the num-
ber of members in each cluster.

The Plant Cell, 2021, Vol. 33, No. 9 THE PLANT CELL 2021: Page 2969 of 2980 | 2969

https://academic.oup.com/plcell/article-lookup/doi/10.1093/plcell/koab182#supplementary-data


process, macromolecule biosynthetic process, carbohydrate
metabolic process, and response to abiotic stimulus (Figure
2K). These overrepresenting terms reflect the notion that pro-
teins in the aleurone–subaleurone layers promote the rapid
biosynthesis of carbohydrates, proteins, and other seed stor-
age substances. A similar pattern of GO term distribution
was reported in a gene expression analysis of the developing
aleurone in wheat (Triticum aestivum; Gillies et al., 2012).
Moreover, two other highly enriched GO terms describe pro-
teins that regulate embryonic development and postem-
bryonic development (Supplemental Figure S1). During wheat
seed development, these terms were highly enriched in aleu-
rone layers compared to starchy endosperm cells (Gillies et
al., 2012). These analyses indicate that a broad range of pro-
tein types with aleurone–subaleurone-enriched functions is
captured in our dataset.

Profiling-based clustering and predicting protein
complex compositions
To begin our distance-based clustering analysis, elution pro-
files with multiple peaks were deconvolved into separate
profiles as previously described (McBride et al., 2019). Three
hundred seventy-four proteins had 2 IEX peaks, and 32 had
3; these multipeak proteins were annotated with a peak
number suffix in the locus identification (ID). Among these
406 multiple peak proteins, 57 had multiple SEC peaks.
These proteins were assigned the same SEC peak with the
largest Mapp, enabling a protein to reside in multiple distinct
protein complexes. In the end, the four SEC and IEX elution
profile datasets were concatenated, and a total of 3,048 re-
producible profile entries were used for further analysis.

As an intrinsic test of the enhanced resolution afforded by
combining SEC and IEX, we analyzed the mean distances be-
tween clusters as a function of the numbers of clusters in
the individual and combined datasets (Figure 3). When the
elution profiles of the proteins in a cluster are similar to
each other, the average distance among them is low. In the
box plot of mean distance within a cluster for SEC or IEX
alone, the third quartile approached zero at approximately
530 or 630 clusters, respectively (Figure 3, A and B). The
combination of SEC and IEX fractionations increased the res-
olution so that the third quartile approached zero at 1,000
clusters (Figure 3C). These data demonstrate the utility of
the combined SEC and IEX datasets and indicate that the
dendrogram loses resolution beyond approximately 1,000
clusters. As a representative clustering result, we plotted
dendrograms at a 1,000 cluster-cut (as shown in
Supplemental File S1) and constructed a heatmap with the
color code representing the relative protein abundance
(Supplemental File S2).

Validation of protein complex prediction using
known complexes
In the concatenated SEC and IEX separations, subunits of
stable known complexes should co-elute and could serve as

a partial validation of the prediction. Known chaperonin-
containing TCP1 (CCT) folding complex subunits co-eluted
and were assigned to cluster 576 with Mapp of 677–721 kDa
corresponding to the fully assembled complex (Figure 3D).
Another validating known is 19S proteasome cap complex.
Seventeen different 19S subunits with Mapp of 789–900 kDa
were also grouped into cluster 502 (14 of 19S subunits/16 of
cluster members) and neighboring clusters 500 (2/2) and
501 (1/2) (Figure 3E). The 19S subunits in clusters 500 and
501 also had similar Mapp to other subunits, but a slight shift
in the IEX fractions assigned these three subunits into the
adjacent clusters. Further discussion of the CCT and 19S
complexes is provided in Supplemental File S3.

To further inform the decision of where to divide the den-
drogram to generate a specific protein complex prediction
using extrinsic data, we evaluated the intactness and purity
of seven known complexes as a function of increasing clus-
ter number (Figure 3, F and G; Supplemental Figure S2). The
intactness of exosome and 19S proteasome subunits
dropped in intactness at around 300 and 750 clusters but
remained stable until 1,500 clusters. The 14-3-3 proteins had
stable intactness until approximately 1,250 clusters.
Coatomer, CCT, eIFs, and 20S proteasome maintained per-
fect intactness until around 1,450 clusters. Because purity
can be utilized to detect false positives (McBride et al.,
2019), the purity of known complexes was observed as clus-
ter numbers increased to 1,400 clusters. The purity of most
known complexes became stable after 1,100 clusters. The in-
tactness and purity indices indicated that splitting the den-
drogram into 1,000 clusters based on the intrinsic resolution
test would be appropriate. Approximately 20% of clusters
were predicted to be large complexes with 5–19 subunits,
�55% were 2- to 4-meric, and 224 proteins were assigned
into single-entry clusters (Figure 3H). The reduced number
of singletons compared to the predicted number of 400
(40% monomeric� 1000 clusters, estimation from Figure 2I)
indicates the common occurrences of false positives. The
baseline complex composition prediction from this study is
provided in Supplemental Data Set S1A, with the caveat
that true interactors may be located in nearby clusters, and
clusters will also contain false positives due to chance co-
elution. A classification system to guide the user is provided
below, and we encourage readers to comment on the paper
online as clusters are validated or refuted over time.

Protein complex heterogeneities and cross-
validation using multiple peak entries
A small number of proteins displayed multiple peaks, and
this could reflect the existence of heteromeric complexes
with differing assembly states on the IEX column. It is also
possible that functionally interchangeable orthologs/paralogs
could assemble into homomers or ortholog-selective multi-
mers with differing subunit stoichiometries and resolvable
peaks on the IEX column. In the above scenarios, an accu-
rate clustering result would place interacting proteins within
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the same cluster in two separate instances. There were eight
cases in which a pair of multiple peak proteins co-occurred
in two distinct clusters (Supplemental Data Set S1B). In the
first three cases listed, two proteins in a ribosomal protein
S2 cluster, three in a DnaK family cluster, and two in an-
other DnaK family cluster had two IEX peaks and two SEC
peaks, neither of which corresponded to an expected mono-
mer. This could be explained by protein assembly into two
complexes with partial subunit overlap that were resolved
on both columns, supporting true protein–protein interac-
tions between these multiple peak proteins.

Other instances in which pairs of proteins had a single
high mass SEC peak and multiple IEX peaks could reflect a
complex that partially dissociated during high salt elution.
Two proteins of the 19S proteasome cap complex (RPN12
[LOC_Os07g25420.1] and RPN9 [LOC_Os01g32800.2 and
LOC_Os03g11570.1] in cluster 502) were also assigned into
cluster 518. A solved structure (Lander et al., 2012), native
MS analysis (Sharon et al., 2006), and a CF–MS prediction
(Drew et al., 2017) did not show a direct interaction be-
tween RPN9 and RPN12. However, RPN9 and RPN12 possess
significant sequence homologies with two interacting subu-
nits of the COP9 signalosome, the CSN7 and CSN8 subunits,
respectively (Kapelari et al., 2000; Fu et al., 2001), and the
adjacency of RPN9 and RPN12 subunits in the lid structure
(da Fonseca et al., 2012; Lander et al., 2012) could enable a
stable physical interaction in some species. In another exam-
ple, two eIFiso4F subunits showed similar behavior to the
19S pair. The large subunit eIFiso4G (LOC_Os04g42140.1)
and the small cap-binding protein eIFiso4E
(LOC_Os10g32970.1) co-occurred in two clusters with a sin-
gle SEC peak. This result is consistent with their known di-
rect physical interaction (Mayberry et al., 2011), further
supporting the accuracy of the predictions in this study.

Two homologous pyruvate kinases (OsPKpa1
[LOC_Os07g08340.1] and OsPKpb2 [LOC_Os10g42100.1])
had two IEX peaks, a single SEC peak, and co-occurred in
two clusters. Mammalian pyruvate kinases are known
homotetramers (Larsen et al., 1998; Christofk et al., 2008),
while plant orthologs are obligate heterooligomers of
ancient paralogs (Negm et al., 1995; Andre et al., 2007; Cai
et al., 2018). The clustering pattern here could reflect partial
disassembly of a multimeric form during high salt elution.
Arabidopsis thaliana 14-3-3 paralogs showed IEX-resolved
heteromerization patterns (McBride et al., 2019). Taken to-
gether, these co-clustering pairs provide clear cross-
validations for our protein complex predictions.

Cross-species comparisons with published CF–MS
datasets
We made cross-comparisons of our rice predictions with previ-
ously published CF–MS datasets from McWhite et al. (2020)
and Arabidopsis leaf data from McBride et al. (2019). The clus-
tering result presented here and that of McBride operated on
protein groups defined by unique peptides. Both predictions
were based on the profiled data from approximately 200

fractions generated from duplicates of SEC and IEX separations.
The McWhite prediction was generated from approximately
2,000 fractions from 13 plant species and diverse tissues using
four different separation methods. Orthologs and paralogs
were merged into an averaged profile of a single ortholog
group. Ortholog averaging obscures the commonly observed
multimerization variability among paralogs and orthologs (Lee
and Szymanski, 2021). The protein coverage of our rice dataset
was three times greater than those of the previous studies due
to the increasedliquid chromatography mass spectrometry
(LC–MS) sensitivity and the use of protein groups. The key
parameters for the three CF–MS studies are summarized in
Supplemental Data Set S4A. The overlapping protein hits dis-
cussed here are summarized in Supplemental Data Set S4, B
and C.

Differences in protein definitions and complexity make di-
rect comparisons among studies difficult. In this comparison,
we looked for two distinct protein/ortholog group members
present within a single cluster in both the rice and the com-
parison studies. If the interaction was reproduced in both
studies, they should fall within a single cluster in both
instances. There were 31 rice pairs that were also present in
the McBride Arabidopsis dataset, and 29% fell into a single
cluster in both cases. There were 149 rice pairs that were in
the McWhite Arabidopsis dataset, and 24% fell into a single
cluster in both cases. Of the 144 rice pairs that were in the
McWhite rice prediction, 25% co-occurred in the same clus-
ter. Similar results are expected with the McWhite predic-
tion regardless of species due to the ortholog merging. Pairs
present across all three datasets were subunits in 20S, 19S,
CCT, and coatomer complexes, showing highly conserved
protein–protein interactions. The McBride prediction
assigned subunits of exon junction complex, CCT, and
HSP70 into a single cluster, while these complexes were re-
solved into three distinct clusters in our rice prediction and
the McWhite datasets. Our clustering had more prediction
resolution and protein coverage than both published CF–
MS datasets, suggesting a better overall complex prediction.

Systematic classification of predicted rice protein
complexes
We performed systematic cluster classification based on the
sum of Mmono values of all proteins within one cluster
(Mcalc) and the measured Mapp (Figure 4; Supplemental
Data Set S1A). A reliable class contains proteins in the clas-
ses “homomer” and “possible homomer or heteromer/high
subunit stoichiometry” categories. These proteins had elu-
tion profiles that placed them into small clusters of one to
three proteins, yet on the SEC column, these proteins had
very large Mapp values (Figure 4A, area highlighted as light
yellow). These data suggest a high subunit stoichiometry
and/or the formation of homomers. Known homomers with
Mapp values corresponding to their expected stoichiometries
and numerous novel homomers were identified from the
single-entry clusters (Figure 4A–G). The indole acetic acid
(IAA)-amino acid hydrolase ILR1-like 6 (ILL6) was assigned
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into a single-member cluster with Rapp of 13.7 (Figure 4F). In
Arabidopsis, ILL6 is a member of an amidohydrolase family,
which hydrolyzes not only IAA conjugates (LeClere et al.,
2002; Zhang et al., 2016) but also jasmonoyl–isoleucine con-
jugates upon wounding (Widemann et al., 2013). ILL6 oligo-
merization might mediate crosstalk between the IAA and
jasmonic acid signaling pathways (Zhang et al., 2016). A dis-
cussion of a subset of these interesting homomers, GCN5-
related N-acetyltransferases and autophagy-related 5 protein,
is provided in Supplemental File S3. This systematic, reliable
classification method has the power to distinguish self-
interacting proteins from single-entry clusters that resemble
monomers in the hierarchical clustering.

Under the assumption of 1:1 subunit stoichiometries, an-
other reliably predicted class is “putative intact complex” be-
cause the ratios of Mcalc to Mapp for these proteins are close to
1:1. One hundred sixty-four protein complexes fell into an in-
terval along this diagonal (Figure 4A, graph sector highlighted
in light blue; Supplemental Data Set S1A). As an example of
the “putative intact complex” class, three subunits of the
VPS29–VPS35–VPS26 trimeric cargo recognition core complex
were assigned into cluster 917, with Mapp of 213–231 kDa
(Figure 5B). The Mcalc value of the complex was within 40% of
the average Mapp of the VPS cluster. This subcomplex may
serve as a regulated cytosolic pool of heterotrimers that assem-
ble with a membrane-associated sorting nexin dimer
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subcomplex into a fully functional retromer complex during
retrograde transport from the endosome to the Golgi (Seaman
et al., 1998). The ratio of Mcalc to Mapp and the known com-
plex assembly support the reliability of this clustering analysis.
In Supplemental File S3, the relevance of the other protein
complex predictions in Figure 5 is discussed.

Approximately 22% of the rice aleurone–subaleurone pro-
tein clusters were classified into either the “homomer” or
“possible homomer or heteromer/high subunit stoichiometry”
category. Approximately 17% fell into the “putative intact
complex” category, and 12.6% of the clusters were present in
“partial complex/false negatives” and “subcomplex or high
subunit stoichiometry.” Collectively, �51% of the clusters
were annotated as reliable complex prediction classes (Figure
4A; Supplemental Data Set S1C). The least reliable clusters
contained false positives due to chance co-elution (Figure 4A,
light pink area). Approximately 26% of the clusters were in
the “putative complex clustered with false positives” category,
and �23% of the proteins were filtered from clusters where
they were categorized as “likely false positive: monomer,”
“monomeric,” and “degraded” in this clustering analysis. A to-
tal of 657 out of 3,048 profiles (or 229 out of 1,000 clusters)
were filtered out as likely monomeric proteins from this clus-
tering, and the rest of them (70% of total profiles) were pre-
dicted in 771 different protein complexes with different
reliabilities.

Predicted subunits of RBP-associated complexes
During the grain filling stage, putative trans-acting factors
that recognize cis-acting elements in the mRNAs of storage
proteins (two major rice storage proteins: glutelin and prola-
mine) maintain the restricted transport of messenger ribo-
nucleoprotein (mRNP) complexes to specific subdomains of
the endoplasmic reticulum (Okita et al., 1994; Choi et al.,
2000; Crofts et al., 2004; Washida et al., 2012; Tian et al.,
2020). In rice, 257 RNA binding proteins (RBPs) were experi-
mentally identified as putative trans-acting factors expressed
from at least 221 distinct genes (Hamada et al., 2003;
Doroshenk et al., 2009; Morris et al., 2011). Even though
their dynamic regulation of mRNP complex assembly and
disassembly is critical for seed productivity, less is known
about whether they are associated with multiprotein com-
plexes or arranged in several smaller complexes. Our profil-
ing identified 133 out of the 250 RBPs with 161 reproducible
resolved peaks (27 RBPs exhibited multiple peaks) across the
concatenated SEC and IEX separations (Supplemental Data
Set S1A). The clustering analysis and classification strategy
assigned 92 cytosolic RBPs (with 114 peaks) into 93 distinct
protein complex clusters.

The scaffolding-nuclease protein Tudor-SN
(LOC_Os02g32350.2), a central player in RNA storage and
processing (Sami-Subbu et al., 2001; Gutierrez-Beltran et al.,
2016), was clustered with chorismate synthase (CS;
LOC_Os03g14990.1) and aspartyl/glutamyl-tRNA amido-
transferase subunit B (LOC_Os11g34210.2; Figure 6C). In

tobacco BY-2 cells, the same co-elution of Tudor-SN with
CS was detected by a combination of ion exchange and gel
filtration chromatography (Shan, 2018), and a two-hybrid in-
teraction between rice Tudor-SN and isochorismate synthase
(ICS) had been reported (Chou et al., 2017). Chorismate is a
key metabolic precursor of salicylic acid (SA), phylloquinone
(vitamin K1), tetrahydrofolate (vitamin B9), and aromatic
amino acids (Tzin and Galili, 2010; Maeda and Dudareva,
2012). ICS converts chorismate to isochorismate en route to
the synthesis of SA and vitamin K1 (Tzin and Galili, 2010).
Chorismate and SA metabolism are compartmentalized
among the plastid and cytosol, with CS and ICS activities
thought to reside solely in the plastid (Mousdale and
Coggins, 1986; Strawn et al., 2007; Garcion et al., 2008).
However, the functions of Tudor-SN are cytosolic. Perhaps,
Tudor–SN complexes mediate feedback control of
chorismate-dependent metabolites during mRNA processing
steps (Lin et al., 2020). Tudor–SN complexes may also affect
the subcellular localization and activity of CS and other
enzymes that dictate the flux of chorismate. In addition to the
Tudor–SN complex, a subset of novel RBP complexes shown
in Figure 6, including RBP-Q-associated putative complex, RBP-
T-associated putative EJC, and RBP-149 (eIF2a)-associated
complex, is discussed in Supplemental File S3.

Multiprotein complexes coordinate metabolism and cell/
tissue structure in the rice aleurone–subaleurone. Here we
provided system-level protein complex prediction using a
robust CF–MS approach that utilizes biological replicates, re-
producibility filters, and orthogonal separations that increase
reliability. Using a simple classification system, more than
700 novel protein complex predictions were made. Self-
interaction was common, and this type of interaction can
provide clues about allosteric control (Llorca et al., 2006)
and paths to neofunctionalization over evolutionary time
scales (Lee and Szymanski, 2021). Predicted novel hetero-
meric protein complexes are associated with protein transla-
tion, metabolism, signaling, and vesicle trafficking, all of
which are crucial for seed development and quality. The
data provided here can be broadly leveraged by the research
community to generate testable hypotheses about the func-
tional relevance of specific protein–protein interactions. This
method can also be further developed to analyze how
systems of protein complex assemblies change during devel-
opment or in response to any desired experimental
manipulation.

Materials and methods

Plant growth conditions and soluble protein
extraction
The rice (O. sativa ssp. japonica) cultivar Kitaake was grown
in a Conviron E15 growth chamber (Conviron) with a day/
night setting of 26�C/22�C and 12/12 h at a light intensity
of 300 lmol m�2 s�1 (fluorescent lamps: Philips F39T5/841/
HO/ALTO; incandescent bulbs: GE 60 W light). Seed peels
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containing purified aleurone–subaleurone cell layers were
collected as described previously (Yang et al., 2018).
Developing seeds at 10–12 DAF were pooled from panicles
from 10 different plants. Seeds were dehulled, cut open, and
the outer seed layers (pericarp and nucellus) were stripped
away. The inner peels were washed in phosphate-buffered
saline buffer to remove milky starchy endosperm and em-
bryo. This left a semi-translucent tissue containing primarily
aleurone and four to six layers of subaleurone cells.
Approximately 250 mg of fresh subaleurone and aleurone
tissue was prepared for cell fractionation in this project as
described previously (Aryal et al., 2014, 2017; McBride et al.,
2017, 2019). The collected tissue was disrupted by a
Polytron homogenizer (Kinematica, New York, NY, USA) un-
der 1 mL of ice-cold microsome isolation buffer solution
(50 mM Hepes/KOH [pH 7.5], 250 mM sorbitol, 50 mM
KOAc, 2 mM Mg(OAc)2, 1 mM EDTA, 1 mM EGTA, 1 mM
dithiothreitol [DTT], 2 mM PMSF and 1% [v/v] protein in-
hibitor cocktail [160 mg/mL benzamidine–HCl, 100 mg/mL
leupeptin, 12 mg/mL phenanthroline, 0.1 mg/mL pepstatin
A, and 0.1 mg/mL aprotinin]). To remove debris, the homog-
enate was centrifuged at 1,000 g using a Beckman Avanti 30
(Beckman, Palo Alto, CA, USA) for 10 min at 4�C. A soluble
fraction was obtained by ultracentrifugation at 200,000 g for
20 min at 4�C on a Beckman Optima Ultracentrifuge
(Beckman). Four sets of samples were prepared from inde-
pendent pools of tissues and used as two biological repli-
cates for the SEC and IEX separations.

SEC
From the soluble sample, endogenous proteins were frac-
tionated by an ÄKTA FPLC system (Amersham Biosciences
AB, Uppsala, Sweden) as described previously (Aryal et al.,
2014, 2017; McBride et al., 2019). Approximately 1 mg of to-
tal cytosolic proteins was injected onto a SuperdexVR 200 10/
300 GL column (GE Healthcare AB, Uppsala, Sweden). The
SEC elution was performed with the mobile phase (50 mM
Hepes/KOH [pH 7.5], 100 mM NaCl, 10 mM MgCl2 5% glyc-
erol, and 1 mM DTT) at a flow rate of 0.65 mL/min. The elu-
tion chromatogram was monitored by measuring absorption
at 280 nm. The column was calibrated using a Gel Filtration
Markers Kit (MWGF1000; Sigma-Aldrich), determining a
mass range from 669 to 29 kDa. SEC fractions of 500 lL
were collected, and proteins were precipitated by cold ace-
tone for LC–MS/MS analysis.

IEX
One milligram of the cytosolic proteins was fractionated on
a PolyCATWAX 204CTWX0510 column (200� 4.6 mm id,
5 lm, 1,000 A; PolyLC lnc., Columbia, MD, USA) using an
UltiMate 3000 Standard HPLC System (Thermo Fisher
Scientific Inc., Sunnyvale, CA, USA) as described previously
(McBride et al., 2019). IEX separation was performed over a
100-min linear gradient elution program (from 0.0 to 1.5 M
NaCl) at a flow rate of 1.0 mL/min. The absorbances of 214
and 280 nm were set to monitor protein elution. One hun-
dred and seven sample fractions were collected every 22 s

(�367 mL) between 3 min and 40 min. Each fraction was
subjected to protein precipitation via a cold acetone
method.

Sample preparation for LC–MS/MS analysis
Fractionated protein samples were digested for LC–MS/MS
analysis using trypsin as described previously (McBride et al.,
2017, 2019). Protein pellets were dissolved and denatured in
8 M urea for 1 h at room temperature, reduced in 10 mM
DTT for 45 min at 60�C, and alkylated with 20 mM iodoace-
tamide for 45 min at room temperature in the dark. The
urea concentration in the peptide solution was brought to
1.5 M for trypsin digestion by adding ammonium bicarbon-
ate. The digested peptides were purified using PierceVR C18
Spin Columns (Thermo Fisher Scientific Inc., Rockford, IL,
USA), and all samples were adjusted to an equal volume.
Peptide concentrations were measured by bicinchoninic acid
assay following the manufacturer’s protocol (Thermo Fisher
Scientific Inc.). The most concentrated sample had a peptide
concentration of 0.2 lg/lL, and 5 lL of each sample was
injected onto the LC–MS/MS system.

LC–MS/MS data acquisition
LC–MS/MS analysis was carried out as described previously
(McBride et al., 2017). In brief, a Q-Exactive HF Hybrid
Quadrupole-Orbitrap mass spectrometer in conjunction
with reverse-phase HPLC–ESI–MS/MS using a Dionex
UltiMate 3000 RSLC nano System (Thermo Fisher Scientific
Inc.) was used. Peptides were resolved over a 125-min gradi-
ent at a flow rate of 300 nL/min. An MS survey scan was
obtained from 350 to 1,600 mass/charge ratio range. MS/MS
spectra were acquired by selecting the 20 most abundant
precursor ions for sequencing with high-energy collisional
dissociation normalized collision energy of 27%. A 15-s dy-
namic exclusion window was applied to reduce the number
of times the same ion was sequenced.

Peptide identification and quantification
MaxQuant version 1.6.14.0 was used for relative protein
abundance quantification and protein identification (Cox et
al., 2014). The search was conducted as described (McBride
et al., 2019). Raw files of total cytosolic, SEC, and IEX frac-
tions were searched on MaxQuant together against the rice
proteome Osativa_323_v7.0.protein.fa (Ouyang et al., 2007).
The search parameters were as follows: cysteine carbamido-
methylation was a fixed modification; oxidation on methio-
nine and acetylation on protein N-terminus were variable
modifications; up to two missed trypsin cleavages were ac-
cepted; 1% FDR at the protein and peptide level was chosen
using a reverse decoy database; peptide abundance was cal-
culated using the extracted ion current for both unique and
razor peptides, and protein level signals were aggregated
from peptide intensities using razor peptide signal allocation
among protein groups; the match between runs function
was set with a maximum matching time window of 0.7 min
as default; all other parameters were set as default.
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Reproducibility, Gaussian peak fitting, and Rapp

calculations
Reproducibility between two biological replicates was deter-
mined as described before (McBride et al., 2017, 2019). PCCs
were estimated based on protein abundances in each frac-
tion between duplicates and visualized by Data Analysis and
Extension Tool. An optimized Gaussian fitting algorithm was
applied to fit the chromatography resolution, and the
Bayesian information criterion was utilized to prevent over-
fitting (McBride et al., 2017). The algorithm identified pro-
tein peaks when they had more than three nonzero
fractions, with two being adjacent. Multiple reproducible
peaks from a protein were split into multiple entries by la-
beling with a peak number on their locus IDs. The reproduc-
ible peaks were selected from the two replicates if they were
present within two or four fraction shifts considering the in-
crement rate between fractions in the SEC or IEX column,
respectively. All nonreproducible peaks were eliminated
from subsequent analyses. The fraction locations of the fit-
ted peaks were used to determine the apparent mass (Mapp)
values of proteins using the SEC calibration curve obtained
above. The protein multimerization state (Rapp) was defined
as the ratio of the Mapp of a protein to the theoretical
monomer mass (Mmono) of the protein. The Rapp of �1.6
thresholds was applied to determine whether a protein was
present in a complex.

Hierarchical clustering analysis
Hierarchical clustering was conducted as described previ-
ously (McBride et al., 2019). Briefly, a set of profiles that re-
flect the compositions of a protein complex was clustered
based on protein elution similarity. This cluster analysis was
carried out with IEX only, SEC only, and combined IEX and
SEC datasets. The Euclidean distance was used as a metric
for measuring similarity in profiles of a pair of proteins. A se-
ries of dendrograms over a wide range of cluster numbers
was generated to determine an optimal cluster number
value for the prediction.

Distance within clusters and purity and intactness
of known protein complexes
To minimize false positives and negatives, the clustering
results were evaluated based on distance within clusters and
intactness and purity as described previously (McBride et al.,
2019). The distance within a cluster indicates how much
similar or dissimilar protein elutions are in the given cluster.
A cluster center was first calculated as the average elution
profiles of all proteins in a cluster. The mean distance of
each protein in the cluster from the cluster center was then
calculated.

Members of known protein complexes co-migrate. This
characteristic of known complexes was applied to the deter-
mination of the final cluster number to predict protein
complexes. Rice orthologs were searched against the
CORUM database (Ruepp et al., 2009), which provides anno-
tated protein complex information from mammalian organ-
isms for the purity and intactness tests. Purity was

calculated based on the ratio of the highest number of sub-
units for a known protein complex in a given group to the
total number of proteins assigned to the group. Intactness
was measured as the ratio of the number of identified subu-
nits of a known complex assigned into one group to the to-
tal number of identified subunits in the known protein
complex.

Validation and complex heterogeneity using
external datasets and multiple peak proteins
To validate the clustering results, external datasets for
Arabidopsis and rice CF-based protein complex predictions
were downloaded from Supplemental Table S2 in McBride
et al. (2019) and Supplemental Table S4 in McWhite et al.
(2020), respectively. To facilitate comparisons among the
studies, key parameters including the number of proteins,
the number of clusters, and the definition of protein group
and ortholog group used in the McBride et al. and McWhite
et al. studies are summarized in Supplemental Data Set S4A.
The Arabidopsis orthologs of rice proteins were searched us-
ing the Phytozome ortholog database (Goodstein et al.,
2011) to map the McBride Arabidopsis complex prediction
onto our rice dataset (column F in Supplemental Data Set
S4B). For the McWhite prediction, their ortholog groups
containing rice and Arabidopsis were similarly mapped onto
our rice clustering dataset (Columns G–J in Supplemental
Data Set S4C). For the rice data obtained in the current
study, only protein groups in a cluster with two or more
members but not classified as “false positive” or “degraded”
were used for comparisons. When the same protein pair
was present in the McBride and McWhite datasets, it was
scored as “within a single cluster in both studies.”

Another method to validate the clustering results using
our rice data was to test for co-occurrence of multiple peak
proteins in two distinct clusters (Supplemental Data Set
S1B). Interpretations of the multiple IEX peaks were based
on whether or not the proteins had either one or two dis-
tinct SEC peaks and the Mapp values of the peaks.

Systematic classification of clustering results
Systematic classification was performed using a method sim-
ilar to that described previously (McBride et al., 2019) based
on Mapp, the sum of Mmono of all proteins within one cluster
(Mcalc), the average of Mapp within one cluster (Mapp-avg),
and Rapp of all proteins in the given cluster. In the assumed
scenario of 1:1 subunit stoichiometry, Mcalc should be similar
to the Mapp-avg of its members. These proteins were classi-
fied as “putative intact complex.” In addition, clusters with
likely high subunit stoichiometry contain reliable predictions.
Single entry clusters were classified as “homomer” when the
Rapp� 1.6. Clusters with 2 or 3 protein members were de-
fined as “possible homomer or heteromer/high subunit stoi-
chiometry” if the protein had Mapp� (4 * Mcalc). Cluster
members were classified as “subcomplex or high subunit sto-
ichiometry” when Mapp� (4 * Mcalc) in the clusters with >3
protein members and as “partial complex/false negatives”
when Mapp> 1.4 * Mcalc. When a protein within a cluster
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had Mcalc> 1.4 * Mapp and Rapp� 1.6, the protein was de-
fined as “putative complex clustered with false positives.” If
Rapp< 1.6 and Mcalc> 1.4 * Mapp, the protein was flagged as
“likely false positive: monomer.” Single proteins were classi-
fied as “degraded” when the Rapp< 0.5 and “monomeric”
when 0.5� the Rapp< 1.6.

GO term analysis
The SEA tool in AgriGO version 2.0 was used for GO enrich-
ment analysis (Tian et al., 2017). The enrichment was ana-
lyzed using Fisher’s exact test at the 5% FDR level as
Hochberg correction against all proteins in the MSU version
7.0 nonTE transcript ID (TIGR) background.

Data analysis
Gaussian fitting was applied using MATLAB_R2016a.
Clustering analysis was performed using R version 3.5.1 (R
Core Team, 2018) in RStudio version 1.1.463 (RStudio Team,
2018).

Accession numbers
The MS raw files have been deposited into the
ProteomeXchange Consortium via PRIDE under accession
code PXD022357. The mass spectra are available at the
Protein Prospector with search key uij64faovq. The Gaussian
fitting code and the clustering analysis code described in
McBride et al. (2017) are available at (https://github.com/
dlchenstat/Gaussian-fitting) and at (https://github.com/
dlchenstat/ProteinComplexPredict), respectively.

Supplemental data
The following materials are available in the online version of
this article.

Supplemental Figure S1. GO term enrichment analysis
showing overrepresented terms in the sink-type aleurone–
subaleurone layers.

Supplemental Figure S2. Extrinsic tests evaluating the re-
solving power for independent and combined protein profile
datasets as a function of ascending cluster numbers.

Supplemental Data Set S1. Clustering results and protein
complex prediction classifications.

Supplemental Data Set S2. Raw profiles of peptides and
proteins.

Supplemental Data Set S3. Lists of reproducible protein
peaks in SEC and IEX.

Supplemental Data Set S4. Comparisons of clustering
results among plant CF–MS predictions.

Supplemental File S1. Elution profiles of clustered pro-
teins and dendrograms of clusters.

Supplemental File S2. Clustering heatmap of the rice al-
eurone–subaleurone proteome.

Supplemental File S3. Supplemental text discussing the
predicted novel and known protein complexes.
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