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biomarkers—a journey toward
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the whole spectrum of molecular
events
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This paper gives a short review on cerebrospinal fluid (CSF) biomarkers for Alzheimer’s

disease (AD), from early developments to high-precision validated assays on fully

automated lab analyzers. We also discuss developments on novel biomarkers, such

as synaptic proteins and Aβ oligomers. Our vision for the future is that assaying a set

of biomarkers in a single CSF tube can monitor the whole spectrum of AD molecular

pathogenic events. CSF biomarkers will have a central position not only for clinical

diagnosis, but also for the understanding of the sequence of molecular events in the

pathogenic process underlying AD and as tools to monitor the effects of novel drug

candidates targeting these different mechanisms.
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proteins

Laboratory medicine tests influence up to 70% of clinical decisions and thus have a central
position in clinical medicine (Beastall and Watson, 2013). Biochemical markers for chronic
neurodegenerative disorders are especially important, since the slow progression and diffuse
symptomatology results in diagnostic difficulties, and tissue sampling with direct visualization of
central nervous system (CNS) pathology is not clinically applicable. For this reason, the Alzheimer’s
disease (AD) arena is in the good situation that a set of highly validated and specific biomarkers
are at hand; in addition to amyloid positron emission tomography (PET) and magnetic resonance
imaging (MRI) measurements, a set of cerebrospinal fluid (CSF) tests reflecting key aspects of
disease pathology are available. This paper comments on some caveats on the road to develop and
validate these CSF biomarkers and some recent developments on novel biochemical tests.

Early Assay Developments

The story on modern AD biomarker development started in 1995 with a series of publications on
enzyme-linked immunosorbent assays (ELISA) based on monoclonal antibodies to measure CSF
levels of total tau (T-tau) and phosphorylated tau (P-tau) and the 42 amino acid isoform (Aβ42)
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of β-amyloid (Blennow et al., 1995; Motter et al., 1995). These
papers reported a marked increase in CSF T-tau and P-tau
accompanied by a marked decrease in Aβ42 in AD (Blennow
et al., 1995; Motter et al., 1995). The following years, many
research reports consistently showed that the “AD profile” of
increased CSF levels of T-tau and P-tau together with decreased
Aβ42 had high sensitivity and specificity, both in the range of
85–90%, to identify AD dementia, for review see (Blennow and
Hampel, 2003). Since these three CSF biomarkers reflect key
elements of AD pathophysiology, i.e., neuronal degeneration (T-
tau), tau pathology (P-tau), and amyloid plaques (Aβ42), they are
often termed the “core” AD biomarkers (Hampel et al., 2004).

The Problem with Studies Based on

Clinical Diagnosis

The vast majority of studies were cross-sectional and the
diagnoses were based on the exclusion criteria published in 1984
by the National Institute of Neurological and Communicative
Disorders and Stroke and the Alzheimer’s Disease and Related
Disorders Association (NINCDS-ADRDA). In the studies
evaluating the diagnostic performance of CSF biomarkers, the
diagnostic entity “probable AD” based on the NINCDS-ADRDA
criteria, i.e., an exclusion diagnosis made on pure clinical
grounds, was used as gold standard in the evaluation of the CSF
biomarkers (McKhann et al., 1984). For logical reasons, the poor
diagnostic accuracy of these criteria (Knopman et al., 2001), and
the overlap in pathology between AD and other dementias, such
as Lewy body dementia and vascular dementia (Blennow et al.,
2006), made it impossible to achieve full diagnostic separation
between AD and aging or other dementias using biomarkers.

The Issue of Biomarker-positive Elderly

The introduction of amyloid PET in the arsenal of AD
biomarkers marked a major change in AD biomarker research,
since it became clear that 20–30% of apparently healthy elderly
showed positive on scans (Klunk, 2011). In 2006, the first study
showed that high amyloid ligand retention on amyloid PET
almost completely corresponds to low CSF Aβ42 (Fagan et al.,
2006), and vice versa, a finding that has been verified in numerous
subsequent studies, for review see Blennow et al. (2015). This
knowledge rather quickly changed the view on how to interpret
low CSF Aβ42 levels in cognitively intact elderly, from poor
assay quality or biomarker performance to an indicator of
preclinical AD.

In support of this, reliable biomarkers for cerebral β-
amyloidosis also made it possible to follow cognitively normal
Aβ-positive individuals over time. Such longitudinal studies
are relevant given the fact that many individuals with
AD neuropathology could be dementia-free when they died.
Longitudinal Aβ biomarker studies suggest that the majority
of Aβ-positive individuals followed over many years develop
cognitive impairment and eventually dementia. In other words,
if the dementia-free individuals with AD neuropathology would
have lived 5–10 years longer they would most likely have
developed AD (Buchhave et al., 2012).

Turning Direction Toward Early Diagnosis

The failures of Phase 2 and 3 trials testing anti-Aβ disease-
modifying drug candidates on AD patients in the dementia stage
initiated a discussion on the whether this type of treatment need
to be initiated before the dementia phase of the disease, i.e., before
the neurodegenerative process is too severe and widespread
(Blennow, 2010). An attractive option was therefore to perform
further trails on AD patients in the mild cognitive impairment
(MCI) stage of the disease. However, this would also introduce
diagnostic challenges since MCI is a heterogeneous syndrome
that may have many different underlying causes. Around 50–
60% of MCI cases have prodromal AD (Dubois et al., 2007),
meaning that they have underlying AD pathology and will
progress to AD with dementia. MCI symptoms may also be
caused by other neurodegenerative disorders such as Lewy body
dementia and vascular dementia or be due to age-related benign
cognitive disturbances, stress and depression. Further, symptoms
in MCI cases are by definition vague and diffuse, which makes it
impossible to diagnose AD clinically in unselected MCI cohorts
(Petersen et al., 1999). This created a need to test if the CSF
biomarkers have value also for early diagnosis.

In 1999, a first paper showed that MCI patients progressing
to AD with dementia, which is sometimes called “converting,”
during the clinical follow-up period had the typical AD CSF
profile of high T-tau and P-tau together with low Aβ42, and levels
were equally abnormal in the MCI and the dementia stage in
cases with longitudinal sampling (Andreasen et al., 1999). In the
first studies, no MCI group with long clinical follow-up, which
is needed to ascertain that stable MCI cases will not progress,
was presented. The first study with an extended clinical follow-
up period, showed that the AD CSF profile had a 95% sensitivity
for prodromal AD at a specificity of 83–92% against controls
and stable MCI cases and MCI cases that proved to have other
dementias (Hansson et al., 2006). A series of large multi-center
studies could verify such a high diagnostic accuracy of the AD
CSF biomarker profile to identify prodromal AD (Mattsson et al.,
2009; Shaw et al., 2009; Visser et al., 2009).

Entering Diagnostic Criteria

In 2007, the International Work Group (IWG) published the
first research criteria for the diagnosis of prodromal AD for New
Research Criteria for the Diagnosis of AD (Dubois et al., 2007).
These criteria provided a new conceptual framework stating that
AD could be diagnosed based on the combination of a clinical
phenotype of episodic memory disturbances and one or more
abnormal AD biomarker including CSF biomarkers (Aβ and
tau proteins), volumetric MRI and amyloid PET) (Dubois et al.,
2007). In 2011, similar, but not identical, criteria for MCI due
to AD (Albert et al., 2011) and dementia due to AD (McKhann
et al., 2011) were published by the National Institute on Aging—
Alzheimer’s Association (NIA-AA) workgroups on diagnostic
guidelines for AD. The IWG criteria for prodromal AD and
NIA–AA criteria for MCI due to AD are similar, and most
cases fulfilling one set of criteria will also fulfill the other, but
the NIA–AA criteria allow for assessment of the likelihood of
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being correctly diagnosed, with both amyloid and (neuronal)
injury biomarker positive cases having the highest likelihood
(Visser et al., 2012). In the updated IWG-2 criteria (Dubois et al.,
2014), CSF biomarkers got a more central role, together with
amyloid PET, due to their high diagnostic performance (Hansson
et al., 2006; Li et al., 2007; Brys et al., 2009; Snider et al., 2009;
van Rossum et al., 2012), while downstream topographical AD
biomarkers, such as volumetric MRI and FDG- PET, were judged
to function better in monitoring disease course in AD.

Cut-offs and Clinical Interpretation

The issue of identifying unified cut-offs for the CSF biomarkers
was brought up in the updated IWG-2 criteria (Dubois
et al., 2014). For CSF biomarkers, this problem stems from
differences in pre-analytical procedures between clinics and in
analytical procedures between laboratories, and not the least
from variability in manufacturing procedures for the assays, with
batch-to-batch variations (Mattsson et al., 2013). To overcome
these problems, several standardization initiatives have been
launched with the aim to minimize this type of variability,
including the Global Biomarker Standardization Consortium
(GBSC) and the International Federation of Clinical Chemistry
and Laboratory Medicine (IFCC) Work Group for CSF proteins,
that aims to develop certified reference materials and methods
to serve as “gold standards” for CSF biomarker measurements
(Carrillo et al., 2013). These initiatives will, together with
novel validated assays produced under rigorous quality control
measures and CSF biomarker methods run on fully automated
lab analyzers, allow to uniform cut-off levels for diagnosis, and
a more widespread use of CSF biomarkers in the routine clinical
diagnostic setting.

However, for common age-related disorders such as diabetes
type II and hypertension, there is no distinct line between health
and disease, and recommended cut-offs must therefore be based
on estimations of risk and values in the individual patient must
always undergo clinical interpretation. The situation is the same
for AD, with an increasing overlap in neuropathological changes
(Mountjoy et al., 1983; Mann et al., 1984; Hansen et al., 1988)
and in CSF biomarker levels (Andreasen et al., 1999a; Mattsson
et al., 2012) between aging and AD with increasing age. Indeed,
studies comparing the diagnostic performance of CSF biomarker
levels (Aβ42) and amyloid PET show that the overlap around
the proposed cut-off for both biomarker modalities (Mattsson
et al., 2014) makes it questionable to dichotomize results into
biomarker (CSF Aβ42 or amyloid PET) “positive” or “negative.”
The tradition in Laboratory medicine is to report the actual
concentration of a biomarker back to the clinician who based on
clinical experience interprets biomarker values near the cut-off
with caution.

Ratios such as T-tau/Aβ42, combining one injury and
one amyloid biomarker, are commonly evaluated in clinical
biomarker studies, and often found to perform better than either
biomarker alone. Even if this type of ratios show excellent
diagnostic separation in selected AD and control populations,
they may be difficult to implement in unselected populations
in the clinic. This is since an increase in CSF T-tau in patients

with minor stroke, encephalitis or CJD will have a very high
ratio despite having normal CSF Aβ42, and thus no indication
of amyloid pathology (Blennow et al., 2006).

The Putative APOE Dependence of CSF

Aβ42

The apolipoprotein E (APOE) ε4 allele is the main genetic risk
factor for AD (Bertram and Tanzi, 2008). In the late 1990ies,
several studies reported that AD patients possessing the APOE ε4
allele had lower CSF Aβ42 than those without this gene variant
(Galasko et al., 1998; Hulstaert et al., 1999). This association is
present also in cognitively normal elderly (Prince et al., 2004). In
contrast, CSF tau levels do not depend on the ε4 allele (Andreasen
et al., 1999b).

These results raised the question whether the ApoE4 isoform
modulates brain and CSF Aβ levels through a physiological
mechanism. Some studies on mice found that the ApoE isoforms
differentially regulates Aβ clearance, and suggested that the
APOE genotype contribute to AD risk by differentially regulating
clearance of Aβ the brain throughout life (Castellano et al.,
2011; Verghese et al., 2013). In a clinical study challenging
this hypothesis, MCI patients stratified by for cortical amyloid
deposition as evaluated by amyloid PET, amyloid positive cases
had low CSF Aβ42 levels, and amyloid negative cases normal
Aβ42 levels, independently of ε4 status (Lautner et al., 2014).
These findings indicate that the gene-dose dependent association
between the APOE ε4 allele and Aβ42 is caused by more severe
amyloid deposition in patients that are ε4 carriers. In support of
this conclusion, there is no association between CSF Aβ42 and
the APOE ε4 allele in young individuals, that are likely to be free
of brain amyloid deposition (Lautner et al., 2014), and thus no
evidence of a physiological effect on Aβ clearance in man. In
addition, these findings show that there is no need for APOE
allele-dependent cut-off levels for CSF Aβ42.

Compensating for Differences in Basic Aβ

Production—the Aβ42/Aβ42 Ratio

Except for Aβ42, the CSF contains several other Aβ isoforms, the
most abundant variant being Aβ40 (Portelius et al., 2006). Even
if CSF Aβ40 is relatively unchanged in AD, the CSF Aβ42/Aβ40
has been suggested to have stronger diagnostic accuracy for
AD compared to CSF Aβ42 alone (Hansson et al., 2007).
The explanation may be that the ratio normalizes individuals
according to their Aβ production level, so that low CSF Aβ42
can be more easily detected in “high Aβ producers” and vice
versa (Lewczuk et al., 2015). Recent studies show that the
CSF Aβ42/Aβ40 ratio is valuable also in the clinical setting
(Dumurgier et al., 2015).

The Everlasting Promise of Blood

Biomarkers for AD

The CSF is continuous with the brain extracellular space, with
a free exchange of molecules that makes it possible to monitor
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brain biochemistry by CSF analyses. Nevertheless, since blood
is more accessible than CSF, for which a lumbar puncture
is needed, blood biomarkers are desirable both for clinical
diagnosis or screening and for multiple sampling in clinical
trials. However, there are several circumstances that make blood
a more challenging matrix than CSF for brain biomarkers.
First, peripheral blood (plasma and serum) and the brain are
separated by the blood-brain barrier, making only a small fraction
of brain proteins enter the bloodstream. Second, the minute
amounts of brain proteins entering the blood will be diluted in
a compartment containing very high levels of other proteins such
as albumin and IgG, introducing a high risk of interference in
analytical methods (Blennow and Zetterberg, 2015). Third, brain
proteins in the bloodstream will be subjected to degradation by
proteases, degradation in the liver or clearance in the kidneys,
which will introduce a risk of confounding data. As an example,
the Australian Imaging Biomarkers and Lifestyle (AIBL) research
team have reported that plasma Aβ levels are influenced by
inflammatory and renal function covariates and that absolute
levels of either Aβ40 or Aβ42 do not associate with AD or
neocortical Aβ burden (Rembach et al., 2014). These factorsmake
development of blood biomarkers for chronic neurodegenerative
disorders challenging and limits the potential of blood samples as
biomarker sources for AD.

One possible approach is to apply hypothesis-free proteomics,
lipidomics, and similar methods in the search for AD blood
biomarkers. Such studies report combinations of proteins, lipids,
metabolites, or other molecules that discriminate AD from
controls, and propose such panels as novel AD blood biomarkers,
for review see (Henriksen et al., 2014). These studies often
screen a high number of unselected molecules, each showing
a marked overlap between AD and controls. However, when
combining a number of molecules using multivariate statistics,
a diagnostic separation is found. This type of studies have several
challenges. First, analytical standardization is difficult for a panel
of analyses consisting of high number of proteins or molecules
with different characteristics (O’Bryant et al., 2015). Second,
pre-analytical factors, such as influence of age, gender, other
diseases, medications, food-intake, or physical activity may vary
considerably between these molecules, or are not known or not
examined. Third, patient and control cohort differences may
influence outcome, but the panel is often evaluated in a “training”
and “validation” set of patients and controls from the same
cohort. Last, but not least, the issue of potential statistical over-
fitting of data to identify a “biomarker panel” from a very large
number of molecules in samples from a specific cohort with
limited number of cases may introduce bias. For these reasons,
such panels of molecules unrelated to AD pathogenesis often fail
to replicate in independent clinical cohorts (Zhao et al., 2015), or
alternative protein biomarker panels are proposed in the different
studies (Henriksen et al., 2014).

Biochemical Tests Covering the Whole

Spectrum of Molecular Events

Despite that the core CSF AD biomarkers reflect central
pathogenic mechanisms of the disease, novel biomarkers

to monitor additional important molecular mechanisms in
AD are constantly sought. Two important aspects of AD
pathophysiology are soluble oligomeric Aβ species and synaptic
dysfunction and degeneration.

Oligomeric Aβ May Give Clues to Disease

Pathogenesis
Amyloid plaques are composed of aggregated Aβ, but research
during the last decade has put focus on soluble oligomers of
Aβ that may inhibit long-term potentiation (LTP) and cause tau
hyperphosphorylation and neuritic dystrophy (Walsh et al., 2002;
Jin et al., 2011), possibly by specifically affecting synapses and
disturbing synaptic signaling pathways (Pozueta et al., 2013).
LTP is thought to be the key mechanism behind memory
encoding, the possible causation between Aβ oligomers and
synaptic dysfunction and damage has evolved into an active area
of research. However, LTP cannot be measured in vivo in man,
and a key question is whether there is a primary Aβ oligomer-
induced deficit in LTP in the early stages of AD, or whether
the synaptic degeneration in AD causes memory impairment
through other mechanisms, with LTP deficits being downstream
consequences of the synaptic dysfunction and loss. Tools to study
these molecular mechanisms in man would thus be valuable.

Aβ oligomers, ranging from dimers, trimers, dodecamers, and
larger molecular weight species have been found to be present
in CSF (Klyubin et al., 2008; Handoko et al., 2013). However, in
addition to the molecular heterogeneity, CSF Aβ oligomer levels
are very low, making reliable quantification challenging. Indeed,
different studies have applied a wide variety of methodologies
to allow quantification of these soluble aggregates, such as
fluorescence correlation spectroscopy (Pitschke et al., 1998), bio-
barcode assay (Georganopoulou et al., 2005), misfolded protein
assay (Gao et al., 2010), ELISA with the same monoclonal
antibody both for capture and detection (Fukumoto et al.,
2010), flow cytometry based assays (Santos et al., 2012),
immunoprecipitation and Western blot (Handoko et al., 2013),
and ultrasensitive bead-based immunoassays (Savage et al.,
2014). Several studies have found increased Aβ oligomer levels
in CSF of AD patients (Pitschke et al., 1998; Georganopoulou
et al., 2005; Fukumoto et al., 2010; Gao et al., 2010; Handoko
et al., 2013; Holtta et al., 2013; Savage et al., 2014), but with large
overlap with control groups, while other studies have reported no
change (Santos et al., 2012; Bruggink et al., 2013; Jongbloed et al.,
2015) or lower levels (Sancesario et al., 2012).

The reason for these contradictory results is unclear, but may
include analytical shortcomings, variability in how and in which
type of oligomer assemblies are secreted from the brain to the
CSF, instability of Aβ oligomers in CSF or during the analytical
procedures, or other factors. Nevertheless, if these analytical
shortcomings and variability between studies can be overcome,
CSF Aβ oligomers measurements may provide important clues
to disease pathogenesis when applied in longitudinal studies in
the different stages of AD and related to both neuropsychological
evaluations and other AD biomarkers such as amyloid PET
and MRI measurements. However, the finding in several
studies that CSF Aβ oligomer levels correlate with disease
severity, with higher CSF levels in more advanced disease
(Fukumoto et al., 2010; Santos et al., 2012; Savage et al., 2014),
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does not support that they are associated with early disease
pathogenesis.

Synaptic Biomarkers Enter the Arena
Synapses are the building blocks of neuronal networks. Synapses
consist of a pre-synaptic unit with synaptic vesicles containing
the neurotransmitters that upon release, regulated by a delicate
machinery of pre-synaptic proteins, bind to post-synaptic
receptors at the dendritic spines and activate a cascade of
molecular events to advance the signal (Jahn and Fasshauer,
2012). Synaptic dysfunction and degeneration is likely the
direct cause of the cognitive deterioration in AD. Synaptic
degeneration is an early pathogenic event in AD (Masliah et al.,
2001; Scheff et al., 2007), with synaptic loss being more tightly
correlated with cognitive impairment than either plaque or tangle
pathology (DeKosky and Scheff, 1990; Blennow et al., 1996; Sze
et al., 1997). Thus, synaptic biomarkers may serve as a tool to
study the link between the molecular pathology and cognitive
symptoms.

As mentioned above, there is no method to measure LTP
in man, but some synaptic proteins such as neurogranin has
been shown to play a critical role in LTP (Wu et al., 2002;
Huang et al., 2004). Neurogranin is highly concentrated in
dendritic spines, and neurogranin levels are markedly reduced
in the hippocampus and the frontal cortex in AD, indicating
loss of post-synaptic elements (Davidsson and Blennow, 1998;
Reddy et al., 2005). A pilot study using immunoprecipitation
and Western blot showed increased CSF levels of neurogranin
in AD (Thorsell et al., 2010). The first study using a quantitative
immunoassay showed a marked increase in CSF neurogranin
in AD dementia and high levels predicted progression to AD
dementia among MCI patients (Kvartsberg et al., 2014). Further,
in amyloid positive MCI cases, high neurogranin correlated with
a more rapid cognitive deterioration during clinical follow-up
(Kvartsberg et al., 2014). Among proteins specific for the pre-
synaptic part of the synapse, SNAP-25 CSF levels are clearly

elevated in AD, also in the prodromal phase of the disease
(Brinkmalm et al., 2014a), probably reflecting the ongoing
destruction of presynaptic terminals (Davidsson and Blennow,
1998; Brinkmalm et al., 2014b).

Concluding Remarks

Three CSF biomarkers reflecting the core pathological features
of AD are available: T-tau (neurodegeneration), P-tau (tau
hyperphosphorylation and, potentially, tangle formation), and
Aβ42 (plaque pathology). According to revised clinical criteria,
these markers may help diagnose AD more accurately and open
up the possibility of detecting pre-dementia stages of the disease.
At present, their most obvious utility is in clinical trials of novel
disease-modifying treatments against AD. In the future, they
may help selecting the right treatment for individual patients
by making it possible to assess which molecular pathology is
most likely to cause the patient’s symptom at different stages of
the disease. Standardization efforts are now moving the CSF tau
and Aβ biomarker tests toward automated clinical-grade assays,
which hopefully will become as established and standardized
as clinical chemistry tests for other common human diseases.
In addition, there is considerable promise that CSF biomarkers
will provide in vivo measurement of a range of additional
pathophysiological processes in AD. New biomarkers including
synaptic proteins and Aβ oligomers, will broaden the arsenal
toward a panel that covers the whole spectrum of molecular
events in AD. The application of such panels in longitudinal
clinical studies will give essential additional information of the
evolution of pathogenic processes in AD.
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