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The occurrence of the SARS-CoV-2, the virus responsible for COVID-19, has rapidly become a pandemic, resulting
in devastating effects to the global economy and public health [1], with over 70.4 million cumulative cases and
1.6 million deaths [2]. While the majority of infected patients remain asymptomatic or experience mild symptoms,
the pathophysiological hallmarks of the severe form of COVID-19 is characterized not only by viral infection, but
accompaniment of an exacerbated and dysfunctional inflammatory response, which has been correlated to systemic
immunopathological consequences (i.e., cytokine storm), pulmonary and respiratory complications, multiorgan
failures and mortality [1,3,4]. Despite current knowledge pertaining to the pivotal role that angiotensin-converting
enzyme 2 (ACE2) has during SARS-CoV-2 infection, burgeoning evidence is emerging, reporting viral susceptibility
in intra- and extrapulmonary immune and non-immune cells lacking or expressing low concentrations of ACE2 [5–7].
Furthermore, loss of ACE2 activity during SARS-CoV-2 infection may result in augmented pulmonary injury and
worsened outcomes in patients with pre-existing cardiovascular comorbidities [7,8]. Additionally, recent publications
have revealed toll-like receptors (TLR), specifically TLR4, as major contributors to SARS-CoV-2 infectivity and
pathogenesis [1,9]. The SARS-CoV-2 S protein has been shown to favor and directly bind to the extracellular domain
of TLR4 [1], which may result in the elicitation of the aggressive inflammatory response observed in patients with
severe COVID-19. As the developments of vaccines and pharmaceutical treatments to target SARS-CoV-2 are
underway, researchers and clinicians have been challenged to urgently create an acceptable therapy to control
infection and improve patient outcomes [1,10]. We propose that a multipronged pharmaceutical treatment targeting
restoration of ACE2 activity and TLR4 inhibition may represent an appealing approach to combat SARS-CoV-2
virus.

Angiotensin-converting enzyme 2
ACE2, a component of the renin-angiotensin system, has gained notoriety by being identified as a key receptor
involved in SARS-CoV-2 S protein entry into host cells [11–13]. However, burgeoning evidence is emerging, reporting
viral susceptibility in intra- and extrapulmonary immune and non-immune cells lacking or expressing low levels
of ACE2 [5–7]. Additionally, the theory associating enhanced infection susceptibility, severe pathological outcomes
and increased mortality rate in patients with cardiovascular disease comorbidities prescribed pharmaceuticals
that indirectly increase ACE2 expression [14–16] was unfounded during a recent clinical trial [16]. The randomised
30-day clinical trial was conducted to determine if continuing ACE inhibitors and angiotensin II receptor blockers
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(n = 325) versus suspending treatment (n = 334) placed COVID-19 patients previously diagnosed with pre-existing
cardiovascular diseases at a greater risk to SARS-CoV-2 viral susceptibility and worsened patient prognosis [16].
Results from the trial determined that these therapies failed to enhance intracellular viral load and had no effect
on the occurrence of severe COVID-19 outcomes or mortality rate [16]. Yet COVID-19 patients with pre-existing
cardiovascular disease have a five times higher mortality rate than those without [8].

A previous letter, authored by our team, outlined the potential use of diminazene aceturate (DIZE) (an ACE2
activator [17]) as a treatment to restore ACE2 activity in COVID-19 patients [18]. Patients with severe COVID-19
experience organ dysfunction, which manifests as acute respiratory syndrome and acute cardiac, hepatic and renal
injury [19]. Damage to multiple organ systems may be caused by loss of ACE2 function subsequent to SARS-CoV-2
binding [7,8]. ACE2 downregulation has previously been associated with myocardial [20] and pulmonary disease [21]

in humans. In murine models of influenza A, proper homeostatic functioning of circulating ACE2 has been shown
to be protective against influenza A-induced acute lung injury [22]. Conversely, ACE2 deletion in mice has been
associated with increased aggravation and severity during influenza A infection [22]. Therefore, we postulate that
ACE2 may have an undetermined protective role during SARS-CoV-2, which is silenced/lost once SARS-CoV-2
enters and hijacks host cells. Thus, restoring ACE2 functions through administration of DIZE may promote
cardiovascular and pulmonary protection against SARS-CoV-2 and may improve COVID-19 patients (with and
without pre-existing comorbidities) outcomes.

Toll-like receptor 4
Our hypothesis of alternative receptors involved in SARS-CoV-2 infection is supported by current literature
demonstrating interactions between TLRs and the S protein of SARS-CoV-2 [1]. TLRs are integral to innate
immunity, as they are sentinel pattern recognition receptors responsible for host surveillance by identifying foreign-
and self-molecular signatures [23,24]. Ten functional TLRs have been reported in humans, which are abundantly
expressed in immune and non-immune tissues, including cardiac, pulmonary, renal, hepatic and nervous systems [25].
TLRs display specialty and specify by identifying unique pathogen-associated molecular patterns (highly conserved
motifs displayed by pathogens) [23] and danger-associated molecular patterns (endogenous alarm signals released
by stressed, damaged or dying host cells), independent of infection [24]. However, the end product of robust sterile
inflammation, produced through the MyD88-dependent pathway (TLR1, 2, 4–10) [26] or the TRIF-dependent
pathway (TLR3 and 4) [27], is ubiquitous among TLRs independent of the origin of the activating ligand. Recent
literature has identified TLR4 as a key mediator during SARS-CoV-2 infection, involved in both infectivity [1,28]

and induction of the vicious inflammatory response [29] reported in patients with severe symptoms. While TLR3
and 7 agonists have been proposed as potential therapeutic targets for prophylactic agents to prime antiviral
innate immune system responses [30–32], their ability to engage with SARS-CoV-2 S protein and to be used for
pharmaceutical targets after infection has been established remains elusive. Therefore, due to the involvement of
TLR4 during infectivity and establishment of infection, we postulate that its inhibition may provide a promising
treatment to combat COVID-19.

TLR4 is predominantly responsible for providing immunity against Gram-negative bacterial, through identifica-
tion of lipopolysaccharides [33,34]. However, association and subsequent activation of TLR4 by viral fusion proteins
and glycoproteins, including viruses that target the pulmonary system [35,36], have been reported. An in silico
study, investigating the TLR-binding efficacy to SARS-CoV-2 S protein, demonstrated direct engagement between
TLR1, 4 and 6 and subunit 1 of SARS-CoV-2 S protein [1]. Of which, TLR4 was favored, displaying the highest
binding efficacy value of -120.2 [1]. The results from this study have been supported by a preprint indicating direct
binding between the trimeric S protein of SARS-CoV-2 and TLR4 in human monocytes (THP-1 cell line) [28].
Therefore, TLR4 may represent an alternative pathway used by SARS-CoV-2 to gain entry into cells, accounting
for viral vulnerability reported in intra- and extrapulmonary immune and non-immune cells lacking or expressing
low concentrations of ACE2 [5–7].

Uncontrolled TLR4-mediated inflammation has been suggested to contribute to immunopathological conse-
quences in COVID-19 patients. Peripheral blood mononuclear cells harvested from COVID-19 patients demon-
strated increased expression of TLR4 and its corresponding downstream signaling molecules (CD14, MyD88,
TRAF6, IRAK1, TIRAP, TICAM-1 and NF-kB) [29]. Additionally, patients infected with SARS-CoV-2 have
increased levels of activating danger-associated molecular patterns of TLR4, including β-defensin-3 [37], fibrino-
gen [38,39], HSP70 [40], HMGB1 [41], syndecan [42], S100A8/9 [29,41,43], and surfactant A and D [44]), which
may be responsible for inducing persistent and aggressive inflammation, resulting in cytokine storm and severe
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pulmonary dysfunction. This is supported by reports of patients with COVID-19 displaying increased levels of
cytokines and chemokines releases after TLR4 activation (IL-1β, -2, -6, -8, -9, TNFα, G-CSF, GM-CSF, MIP-1α

and MIP-1β [45,46]).
Taken together, we postulate that inhibiting TLR4 using the novel antagonist resatorvid (TAK242) may improve

patient outcomes by preventing systemic infection and dampening the inflammatory response. TAK242 is a potent
and selective TLR4 antagonist, which displays anti-oxidant and anti-inflammatory abilities [47]. It is believed that
TAK242 is able to exert its potent anti-inflammatory abilities due to its low molecular weight, allowing for
rapid distribution to sites of inflammation [48]. Our hypothesis is supported by results demonstrating the ability for
TAK242 to potently inhibit release of IL-1β from human THP-1 cells after exposure to SARS-CoV-2.

Conclusion
As there has yet to be significant advances in vaccine development against the SARS-CoV-2 vaccine, there is great
urgency to develop an effective pharmaceutical treatment to be administered to patients to improve outcomes.
We propose that a dual-acting pharmaceutical treatment, which combines TLR4 inhibition and ACE2 activation,
may represent a strategic therapeutic approach to dampen severe inflammation, restore ACE2 functionality, protect
cardiac and pulmonary tissues and inhibit SARS-CoV-2 infection. While the development of a universal vaccine
remains underway, a combination therapy of DIZE (ACE2 activator) and TAK242 (TLR4 inhibitor) may be a
promising therapy to be administered to patients, allowing for effective treatment of COVID-19 patients.
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