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Abstract

Empirical studies over the past two decades have provided support for the hypothesis that schizophrenia is characterized
by altered connectivity patterns in functional brain networks. These alterations have been proposed as genetically mediated
diagnostic biomarkers and are thought to underlie altered cognitive functions such as working memory. However, the
nature of this dysconnectivity remains far from understood. In this study, we perform an extensive analysis of functional
connectivity patterns extracted from MEG data in 14 subjects with schizophrenia and 14 healthy controls during a 2-back
working memory task. We investigate uni-, bi- and multivariate properties of sensor time series by computing wavelet
entropy of and correlation between time series, and by constructing binary networks of functional connectivity both within
and between classical frequency bands (c, b, a, and h). Networks are based on the mutual information between wavelet time
series, and estimated for each trial window separately, enabling us to consider both network topology and network
dynamics. We observed significant decreases in time series entropy and significant increases in functional connectivity in
the schizophrenia group in comparison to the healthy controls and identified an inverse relationship between these
measures across both subjects and sensors that varied over frequency bands and was more pronounced in controls than in
patients. The topological organization of connectivity was altered in schizophrenia specifically in high frequency c and b
band networks as well as in the c-b cross-frequency networks. Network topology varied over trials to a greater extent in
patients than in controls, suggesting disease-associated alterations in dynamic network properties of brain function. Our
results identify signatures of aberrant neurophysiological behavior in schizophrenia across uni-, bi- and multivariate scales
and lay the groundwork for further clinical studies that might lead to the discovery of new intermediate phenotypes.
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Introduction

Synchronous oscillatory neuronal activity is thought to form a

neurophysiological network over which the brain processes

information during cognitive processes [1,2]. Coherent neuronal

communication relies on neurotransmission dynamics dictated by

major neurotransmitters like dopamine, GABA, glutamate and

acetylcholine systems, known to be altered in schizophrenia [3–5].

Indeed, a hallmark of schizophrenia is the complex pattern of

abnormal increases and decreases in resting state and task-based

connectivity evident between large-scale brain regions [6–8]. To

quantify this dysconnectivity [4,9] at the level of the whole brain,

network theoretical tools originally developed in the social sciences

have been applied to neuroimaging data. Results demonstrate

complex dysconnectivity profiles of the brain’s anatomy [10–12]

and function [5,13–20] in people with schizophrenia [21].

Such dysconnectivity profiles, evidenced by altered brain

activity and connectivity in schizophrenia, are accompanied by

altered cognitive behavior. Due to the heterogeneity of the disease,

some symptoms including both positive (hallucinations, delusions

and thought disorder) and negative (e.g. impaired emotional

response and social interaction, avolition, anhedonia) symptoms,

vary strongly among patients. However, cognitive impairments in

executive functions (such as the manipulation of transiently stored

information [22]) and working memory (e.g., the ability to

transiently maintain and manipulate a limited amount of

information in order to guide thought or behavior) are typically

altered to varying degrees in virtually all patients. These cognitive
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impairments appear early and change little over time, and are

therefore thought to lie at the core of the disease, contributing to

the development of clinical symptoms [23,24]. Both altered

memory and executive planning have been linked to the

neurochemistry of dopamine, GABA, glutamate and acetylcholine

systems and subsequently to aberrant (NMDAR)–mediated

synaptic plasticity [3–5].

Correlations between brain network organization and cognitive

or behavioral variables in schizophrenia are expected [25] but

quantitative evidence for such a relationship is still rare. Network-

based analyses of task-based functional connectivity could potentially

provide unique insight into the neurophysiological underpinnings

of altered cognitive function. Indeed, such approaches have been

used to link brain network organization in healthy cohorts to a

range of cognitive functions including attention [26,27], memory

[14,28–30], learning [31–34], and emotion [35] and language

processing [36]. Recent studies in schizophrenia cohorts have

further demonstrated that the organization of task-based func-

tional brain networks can be linked both to the efficacy of auditory

rehabilitation efforts [16] and to working memory performance

[5,14,30,37]. These findings suggest that the characterization of

the dynamic network of task-based synchronous brain activity

might be a powerful tool to study cognitive impairments in

schizophrenia, providing insight into the neurobiological mecha-

nisms of the disease. However, many of these studies have several

potential limitations, such as using only a small set of network

diagnostics and constructing a single functional network from a

large array of data.

In this study, we provide an expanded examination of the

functional brain network architecture in people with schizophrenia

estimated from magnetoencephalography (MEG) data acquired

during the performance of a working memory N-back task. We

apply a multiresolution approach [20] which builds on previous

work in the identification of neurophysiological markers of

schizophrenia in resting state fMRI data [19,20,38]. These studies

together hypothesize that neurophysiological alterations in schizo-

phrenia will manifest themselves as a complex hierarchy of

signatures across univariate, bivariate, and multivariate statistical

measurements. By examining these measurements in concert, we

are able identify scale-specific and scale-generic properties of

abnormalities which could have implications for understanding

putative neurobiological mechanisms.

In this multiscale approach, we focus on entropy (univariate),

functional connectivity (bivariate), and network topology (multi-

variate). More specifically, we examine gross measurements of

functional connectivity and explore their link to single time series

variability, a relationship previously identified in resting state

fMRI data [19,20,38]. To quantitatively characterize functional

brain network structure, we examine 12 binary network diagnos-

tics across a wide range of densities and employ a recently

developed statistical technique (functional data analysis) to identify

significant group differences. To detect time-varying network

structure and to increase statistical robustness, we construct an

ensemble of networks for each individual using data extracted

from 66 separate trials.

Finally, in a novel extension of the analysis of functional brain

network structure in the classical frequency bands of brain activity,

we examine functional networks constructed from the interactions

between frequency bands. Inter-frequency networks are particu-

larly interesting in the context of our examination of the N-back

task because cross-frequency interactions are thought to facilitate

memory function [39] by enabling the cross-function integration

of information over spectrally distinct processing streams [40].

Furthermore, evidence suggests that cross-frequency interactions

are altered in schizophrenia, and the strength of these alterations

has been linked to genetic risk factors for the disease [41]. Based

on a prior study showing regional specificity of increased and

decreased cross-frequency coupling in schizophrenia [41], we

expected that patterns of cross-frequency connectivity would be

significantly altered in the disease, supporting the hypothesis that

overall processing and integration of information is impaired in

schizophrenia.

Using these tools, we uncover an extensive pattern of altered

network structure and network dynamics in people with schizo-

phrenia, laying the groundwork for further studies that could

potentially lead to the identification of intermediate phenotypes

[42] and development of diagnostic biomarkers for the disease

[21,43].

Materials and Methods

Participants
14 healthy volunteers and 14 people diagnosed with schizo-

phrenia spectrum disorders (according to the Diagnostic and

Statistical Manual of Mental Disorders IV criteria) took part in the

Clinical Brain Disorders Branch/National Institute of Mental

Health Genetic Study of Schizophrenia (National Institutes of

Health Study Grant NCT 00001486, Daniel R. Weinberger,

principal investigator). None of the healthy volunteers had

qualitative structural magnetic resonance imaging abnormalities

or history of psychiatric illness, depression, or loss of consciousness.

All patients were chronic (mean duration of illness 12.7+8:3(SD))
outpatients, of which 12 were receiving antipsychotic medication

Figure 1. Group Differences in Activity and Connectivity.
Wavelet entropy (A) and intra-frequency strength (B), averaged over
sensors, in the c{-, b-, a- and h-bands for healthy controls and people
with schizophrenia. Asterisks indicate significant group differences as
measured by non-parametric permutation tests (pv0:05, corrected for
multiple comparisons using the Holm-Bonferroni method).
doi:10.1371/journal.pone.0072351.g001
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at the time of the study (see Table S2 in the supplementary

information (SI)); none of the healthy volunteers were taking

psychoactive medication. Mean(STD) PANSS scores for the

patients were 15.5+4:9 on the positive symptoms scale,

18.3+9:2 on the negative symptoms scale and 34.4+9:1 on the

general psychopathology scale. For a full tabulation of PANSS

scores for participants, see Table S1 in the SI. Subjects were

matched for sex (9 males, 5 females in each group) and did not

differ significantly in age. The mean age of the healthy control

group was 30 years +7:3 (SD), and that of the patient group was

33 years +8:6 (SD).

Ethics statement
The protocol for this experiment was approved by the National

Institute of Mental Health Institutional Review Board. All healthy

participants gave informed consent in writing. We assessed the

capacity of patients to provide consent for participation in studies

on a case-by-case basis. The Human Subjects Protection Unit

(HSPU) at the National Institutes of Health performed the

capacity assessment and provided consent monitoring as needed.

For subjects without the capacity to provide informed consent,

consent was instead obtained from the holder of the Durable

Power of Attorney (DPA). For any patient who did not have legal

status (regardless of capacity) to provide informed consent, the

guardian authorized the research by signing the consent form.

When such surrogate consent was obtained, the patient indicated

assent by also signing the consent form.

Data acquisition
MEG data were acquired at the National Institute of Mental

Health in Bethesda, MD. The experimental paradigm was a visual

2-back working-memory task using numerical stimuli ranging from

1 to 4 as previously described [44]. Earlier studies using the same

task demonstrated abnormal behavioral and neuroimaging asso-

ciations with schizophrenia [45–47]. Visual stimuli (numbers in

the range from 1 to 4) were presented visually, each for 500 msec.

After the presentation of the third stimulus, the subject was asked

to respond within a 1300 ms stimulus-free period by pressing a

button to indicate the identity of the stimulus seen 2 stimuli

previously. After the presentation of the fourth stimulus (which

also comprised 500 ms), the subject was asked to respond within

the same 1300 ms stimulus-free period by pressing a button to

indicate the identity of the stimulus seen 2 stimuli previously. This

combination of presentation (500 ms) and response (1300 ms)

periods continued for the next 7 stimuli, for a total of 11 stimulus-

response periods, each 1800 ms in duration. Each subject

performed 6 blocks, each composed of 11 stimulus-response

periods. During the performance of this task, data were recorded

using a 275-channel CTF system (VSM MedTech) with a

sampling rate of 600 Hz.

Data preprocessing
We used MATLAB [48] and FieldTrip software [49], for

preprocessing of the data. Eye blinks were identified and removed

from the raw data by an automated process using a threshold

detection function, followed by a signal space separation based on

principal components analysis (PCA). Raw data were mean

corrected and filtered to attenuate background low-frequency

noise and line noise at 60 Hz by using a 0.3-Hz-width filter.

We obtained an estimate of head movement during the

recording by calculating the difference (in centimeters) between

the headcoil position prior to and following the recording. We

used a group-level cutoff criteria of an average of 0.5 cm or

smaller deviation in position pre-post. Both groups met the

criteria. Additional corrections for head movement were not

employed for several reasons. As highlighted in [50], head

movement artifact correction methods [51–54] are inherently

unstable to large movements and may also fundamentally alter the

Figure 2. Entropy and Strength: Inter-Subject Level. Scatterplots of strength and complexity of the time series, as measured by wavelet
entropy, for c{-, b-, a- and h-bands. Single data points represent values for each individual averaged over trials and sensors. Red markers denote
subjects with schizophrenia spectrum diagnosis; blue markers denote healthy subjects. Lines indicate best linear fits for the two groups separately

(red, SZ; and blue, HC) and we provide r2 values as indicators of goodness of fit. Similar scatterplots that code each experimental block separately are
provided in Figure S1 in the SI.
doi:10.1371/journal.pone.0072351.g002
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MEG time series adversely, possibly due at least in part to the

assumptions of time series stationarity. Because we do not perform

source reconstruction, we follow the advice outlined in [50] by

examining the raw data for single trials in sensor space without

head movement correction. This is considered a statistically

conservative approach, prone to Type II (false negative) rather

than Type I (false positive) errors [50].

The axial gradiometers of the CTF machine have source

profiles that include information from a wide spatial range, strictly

limiting the interpretation of the anatomical location of results. To

retain the inherent correlation structure of a network of interacting

brain regions while gaining localization specificity, we transformed

the data into planar space. Using Fieldtrip, the planar transform

was applied to the data by using the function ft_megplanar. This

function represents a transformation from the radial gradient

measured by the CTF system to tangential gradient configuration,

aimed at improving localization specificity [49].

For trial-by-trial analysis, the time series were cut into epochs of

1800 ms, composed of the presentation of the third stimulus in a

set (500 ms in duration) and the stimulus-free response period

(duration 1300 ms). We refer to these 1800 ms epoch as trials

throughout the remainder of the manuscript. Because each subject

performed 6 blocks of 11 sets of stimuli, we investigated a total of

66 trials per subject.

Wavelet decomposition
We focused our investigation on frequency-band-specific

oscillations in the MEG signal by employing a wavelet analysis.

Time series were resampled to 120 Hz to constrain the frequency

bands of the wavelet transform to roughly conform to the classical

frequency bands [14]. Each frequency band of interest was

isolated by applying the maximal overlap discrete wavelet

transform to each time series [55]. In line with previous work,

we used the Daubechies 4 wavelet [14]. Wavelet scale 1 (30–

60 Hz) roughly corresponds to the c band, scale 2 (15–30 Hz) to b,

scale 3 (8–15 Hz) to a, and scale 4 (4–8 Hz) to h. Due to the

relatively short trial length (1.8 s), we did not examine frequencies

below 4 Hz. Due to the sampling frequency (120 Hz), we had

more power to estimate coefficients in the lower frequency range

of wavelet scale 1 than the upper frequency range and we

therefore refer to this scale throughout the remainder of the

manuscript as low c or c{.

Functional connectivity and complexity estimation
Before constructing functional brain networks, we characterized

each sensor’s wavelet time series and the pairwise relationship

between sensor time series. To quantify the complexity of the time

series, we computed the Shannon wavelet entropy [20,56,57],

which we describe in detail in the SI. To investigate functional

connectivity between sensors, we calculated the mutual informa-

tion (MI), which is particularly appropriate for estimating

interactions that encompass a narrow frequency band (e.g., a

Figure 3. Entropy and strength: Sensor Level. Scatterplots of strength and wavelet entropy in c{-, b-, a- and h-bands. Single data points
represent values for each sensor averaged over trials and individuals. Red markers denote data from the SZ group; blue markers denote data from the

HC group. Lines indicate linear fits for the two groups separately (red, SZ; and blue, HC) and we provide r2 values as indicators of goodness of fit.
doi:10.1371/journal.pone.0072351.g003

Figure 4. Cost-Efficiency of Functional Networks in Health and
Disease. (A) Cost-efficiency in the c{-, b-, a-, h-, and cross-frequency
band networks for healthy controls (blue) and people with schizophre-
nia (red). Error bars indicate the standard error over subjects. The gray
shaded line indicates the expected values of cost-efficiency for an
ensemble of random (ER) graphs (see Methods).
doi:10.1371/journal.pone.0072351.g004
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wavelet scale) [58]. Each pairwise MI calculation utilized 216 time

points (1800 ms sampled at 120 Hz), an epoch length similar to

that used in previous neuroimaging studies [59–61]. Due to the

finite length of data, biases and random errors can not be ruled out

[62], but these effects should be strongly mitigated by our

utilization of multiple trials to identify network signatures of the

cognitive processes common to all epochs.

We represent pairwise sensor MI both within and between

frequency bands as sensor-by-sensor (275|275) functional con-

nectivity matrices. To construct intra-frequency functional con-

nectivity matrices, we calculated the MI between the time series in

frequency band a of all possible pairs of sensors to create the

weight matrix W a. To construct inter-frequency functional

connectivity matrices, the process was similar: for each pair of

frequency bands a and b, we calculated the MI between the time

series of sensor i in frequency a and sensor j in frequency b for all

possible pairs of sensors i and j. This resulted in the weight matrix

W ab. The pairwise mutual information values in both the intra-

and inter-frequency matrices were normalized according to Strehl

and Ghosh [63], ensuring that the values of the elements of W a

and W ab were in the range ½0,1�. Through this process, we created

4 intra-frequency functional connectivity matrices (c{, b, a, and h)

and 6 inter-frequency functional connectivity matrices (c{{b,

c{{a, c{{h, b{a, b{h, a{h) per subject for each of the 66

trials (660 total networks per subject).

The magnitude of functional connectivity is quantified using the

network strength (hereafter referred to simply as strength) of sensor i,

which is defined mathematically as the average MI between sensor

i and all other sensors in the network [15,20,64–69]:

Si~
1

N

X
j
Wi,j . The strength of the network is defined as the

mean strength of all sensors: S~
1

N

X
i
Si.

Figure 5. Binary Network Organization in Health and Disease. (A–B) Example binary network diagnostic curves as a function of threshold: the
modularity for controls (HC; black) and people with schizophrenia (SZ; red) (A), and the robustness to targeted attack for controls (black) and people
with schizophrenia (blue) for c{-band networks. Individual curves indicate average values for each individual over the 66 trial-specific networks. (C)
Significant group differences in graph diagnostic versus cost curves for 12 graph diagnostics (y-axis) in both intra- and inter-frequency bands (x-axis).
Warm colors indicate that the diagnostics values were higher in people with schizophrenia than in healthy controls; cool colors indicate that the
values were higher in healthy controls than in people with schizophrenia. Both warm and cool colors are two different shades corresponding to
different levels of stringency for significance testing: false discovery rate (FDR,pv0:000417), and uncorrected (pv0:05). See Figures S2 and S3 in the
SI for the full graph diagnostic versus cost curves for all subjects, frequency bands, and diagnostics.
doi:10.1371/journal.pone.0072351.g005
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Network properties
To quantitatively characterize the topology of the intra- and

inter-frequency functional connectivity matrices, we construct sets

of binary networks summarizing the interactions (edges) between

sensors (nodes). A binary network can be represented mathematically

by an adjacency matrix A, whose entries Aij are either 0 or 1,

indicating the absence or presence of an edge respectively. Binary

networks can be obtained by thresholding a given functional

connectivity matrix in several ways [20,70]. Here we employ the

technique of cumulative thresholding, a procedure in which a

threshold is applied to the weighted functional connectivity matrix

W to retain a given percent of strongest connections. Weights

(e.g., MI values) that pass this threshold were set to a value of 1 in

the adjacency matrix A, while those that did not pass this

threshold were set to a value of 0 in the adjacency matrix A.

The percent of nonzero elements of A is also known as the

network density, or network cost K. We can employ a range of

thresholds to probe the topological organization of a network over

a range of network densities. Using a high threshold, we obtain a

sparse matrix representing the topology of the strongest functional

associations between sensors, while using a lower threshold, we

obtain a denser matrix representing the topology of functional

associations over a wider range of strengths. In this study, we

employed a set of thresholds enabling us to examine corresponding

sets of networks with densities ranging from 0 (no connections

present) to 0.5 (half of the possible number of connections present)

in steps of 0.01. We refer to this network density range 0vKv0:5
as the cost regime of interest. Our choice to examine network

organization over a large range of network density values is

supported by previous studies [71,72] that have demonstrated that

the choice of threshold can have a large influence on the

topological properties of the binary graph. Moreover, our choice

to employ a variable set of thresholds to obtain a fixed set of

network densities ensures that our results are not be biased by

individual or group differences in mean strength [73].

We quantified the organization of the binary networks using the

path-length and clustering coefficient [74], global and local

efficiency [14,75,76], betweenness centrality [77], modularity

[78,79], hierarchy [13,80], synchronizability [81,82], assortativity

[13,83], and robustness [15,84]. In addition to topological network

properties, we also studied the physical measure of mean

connection distance [13], as well as a combined topophysical

property Rent’s exponent [85] which estimates the efficiency of the

topological embedding of the network into physical space.

Mathematical descriptions of these diagnostics are given in the SI.

Statistical analyses
We tested for group differences in channel power, strength and

entropy using a pairwise non-parametric permutation test

(n = 10000 permutations) and we used the Holm-Bonferroni

method for multiple comparisons correction. We examined the

reliability of network properties over subjects and trials using the

coefficient of variation (CV), which is defined as the standard

deviation s of a given sample normalized by its mean value m:

CV~
s

m
: ð1Þ

To test for inter-subject temporal variability in functional brain

network organization, we calculated the CV for each network

diagnostic, for each subject in both groups, and for all 10 intra-

and inter-frequency networks. Note that we excluded the

hierarchy and assortativity from this analysis because their values

are close to zero, making the CV less meaningful and more prone

to estimation errors from the division of numbers %1. To test for

group differences in temporal variability of network structure, we

used a repeated measures ANOVA with CV values averaged over

costs, group as a categorical factor, and frequency band and graph

diagnostic as repeated measures.

To identify group differences in network diagnostics, we used

Functional Data Analysis (FDA). FDA enables statistical inference

from sets of functions [86] by extending the principles of statistical

inference from data points to data curves. Here, in keeping with

Table 1. Results for a Repeated Measures ANOVA of
Temporal Variability in Network Topology, measured using
the CV.

SSE DF MSE F p

Group 0.04 1 0.04 6.24 0.02

Frequency Band 0.41 9 0.05 52.6 0

Diagnostic 6.24 9 0.69 309.74 0

Frequency
Band*Diagnostic

1.63 81 0.02 41.83 0

Frequency
Band*Group

0.04 9 0 4.52 1.68e25

Diagnostic*Group 0.11 9 0.01 5.27 1.52e26

Frequency Band*
Diagnostic*Group

0.11 81 0 2.74 4.64e214

doi:10.1371/journal.pone.0072351.t001

Figure 6. Temporal Variability of Network Diagnostics for
binary network diagnostics in the c{ and b intra-frequency
networks and in the c{{b inter-frequency networks. CV values
indicate temporal variability over trials for healthy (blue) and
schizophrenic subjects (red), averaged over the entire range of cost
values. Error bars indicate the mean squared error over subjects and
costs. Values and error bars for synchronizability are scaled down by a
factor of 10 for visualization purposes. Results for other frequency
bands can be found in Figure S4 in the SI.
doi:10.1371/journal.pone.0072351.g006
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[20], the values of the graph properties were treated as a function

of network density, and the two groups, (controls and people with

schizophrenia) were compared with a non-parametric permutation

test using twenty thousand permutations of group labels. With a

total of 120 p-values (representing 10 networks – 4 intra- and 6

inter-frequency networks – times 12 graph properties), we chose to

control for Type II errors due to multiple comparisons using a false

discovery rate correction (FDR, pv0:05=N~4:17|10{4 ).

In addition to testing for group differences in network structure,

it is often of interest to determine whether the structure of an

empirical network is different from what one would expect in a

given null model. While the development of potentially useful

network null models is ongoing [19,87], here we employ

benchmark Erdös-Renyi (ER) random graphs to test whether the

network topology identified in intra- and inter-frequency func-

tional brain networks was non-random. We created an ensemble

of 66 ER graphs for each network density and each of the 4 intra-

and 6 inter-frequency networks. Note that the number of networks

in the ensemble was set to be identical to the number of networks

in a single subject.

All computational and statistical operations were implemented

in MATLABH (2007a, The MathWorks Inc., Natick, MA).

Network diagnostics were estimated using a combination of in-

house software, the Brain Connectivity Toolbox [17], and the

MATLAB Boost Graph Library [48]. The repeated measures

ANOVA was performed using freely available code [88].

Results

Working memory performance
We examined the accuracy of performance in the 2-back

working memory task for both the schizophrenia and control

groups. People with schizophrenia had a significantly lower

accuracy (44:4+25:5 % (STD), the median was 56.1%) than

controls (84:2+16:7 %): two sample t-test t~5:15,

p~2:23|10{5. These results confirm that working memory

function is impaired in our cohort of people with schizophrenia,

supporting an additional investigation into the patterns of brain

function during task performance.

Time series variability and co-variability
Time series variability and co-variability. We examined

the complexity of the MEG signals in the two groups by measuring

the Shannon wavelet entropy of the sensor time series in four

classical frequency bands (c{-, b-, a- and h; see Methods). On

average, the entropy was lower in people with schizophrenia in 3

of the 4 bands (c{, b, and a); see Figure 1A.

The co-variability of sensor time series is thought to be a

measurement of synchronous oscillatory neuronal activity and

therefore potentially a proxy for large-scale communication

between brain regions. We estimated the mutual information

between sensor time series in the same four frequency bands (c{-,

b-, a- and h; see Methods). The strength of functional connectivity

of a sensor was defined as the average mutual information between

that sensor’s time series and the time series of all other sensors.

Functional connectivity displayed frequency-dependent variation,

being smallest in the highest frequency band (c{) and largest in the

lowest frequency band (h) for both groups; see Figure 1. On

average, functional connectivity was higher in people with

schizophrenia all 4 bands (c{, b, a, and h). To rule out effects

of differences in signal-to-noise ratio, we also estimated raw

channel power for all individuals in this study and found no

significant group difference (non-parametric permutation testing,

p~0:47).

Relationship between entropy and strength. Recent work

has described robust correlations between functional connectivity

and estimates of time series complexity in fMRI activity

measurements [19,20,38], which are present but altered in

schizophrenia [20,38]. Here we examine this potential relationship

in a different imaging modality (MEG) both across frequency

bands and between groups. In Figure 2, we show the strength and

entropy of each individual, averaged over sensors and trials.

Importantly, we find that correlations between the two measure-

ments at the inter-subject level are frequency-dependent. Both

groups display a significant inverse relationship between entropy

and strength in the b-band, suggesting that individuals with high

temporal variability in brain function have lower temporal co-

variability. This relationship also appears to hold for the controls

in the other frequency bands. In Figure 3, we show strength and

entropy for each sensor (rather than each individual), averaged

over trials and over individuals within a group. Again, we identify

a strong inverse relationship between entropy and strength, which

in this case is strongest in the h-band. Of note, the inhomogeneous

distribution of values characterized by a sparse low entropy tail is

consistent with data reported in [20], and potentially indicates

variation in the roles of brain areas in information processing.

Network structure
Given the group differences in connectivity identified in the

previous section, we next asked whether the patterns of

connectivity between sensors are altered in schizophrenia. We

characterize these patterns using binary network diagnostics. See

Methods for details on binary network construction and the SI for

mathematical definitions of network diagnostics.

Cost-efficiency. We constructed binary graph diagnostics as

a function of network density using a cumulative thresholding

technique (see Methods). A simple network diagnostic that

collapses such a curve into a single value is the cost-efficiency,

which is defined as the maximum of the efficiency-minus-cost

curve [14,76,89] (see the SI). In Figure 4A, we show the cost-

efficiency of both intra- and inter-frequency networks for both

groups. As expected from previous work [14], we found that cost-

efficiency values decreased with increasing frequency. Importantly,

intra-frequency networks demonstrated consistently lower cost-

efficiency than inter-frequency networks. Group differences were

only evident in intra-frequency networks (e.g., the b, a and h
networks), with cost-efficiency being higher in the control group

than in the patient group. Inter-frequency networks, while not

demonstrating a group difference, did show a significantly higher

cost-efficiency than expected in an ensemble of Erdös-Reny

random graphs (see Methods), suggesting the presence of non-

random structure in cross-frequency interactions.

Binary network organization. While cost-efficiency has the

advantage of collapsing a binary-diagnostic versus cost curve into a

single value, it is also of interest to examine the shape of these

curves for the other diagnostics. We examined 12 binary graph

diagnostics as a function of cost for both groups and all 10

frequency bands [66]; see the Methods and the SI. We separated

diagnostics into those that showed higher values in people with

schizophrenia (e.g., see Figure 5A) and those that showed higher

values in healthy controls (e.g., see Figure 5B). We found that the

majority of significant group differences (pv0:05 uncorrected)

were located in the c{ and b intra-frequency networks and in the

c{-b cross-frequency networks; see Figure 5C. The majority of

these differences also pass corrections for multiple comparisons

with the false discovery rate (FDR) method. In the a-band, we also

observed a trend for significant group differences in 5 out of the 12

diagnostics (pv0:05 uncorrected).
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People with schizophrenia displayed higher global and local

efficiency, betweenness centrality, clustering coefficient, modular-

ity, and assortativity and displayed lower hierarchy, synchroniz-

ability, mean connection distance and robustness to both targeted

and random attack. In intra-frequency networks, these alterations

are consistent with an abnormality in the distributed nature of

healthy putative communication patterns present in adulthood

[90], leading to a more local, more segregated, and less integrated

information processing structure. In the c{-b inter-frequency

network, this pattern of results suggests that the integration of

information over spectrally distinct processing streams [40], likely

occurring between more distant brain areas, is impaired in

schizophrenia, potentially impacting on working memory perfor-

mance. More generally, the identification of group differences in

both topological and physical network properties suggests that

disease-associated changes in brain network organization might be

linked to multiple developmental mechanisms. Indeed, recent

theoretical work has suggested that altered constraints on both

information efficiency (a topological property) and metabolic cost

(a physical property) can lead to schizophrenia-like changes in

network architectures [91].

Variability of binary network structure. Thus far we have

reported results for each individual derived from networks

constructed from 66 trial blocks. Here we ask whether network

organization is variable over trial blocks in the two groups. To

quantify temporal variability in network structure, we computed

the coefficient of variation (CV) for network diagnostics over trial

blocks for each individual in all 10 frequency bands.

In Figure 6, we show the CV for the c{ and b intra-frequency

and the c{{b inter-frequency networks, averaged over costs (for

similar results in other frequency bands, see the SI). We observe

that the CV varies over binary graph diagnostics in a similar way

across frequency bands. We also note that in almost all cases, the

temporal variability appears to be larger for people with

schizophrenia. To quantitatively test this observation, we used a

Repeated Measures ANOVA (see Methods for details and Table 1

for results). The main effect of group (F~6:24, p~0:02)

confirmed that the networks derived from people with schizo-

phrenia varied more over time than did those derived from

healthy controls, suggesting a fundamental alteration in the

dynamics of functional brain networks in schizophrenia.

Discussion

We have examined temporal characteristics of MEG data

acquired from people with schizophrenia and controls during a

working memory task. Our approach spanned several distinct

levels, including that of the individual sensor time series

(univariate), the co-variability between time series (bivariate), and

the patterns of co-variability across sensors using binary network

diagnostics (multivariate). We identified disease-associated changes

in brain function at each level. People with schizophrenia

displayed (1) lower time series entropy, suggestive of decreased

information content of MEG signals and (2) higher strength of co-

variability between time series, suggestive of hyperconnectivity

between brain regions. Together, these results stand in contrast to

the notion of schizophrenia as a disease characterized by reduced

neurophysiological signal to noise ratios and reduced functional

connectivity. We also found that people with schizophrenia

displayed an extensive pattern of altered topological organization

in binary sensor networks. Importantly, network properties of

cross-frequency associations between time series in the c{- and b-

bands differed between groups, uncovering a novel feature of

dysconnectivity. Finally, the temporal variability of brain network

architecture in people with schizophrenia was significantly higher

than that in healthy controls, a phenomenon suggestive of

decreased dynamic constraints on brain function.

0.1. Implications for future studies
The mechanisms of psychotic symptoms in schizophrenia, their

genetic underpinnings and their brain signatures, are far from

understood. The interpretations of neuroimaging phenomena and

related conclusions regarding neurophysiological mechanisms of

the disease, are greatly hampered by the confounding effects of

medication and disease heterogeneity associated with epiphenom-

ena related to smoking and chronicity, as well as the heterogeneity

of the mental state of ill subjects during these MEG procedures.

Thus, it is impossible to conclude that our findings represent

primary disease phenomena rather than epiphenomena related to

secondary factors that are associated with the state of illness. These

difficulties can be overcome to some degree by leveraging the

genetic similarity between people with schizophrenia and their

unaffected siblings and testing for similar imaging phenomena in

both groups.

An important goal in schizophrenia research is the identification

of intermediate phenotypes – observable characteristics that show

tiered values in patients, their siblings, and controls – which might

represent a powerful tool for the quantification of genetic risk

mechanisms for psychiatric disease [92]. Alterations in brain

functional architecture and temporal variability of brain activity

have been proposed as such phenotypes [42,93,94] and might

directly underlie the behavioral symptoms of psychosis [95].

Indeed, recent evidence suggests that functional connectivity

might be more sensitive to genetics [96,97] and to schizophrenia

[20,98] than the simple activity of brain regions alone.

Our extensive study of multiscale brain function in a small

cohort of patients lays important groundwork for future studies

that seek to uncover novel intermediate phenotypes by employing

patients’ siblings. Our results could serve to narrow the focus of

such analyses to (1) high frequency c{ and b band functional

connectivity, (2) network properties of whole-brain inter-frequency

connectivity and (2) dynamic changes in network configuration

during task performance.

Altered time series variability
Signal variability or noise is a characteristic feature of the

cortical system [99] and is thought to facilitate the exploration of

functional network configurations necessary for healthy cognitive

function [100]. Increased variability of stimulus-induced prefrontal

electromagnetic activity has been observed in both people with

schizophrenia and their healthy siblings [93,101,102], suggesting

that cortical noise might be a genetic biomarker for the disease.

Indeed, distributed patterns of both increased and decreased signal

variability differentiate people with predominantly positive or

negative symptom profiles [103,104]. Furthermore, signal vari-

ability is behaviorally relevant, having been linked to task accuracy

in both probands and healthy controls [93,102,105]. Increased

high-frequency signal variability in people with schizophrenia has

been observed in steady state evoked potentials [106] and resting

state EEG [107]. Notably, in the latter study, this effect was most

pronounced in frontal areas in drug-naive subjects and reduced by

effective neuroleptic treatment.

Our results support the notion that signal variability is affected

in schizophrenia. By employing the simple measure of time series

entropy, we showed that signal variability was decreased in

probands in high frequency bands (c{ and b). However, it is

important to note that the Shannon entropy characterizes

properties of the distribution of values in the time series rather
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than the temporal evolution of the signal. Alternative measures of

temporal signal variability, such as the multi-scale entropy [108],

the Renyi number [109], the Lyapunov exponent [110], the fractal

dimension [103,111], and the Hurst exponent [112], might

provide greater or lesser sensitivity to disease state [113] or to

disease-associated alterations in lower frequency bands.

Activity and connectivity
Intuitively, one might imagine that the complexity of a region’s

time series would have some bearing on the strength of

connectivity between that region and other regions. For example,

a region with a more noisy signal might be less likely to show

strong associations with other regions than a region with an

ordered, strong oscillatory signal. Such a relationship would

suggest that altered functional connectivity patterns can not only

be driven by altered putative communication but also – more

simply – by altered regional activity. Parsing the relative roles of

region activity abnormalities and pairwise communication abnor-

malities is imperative for uncovering biological mechanisms of

disease-related network changes.

A few recent neuroimaging studies address the relationship

between activity and connectivity empirically. Three fMRI studies

[19,20,38] and one MEG study [114] have reported a strong

positive correlation between time series variability and co-

variability during the resting state. However, our results suggest

a more complex relationship in task-based data that is modulated

by both frequency and disease. At the subject level, an inverse

correlation between entropy and strength was evident in the b
band for both groups, and also in the c{, a and h bands for the

control group. Similarly at the sensor level, the entropy and

strength were again inversely correlated, but in this case the effect

was largest in the h band. Importantly, the sensor-level analysis

uncovered a strong heterogeneity in the distribution of entropy

across sensors, complicating the statistical estimate of the entropy-

strength relationship. Further work across imaging modalities and

task states will be necessary to gain a greater intuition for the role

of activity-connectivity relationships in cognitive function.

Network structure of connectivity
Both binary and weighted network analyses each have their

specific advantages and disadvantages and, when applied to the

same data, can yield diverging results [72,115]. Weighted

networks suffer from issues of normalization, which are particu-

larly important in the context of comparing groups with different

average strength (as is the case here in our study), and further

require the careful identification of appropriate null models

[17,19,87]. Binary networks on the other hand rely heavily on

the choice of thresholds, and neglect information contained in the

weights of connections. However, binary networks are mathemat-

ically simpler [17] and their disadvantages can be at least partially

overcome by examining diagnostic properties over a range of

network densities. In this paper, we focus on binary networks and

examine their properties over a wide and dense cost range. To

identify group differences, we employ functional data analysis [20]

and find that people with schizophrenia display higher local

efficiency, betweenness centrality, clustering coefficient, modular-

ity, and assortativity and display lower global efficiency, hierarchy,

synchronizability, mean connection distance and robustness to

both targeted and random attack than healthy controls in high

frequency band networks.

Network organization in schizophrenia has been examined

using a variety of structural (sMRI, DTI [12,13,116]) and

functional (fMRI, EEG, and MEG) neuroimaging techniques

[15,18,20,29,30,117–120]. Schizophrenia-related alterations in

network structure are reported across all imaging modalities and

experimental paradigms. One seemingly modality-independent

alteration [121] in schizophrenia is a reduction of global network

efficiency (see [12,116] for networks derived from diffusion

imaging data, [18,20,118] for networks derived from resting state

fMRI data, and [14] and our current study for networks derived

from task-based MEG data). However, in general, the anatomical

location, strength, and direction of these alterations can differ

across brain states and between structural and functional imaging

modalites (see Figure S5 in the SI for a summary visualization).

This inherent complexity of the schizophrenia brain network

signature is consistent with the hypothesis that transient state-

related hypo-and hyper-connected functional profiles are super-

imposed on a general structural dysconnectivity [21]. Such a view

is supported by recent work demonstrating that network organi-

zation changes with brain state, for example as a function of

cognitive load [30,122], learning [31], and multisensory stimula-

tion [123]. Theoretical work using, for example, neural mass

models [124–126] could potentially provide mechanistic descrip-

tions of how state-dependent functional network alterations can

stem from state-independent structural dysconnectivity. Such a

theoretical mechanistic link would require empirical validation

from multimodal imaging studies [127–130]. Moreover, it is worth

emphasizing that evidence of gross structural dysconnectivity in

schizophrenia, as suggested by imaging studies, is inconclusive as

measures from structural MRI approaches are subject to diverse

epiphenomena that confound interpretation.

Dynamic network variability
We explored the evolution of functional connectivity during the

performance of a working memory task. This exploration was

guided by theoretical work proposing the critical role of functional

network reconfigurations in healthy cognitive function [100] and

by empirical work demonstrating the importance of reconfigura-

tion flexibility for cognitive phenomena like learning [31]. We

identified greater temporal network variability on average in

people with schizophrenia than in healthy controls. This finding is

consistent with theoretical formulations of dysconnectivity in

schizophrenia that suggest a temporal disorganization of sequen-

tially expressed dynamical states [131]. Indeed, from a theoretical

point of view, the inability of the dynamic brain network to sustain

the organization necessary for healthy cognitive function might

empirically result in the fragmentation of cortical and subcortical

networks seen in schizophrenia [132]. Empirically, our findings

are also consistent with a recent EEG study by Schoen and

colleagues [133] demonstrating an increased entropy of connec-

tions in schizophrenia specifically in the high frequency c{ band.

Together, these results point toward altered temporal trajectories

of whole-brain cortical function potentially due to inadequate or

altered constraints on brain dynamics in schizophrenia.

Methodological limitations and considerations
In addition to intra-frequency investigations, we have con-

structed inter-frequency networks to determine whether cross-

frequency communication patterns are altered in schizophrenia.

Cross-frequency interactions are thought to facilitate the cross-

function integration of information over spectrally distinct

processing streams [40] and might be critical for memory function

[39]. Phase-amplitude coupling and similar methods [41,45,134]

have been used to quantify these interactions, but the theoretical

foundations of these methods are still not well understood

[135,136]. We have chosen to use a relatively simple nonlinear

measure of interaction – the mutual information between times

series extracted from different wavelet bands – to quantify
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statistical associations between frequencies that could be studied

from a network perspective. Although outside of the scope of the

present paper, it would be interesting in future to examine the

effects of alternative estimates of these interactions on network

structure.

The data used for this study was acquired using a CTF

machine, whose axial gradiometers have source profiles that

include information from a wide spatial range, limiting the

potential for anatomical interpretations. Commonly used source

localization techniques allow for greater confidence in anatomical

localization but simultaneously change the correlation structure

between time series. Instead, to retain the inherent network

correlation structure and increase the localization specificity, we

transformed the data into planar space [14,16]. With advanced

setup and analysis techniques [50], source localization is however

becoming a more reliable option and should be considered for

future studies [137]. This however requires that head movements

be both minimized during recording, which poses difficulties with

some schizophrenic subjects especially, and corrected for during

preprocessing. We did not perform such a correction, however, the

effects of head movements on planar space trial-by-trial analysis of

short trials, should be small.

In the present study, we did not observe significant correlations

between the single-valued diagnostics (entropy, connectivity, cost-

efficiency and variability) and the accuracy of task performance,

for which our small sample size might be a factor. A more

extensive examination of the relationship between behavioral

variables and network diagnostics is outside of the scope of this

study, whose focus was primarily to identify alterations in network

structure and dynamics in schizophrenia.

Furthermore, as all of the people with schizophrenia included in

this study were on medication, most of them were smokers, and

their performance on the task was significantly worse than the

performance of the normal subjects, we can not determine

whether our findings are driven by the disease, by associated

epiphenomena, as an effect rather than a cause of the poor task

performance (e.g. altered attention, effort, distraction) or by

medication or a combination of these. To examine the effects of

these various epiphenomena, it would be important to perform a

follow-up study in unaffected siblings, for which our study gives

important guiding information.

Conclusion

Recent advances in physics and mathematics have provided

unique, robust quantitative network methods to examine the

structure and organization of whole-brain functional connectivity.

Mounting evidence from a plethora of imaging modalities,

cognitive states, and diseases underscores the utility of network

theory in capturing previously uninvestigated variations in large-

scale brain function and its alteration in disease states such as

schizophrenia [21,43,121]. In this study, we have introduced

several new methods for studying dynamic properties of brain

networks in schizophrenia, including cross-frequency networks

and temporal variation in network structure. We report a

multiresolution profile of alterations in activity, connectivity,

network topology, and network dynamics that impacts on band-

specific and cross-frequency putative communication patterns.

Our study lays important methodological groundwork for future

efforts in the identification of intermediate phenotypes [42] and in

the development of diagnostic biomarkers [21,43].

Supporting Information

Figure S1 Entropy and Strength. Correlation between the

strength of connectivity and complexity, as measured by wavelet

entropy, in c{-, b-, a- and h-bands. Single data points represent

the mean value pairs from a block of trials, trials from different

subjects are distinguished by different colors and markers. Red,

orange and pink markers denote subjects with schizophrenia

spectrum diagnosis; blue, turquoise and purple markers denote

healthy subjects. Value pairs from single subjects exhibit a

tendency to appear in clusters, which (mostly) are broken up only

at low entropy and/or high connectivity. With some subjects,

value pairs appear outside the main cluster in all bands, with

others, only in some. Also displayed are fitted linear functions for

the two groups (red and blue lines) with r2 values as indicators of

goodness of fit. It should be noted that these were obtained by

fitting to the mean value pairs for subjects, averaged over all 6

blocks of trials. This was done to avoid fitting to values for which

there are two sources of variance (subjects and blocks). These fits

indicate a negative correlation between entropy and strength,

especially for healthy subjects where r2 values are much higher.

(EPS)

Figure S2 Network Diagnostics: Part I. One set of six

network diagnostics (global efficiency, betweenness centrality,

clustering coefficient, local efficiency, modularity, and hierarchy)

is plotted as a function of density in networks within and between

frequency bands. Each curve represents one subject, values

averaged over all 66 trials. Curves for healthy controls are black,

those for SZ patients colored. The two sets of curves were tested

for statistically significant difference with Functional Data Analysis

(FDA), the resulting p-values are given. Where significance

(pv0:05) was calculated, the color of the SZ curves was set to

red, purple otherwise. We see significant differences for most

diagnostics between the groups in the c{, b and a bands, as well as

for the c{{b cross-frequency network.

(EPS)

Figure S3 Network Diagnostics: Part II. A second set of six

network diagnostics (synchronizability, assortativity, robustness to

targeted and random attack, Rent’s exponent, and mean

connection distance) is plotted as a function of density in networks

within and between frequency bands. Each curve represents one

subject, values averaged over all 66 trials. Curves for healthy

controls are black, those for SZ patients colored. The two sets of

curves were tested for statistically significant difference with

Functional Data Analysis (FDA), the resulting p-values are given.

Where significance (pv0:05) was calculated, the color of the SZ

curves was set to red, purple otherwise. In the c{ and b bands, as

well as in the c{{b cross-frequency network, we see again a

majority of diagnostics showing significant (pv0:05) differences,

but not in the a band.

(EPS)

Figure S4 Variability of network diagnostics. Coefficient

of variation for binary network diagnostics in all intra- and inter-

frequency networks. Values indicate variability over trials,

averaged over all healthy (blue) and schizophrenic subjects (blue)

and over the entire range of cost values. Error bars indicate the

square mean of the standard errors over subjects and costs.

(EPS)

Figure S5 Comparison of Whole-Brain Network Met-
rics. Results for a variety of network metrics are compared across

different studies. (Top Panel): Resting-state fMRI studies

[15,18,20,118,120,138]. (Middle Panel) Structural studies
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[10,12,13,116]. In Ref. [116], the metric are given for a fronto-

parietal network only. (Bottom Panel): EEG and MEG studies

[117,139–142] and our present study (Siebenh2013). Results are

given for each frequency band separately, where available.

Different frequency bands are signified by different colors and

different studies by different markers. Network diagnostics include

functional connectivity (Funct. Conn), structural connectivity

(Connectivity), clustering coefficient (clustering), modularity index

(modularity), small-worldness (SW-ness), average path length (path

length), local efficiency (local eff), global efficiency (global eff), cost

efficiency (cost eff), mean connection distance (MCD), betweenness

centrality (centrality), hierarchy parameter (hierarchy), robustness to

random attack (Robust rand), and robustness to targeted attack

(Robust targ). A data point outside (inside) the black circle indicates

that the value was significantly higher (lower) in schizophrenic

subjects than in healthy controls; a point on the circle indicates

that the study explicitly stated that no significant difference was

found. This figure only provides qualitative information; data

points are given slightly different radial coordinates only for

visibility, not to represent quantitative values.

(EPS)

Text S1 Supplementary Information for ‘‘Intra- and
Inter-Frequency Brain Network Structure in Health and
Schizophrenia.’’ This document includes mathematical defini-

tions for network diagnostics employed in the present analysis,

Figure S1–S5, and Tables S1–S2.

(PDF)

Table S1 Duration of Illness and PANSS Scores.
(PDF)

Table S2 Medication Profile of Patient Group.
(PDF)
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