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ABSTRACT

Functionally important nucleotide base-pairing often manifests itself in sequence alignments in the form of compensatory base
changes (covariation). We developed a novel index-based computational method (CovaRNA) to detect long-range covariation
on a genomic scale, as well as another computational method (CovStat) for determining the statistical significance of observed
covariation patterns in alignment pairs. Here we present an all-versus-all search for nucleotide covariation in Drosophila
genomic alignments. The search is genome wide, with the restriction that only alignments that correspond to euchromatic
regions, which consist of at least 10 Drosophila species, are being considered (59% of the euchromatic genome of Drosophila
melanogaster). We find that long-range covariations are especially prevalent between exons of mRNAs as well as noncoding
RNAs; the majority of the observed covariations appear as not reverse complementary, but as synchronized mutations, which
could be due to interactions with common interaction partners or due to the involvement of genomic elements that are
antisense of annotated transcripts. The involved genes are enriched for functions related to regionalization as well as neural
and developmental processes. These results are computational evidence that RNA–RNA long-range interactions are a
widespread phenomenon that is of fundamental importance to a variety of cellular processes.
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INTRODUCTION

The increase in appreciation of the role of RNA in biological
processes is staggering: From an initial view of RNAs playing
a variety of roles (in the forms of tRNA, rRNA, mRNA) in
protein production, it is now apparent, that—in the case of
the human genome—the majority of genomic information
is transcribed into RNAs (Derrien et al. 2012; Dunham
et al. 2012). Although the functional annotation of RNAs
is not as mature as compared with proteins, it seems likely
that RNAs play fundamental roles in a large number of cellu-
lar processes, in particular in the development of multicellu-
lar organisms (Lozada-Chavez et al. 2011). It also has been
found that RNA–RNA interactions play critical roles in a va-
riety of processes such as post-transcriptional gene regulation
(Fire et al. 1998), splicing (Will and Lührmann 2011), and
transport (Jambor et al. 2011). In this work we present a
computational pipeline that corresponds to a whole-genome
all-versus-all bioinformatics search for potential RNA–
RNA interactions applied to the genome of Drosophila mela-
nogaster (and several aligned insect genomes). The goal is

to obtain an initial version of an RNA–RNA interaction
network.
An RNA base-pair interaction that is conserved among

several related species means that at the two corresponding
genomic positions there is a bias toward A-U and G-C
(and G-U “wobble”) compared with other nucleotide pairs.
This can lead to a characteristic signature in a multiple se-
quence alignment called covariation (Bindewald and Shapiro
2006; Bindewald et al. 2006) . Several programs for predicting
nonlocal RNA–RNA interactions have been described. RNA–
RNA prediction programs use as input either pairs of single
nucleotide sequences (Tafer and Hofacker 2008; Huang
et al. 2009c,d; Kato et al. 2010; Salari et al. 2010; Seemann
et al. 2010a,b) or two multiple sequence alignments (Bern-
hart et al. 2006; Seemann et al. 2008, 2010a,b). Methods
for computing consensus RNA secondary structures given
unaligned homologous sequences have been described for
the case of intramolecular structure, but to our knowledge,
not for the case of RNA–RNA interactions.
Wecreated anovel program, calledCovaRNA,which allows

the high-throughput detection of long-range nucleotide co-
variation from genomic multiple sequence alignments. The
results of this program are analyzed by a program, CovStat,
that computes a measure of statistical significance for the ob-
served nucleotide bias in alignment pairs. The resulting RNA–
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RNA interaction network is then analyzed with respect to var-
ious aspects, such as existing functional annotations.

The key idea of the CovaRNA approach of a fast index-
based scanning for long-range covariation is that a pair of
covarying alignment columns can be viewed as two comple-
mentary sequences, each having a length equal to the number
of rows in a sequence alignment. Detecting a pair of covary-
ing alignment columns can thus be accomplished by using
the sequence complement of one column as a query in a da-
tabase of all considered alignment columns. Found covarying
column pairs are grouped into clusters (called covariation
clusters) (Fig. 1). Each covariation cluster corresponds to

two genomic regions with potential covariation between
them. With this method it is possible to perform an all-ver-
sus-all search, including searches for covariation between
regions belonging to different chromosomes or chromosome
arms; also, one can search for nucleotide covariation assuming
the same or opposite strand directionality of the two involved
genomic loci.
In a subsequent computational stage, a novel statistics-

basedmethod called CovStat is applied to this initial low-con-
fidence covariation network. This method consists of two al-
gorithms and each of them results in a P-value that indicates
the probability that the observed correlated mutations span-
ning twogenomic regions couldhavebeenobservedby chance
under the assumption that the two regions are independent.
Briefly, these twomeasures are (1) ameasure forabias of align-
ment columns with covariation to be arranged such that they
appear to correspond to the same helix; (2) ameasure for how
unusual it is toobserve thismany covarying alignment column
pairs spanning the two involved genomic alignment regions.
The resulting covariation clusters are then further analyzed
with respect to existing gene annotation data; this strategy
leads to several putative RNA–RNA interaction networks.

RESULTS

We applied the CovaRNA method to all regions of the geno-
mic multiple sequence alignments consisting of genomic in-
formation corresponding to 12 Drosophila species in an all-
versus-all manner (including intronic and intergenic regions)
(Clark et al. 2007; Stark et al. 2007). Only alignment blocks
consisting of at least 10 differentDrosophila species were con-
sidered; the considered aligned regions correspond to 59% of
the Drosophila melanogaster genome. The search results in a
set of 2,917,973 covariation clusters (Fig. 2).
The set of initial clusters obtained by the CovaRNA meth-

od are annotated with P-values that were generated by the
CovStat method. For this computational stage, the genomic
information corresponding to the aligned genome sequences
of 15 species was used (12 Drosophila species and three non-
Drosophila insect species, see Materials and Methods). We
obtain 3480 covariation clusters that correspond to a false-
discovery rate (FDR) corrected P-value cutoff of 0.05 and
881 covariation clusters that correspond to a Bonferroni
corrected P-value cutoff of 0.0001. Superposing these region
pairs with exonic regions (obtained from FlyBase) (McQuil-
ton et al. 2012) results in 1671 region pairs or 831 region
pairs, depending on whether the FDR or Bonferroni correct-
ed P-value was used as filter criterion (Fig. 2). This step also
involves the filter criterion that the two regions of a region
pair correspond to two nonidentical and nonoverlapping Fly-
Base genes, because in this analysis we focus on trans-acting
covariation.
In Figure 3 the set of 881 covariation clusters is shown in

the form of a circular representation. The plot shows that pre-
dicted inter- and intrachromosomal covariation clusters are

FIGURE 1. Hypothetical example of a covariation cluster. Shown is a
hypothetical chromosome with locations on that chromosome indicat-
ed by their nucleotide positions. A covariation cluster is a set of align-
ment column pairs with covariations that are grouped together by a
clustering algorithm. Each alignment column pair with covariation is
characterized by two genomic positions (called start and stop position)
as well as the “helix invariant” (the sum of their respective start and stop
positions—see Materials and Methods). In this hypothetical example,
there are five column pairs with covariation (they are listed in the table
embedded at the top-right of the figure; they are also depicted via black
lines connecting the respective start and stop positions). Each covaria-
tion cluster consists of two genomic regions (called Region 1 and
Region 2). Several conditions have to be fulfilled for a covariation clus-
ter: (1) A covariation cluster has to contain at least five alignment col-
umn pairs with covariation; (2) the distance between the two genomic
regions (in this example the distance between Region 1 and Region 2
is 8063–1035 = 7028) has to be at least 6000 nt; (3) the “difference”
between the total number of covarying alignment column pairs of the
cluster (in this example there are five alignment column pairs with co-
variation) and the number of “different” helix invariants (in this exam-
ple there are three different helix invariants: 9095, 9100, 9101) has to be
two units or larger; (4) the individual genomic regions have to have a
minimum length of 5 nt (in this example the lengths of Regions 1
and 2 are 6 nt and 8 nt, respectively; in other words, in this example
the covariation cluster would pass this particular filter criterion). The
clustering algorithm (a single-linkage clustering) ensures that for every
alignment column of a covarying alignment column pair there exists at
least one other alignment column that belongs to another alignment col-
umn pair of the same cluster, such that their genomic positions differ by
not more than 40 nt. Note that the two regions of a covariation cluster
can be located on the same chromosome or on different chromosomes.
Subsequent computational filtering stages are described in the subsec-
tion “Data processing steps” (Materials and Methods).
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found in all non-mitochondrial chromosomes. Furthermore,
we observe pronounced interchromosomal covariation be-
tween regions proximal to the centromere (proximal regions
of chromosome arms 2L/3L, as well as 2R/3L).
We found that the majority of detected covariations be-

tween two exons are such that the antisense of one exonic
region exhibits conserved reverse complementarity to anoth-
er exonic region; this appears as synchronized mutations
if the two genomic alignments corresponding to the two ex-
ons are being interpreted in the 5′ to 3′ direction of their cor-
responding transcripts (Fig. 2). A smaller number of cases
correspond to reverse complementarity with covariation
between two exonic regions in the sense direction. This leads
(for a given threshold of statistical significance) formally to a
sense as well as an antisense network consisting of seven and
207 gene pairs, respectively (Supplemental Tables S1–S4).
In order to independently verify the reliability of the adjust-

ed P-value approach, we applied the same computational
pipeline (depicted in Fig. 2) to a set of shuffled genomic align-
ments (the method used for shuffling these control align-
ments is explained in the Materials and Methods section).
The results are shown in Supplemental Figure S3. The
CovaRNA method detects 6032 initial covariation clus-
ters when applied to shuffled alignments; in other words,
the number of initial covariation clusters is by the factor
2,917,973/6,032 = 483.7 smaller compared with the original
alignments. After applying the CovStat method, only one co-
variation cluster remains for the case of the false-discovery-
rate correction and zero covariation clusters remain signifi-
cant after applying the Bonferroni correction. The superposi-

tion with known exonic regions leads to
zero overlaps. This resulting size of zero
predicted gene–gene interactions for the
case of shuffled input alignments sup-
ports the notion that the computational
pipeline is “conservatively reliable”; inoth-
er words, it leads to a low amount of false-
positive predictions, leaving open the pos-
sibility of a substantial number of missed
interactions (false negatives). One restric-
tion is that the CovaRNA and CovStat
methods rely on genomic alignments
that exhibit covariation; for example, the
alignments have to be of relatively high
quality. Also, one cannot exclude the pos-
sibility that there are differences in the av-
erage alignment quality for different types
of genomic regions. One area of improve-
ment to enable the detection of a larger
number of long-range interactions would
be to extend the computational pipeline
to allow for alignment-free methods.

We analyzed which types of genomic
regions the detected covariation clusters
can be attributed to. We found that the

majority of covariation clusters (>50%) overlap with an ex-
on that is part of the coding region of an mRNA, followed
by introns and intergenic regions (Fig. 4A). However, we
observe the highest enrichment of predicted covariation (de-
fined in the caption of Fig. 4) for noncoding RNAs, followed
by exons of mRNAs that correspond to 5′ UTRs and coding
regions (Fig. 4B). This suggests that many noncoding RNAs
have trans-acting functionalities, many of which have yet
to be characterized. The previously reported DNA chromo-
somal long-range interacting regions (Lieberman-Aiden
et al. 2009) do not lead to a pronounced enrichment, indi-
cating that this mechanism does not substantially contribute
to the alignment properties that give rise to the computation-
al results.
For each generated gene–gene network the number of

occurrences of covariation clusters between gene pairs is
shown in Table 1. Most covariation clusters occur between
genepairs such that bothof themareannotatedasprotein cod-
ing, followed by covariation clusters that relate pseudogenes
with protein-coding genes. The number of covariation clus-
ters is strikingly higher if the antisense of an annotated gene
is involved: In the case of theBonferroni correction-basednet-
work, we obtain only three pairs of sense-mRNAs that exhibit
covariation and 171 covariation clusters between an mRNA
and the antisense of anothermRNA. In other words, there ap-
pears to be a bias in order to avoid direct base-pairing between
RNA transcripts; instead, the expression of an antisense
transcript would lead to a specific base-pairing interaction.
We analyzed which gene functions are over- and under-

represented in our predicted network (Supplemental Table

FIGURE 2. Flowchart that depicts the various stages of data processing for identifying long-range
nucleotide covariation. The involved steps are explained in the subsection “Data processing steps”
(Materials and Methods). The sizes of the predicted networks corresponding to stage 5 relate to
Table 1 in the following fashion: The sense networks (nw1 and nw3) appear in Table 1A. The an-
tisense networks (nw2 and nw4) appear in Table 1B. The values corresponding to networks based
on the False-Discovery-Rate correction (networks nw3 and nw4) appear in Table 1, A and B, in
brackets. Note that the sum of predicted covariation relationships shown in Table 1, A and B, can
be higher compared with the network sizes shown here, because a genomic region can be anno-
tated with more than one feature simultaneously.
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S5). We find a pronounced bias toward gene functions relat-
ed to the organization of the cytoskeleton as well as the cell
membrane. Also apparent is an intriguing bias toward genes
that play a role in development (in particular neural develop-
ment). Also, we compared the functional similarity between
gene pairs of predicted networks compared with random.

We generated distance (i.e., sequence separation) histo-
grams for intrachromosomal covariations for both the sense
and antisense networks (Fig. 5A,B). The histograms reveal
a striking distance dependence in the case of the antisense
network, but not the sense network. A nonparametric statis-
tical test indicates that the two sets of distances originate from
different distributions (P < 0.001, two-sample, two-sided
Kolmogorov–Smirnov test, sample sizes n1 = 73, n2= 338).
The plethora of observed relatively short-range antisense co-
variations warrants further (experimental) characterization.
One may speculate that these detected covariations may be
due to cis-antisense regulation or due to hotspots of repeat el-
ement generation.

An example of detected covariation is shown in Figure 6.
It involves a genomic locus corresponding to the tkv (thick-
veins) gene as well as a locus corresponding to the gene

CG9203. The matrix with per-column P-
values of nucleotide covariation suggests
an extended helical structure of a possible
duplex. Note the existence of the anti-
sense transcript CR14033 (also known as
CG14033); its expression could lead to
the formation of tkv-CR14033 originating
endo-siRNA, which in turn targets and
down-regulates the gene CG9203 (Czech
et al. 2008; Okamura and Lai 2008; Oka-
mura et al. 2008). In other words, while
antisense transcripts (such as CR14033)
are endo-siRNA candidates, the method-
ology described in this study can also be
used to detect endo-siRNA target sites. A
second example of a detected long-range
covariation is presented in Supplemental
Figure S4.

DISCUSSION

A wide variety of molecular cell biology
phenomena could, in principle, give rise
to long-range covariation patterns. The
following is a nonexhaustive list of possi-
bilities: (1) RNA–RNA interaction via
endo-siRNA, (Czech et al. 2008; Oka-
mura and Lai 2008; Okamura et al. 2008;
Zhou et al. 2009); (2) RNA hitchhiking
(Jambor et al. 2011; Hartswood et al.
2012); (3) DNA long-range interactions
(Sexton et al. 2012); (4) formation of
self-assembling RNA–RNA complexes;

(5) RNA splicing; (6) RNA–DNA interactions; or (7) gene
duplication (Benovoy and Drouin 2009).
We find computational evidence supporting the involve-

ment of endo-siRNA-based long-range interactions: The
endo-siRNA generating clusters (Czech et al. 2008) are en-
riched for long-range covariation (Fig. 4B). Nine out of the
50 reported regions reported to be involved in endo-siRNA
generation overlap with the predicted FDR-based covariation
clusters. This suggests that this methodology can be utilized
for endo-siRNA target prediction and be beneficial for the
growing field of RNA nanotechnology (Afonin and Leontis
2006; Afonin et al. 2008a,b, 2010, 2011, 2012; Guo 2010;
Bindewald et al. 2011). It should be noted that the computa-
tional pipeline depends on the existence of covariation and is
designed to yield a low number of false positives, possibly at
the expense of false negatives (missed interactions). The ex-
ample shown in Figure 6 is a case that has been reported be-
fore as an endo-siRNA generating locus.
Figure 7 shows a plot of functional similarity between gene

pairs with antisense covariation as a function of sequence sim-
ilarity. This is based on pairwise sequence alignments between
their respective nucleotide transcript sequences. This network

FIGURE 3. Circular representation of detected covariation regions and their location with re-
spect to the Drosophila melanogaster genome. Red connecting lines indicate the positions of re-
verse-complementary covariation between region pairs with the same strand directionality.
Blue connecting lines indicate the positions of reverse-complementary covariation between re-
gion pairs with opposing strand directionality.
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is referred to as nw2 in Figure 2. The plotted functional sim-
ilarity is a mean of a functional similarity measure applied
to the three parts—biological process/molecular function/
cellular component—of the Gene Ontology (Ashburner
et al. 2000; Wang et al. 2007; Yu et al. 2010). The plot shows
that for gene pairs of the predicted network with a pair-wise
sequence similarity between 15% and 40%, the functional
similarity is in all but one case higher than 0.8, as opposed
to the randomized control gene network for which themajor-
ity of gene pairs have a functional similarity below 0.6. AWil-
coxon rank sum test applied to these two groups of functional

similarity scores (the two groups of similarity scores originat-
ing from the predicted and randomized network for the gene
pairs with <40% sequence similarity) results in a P-value of
9.13 × 10−6 (two-tailed Wilcoxon rank sum test, npred= 9,
nrand= 70 using default values of the R software (the R soft-
ware utilizes by default a normal distribution with continuity
correction to approximate the distribution of ranks under the
null hypothesis). In addition, the plot shows that in themajor-
ity of cases (88 of the 115 plotted cases [or 77%]of the predict-
ed network shown as red circles), the functional similarity is
higher than 0.8. This indicates that the approach for the detec-
tion of nucleotide covariation could be used as a novel ap-
proach for in-silico gene function prediction and annotation.
For the data set of low-confidence covariation clusters, we

find a functional bias toward genes that have cellular compo-
nent annotations such as plasma membrane, or cytoskeleton.
This may be interpreted as an indication of the widespread
phenomenon of RNA hitchhiking, in which RNA transcripts
bind to other RNAs that are already part of ribonucleopro-
tein complexes, which in turn are actively transported along
the cytoskeleton. This proposed RNA–RNA interaction net-
work might act in a statistical length-dependent manner, in
which an RNA is more likely to be part of active transport
if its transcript is longer, thus opposing the tendency of phys-
ical diffusion in which longer transcripts would be reaching
distal cellular components at a lower rate. A role of natural

FIGURE 4. Classification of genomic regions that are involved in long-
range covariation. (A) Fraction (in percent) of covariation regions that
overlap with genomic regions of a certain type. (B) Enrichment of a frac-
tion of bases that are predicted to be within covariation regions. The en-
richment of a region type is defined as (Ncr/Nr)/(Nc/N); Ncr: number of
genome positions that overlap with at least one region of a predicted co-
variation cluster;Nr: number of different genome positions correspond-
ing to the genomic region type of interest; Nc: total number of genome
positions that overlap with at least one region of a predicted covariation
cluster; N: total effective genome length. Note that the used uncorrected
values ofNcr andNc are affected by the restrictionsw.r.t. the used available
alignments that cover only 59%of the euchromatic genome. This bias to-
ward the “alignome” is approximately canceled out in the above formula
if the same correction factor of 0.59 is applied to bothNr andN. (Region
types)DNA long-range: genomic regions thatwerepreviously reported to
participate in long-range chromosomal interactions (Sexton et al. 2012);
intergenic: all euchromatic genomic regions that are not annotated as
coding exons, noncodingRNAsor introns; endo-siRNA loci: genomic re-
gions reported to be involved in endo-siRNA generation (Czech et al.
2008). Note that because a genomic region can be annotated with several
region-type attributes, the sumof thepercentagesdonothave to addup to
100. The standard deviation (estimated using the standard deviation of a
Poisson random variable combined with error propagation) relative to
the magnitude of the computed enrichment is 4% in the case of the
sense–antisense regions and below 0.01% for all other region types.

FIGURE 5. Histograms showing various properties of detected long-
range covariation. (A) Histogram of genomic distances between pairs
of genomic regions with covariation corresponding to two genes. (B)
Histogram of genomic distances between pairs of genomic regions with
covariation corresponding to a gene and the antisense of another anno-
tated gene.
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antisense transcripts in RNA transport could have the effect
that an RNA transport network is amenable to control and
regulation.

We found that the detected covariation clusters corre-
spond to intramolecular exon–exon covariation for only sev-
en different genes (Supplemental Table S6). This suggests
that the chosen set of parameters was very conservative;
also, one can expect that the larger the number of sequenced
genomes, the larger the number of covariation clusters that
are detectable and statistically significant.

The computational pipeline can be applied to organisms
other than Drosophila. The methodology depends on align-
ments that contain covarying alignment column pairs; un-
alignable regions as well as perfectly conserved regions are
not amenable to such a search for covariation. Also, it would
be interesting to extend the presented statistical test to in-
clude different weights that can be assigned to the different
genomic sequences. Because the computational cost of the
CovaRNA method scales with the third power with respect
to the number of organisms, the increasing number of avail-
able sequences (in the form of sequence model organisms)

should not be used indiscriminately; instead, a judicious
choice of related model organisms will remain relevant.

CONCLUSION

Taken together, our pipeline of novel computationalmethods
has uncovered a layer of genomic complexity in the form of
long-range nucleotide covariation that has thus far not been
fully appreciated. This set of detected covariation patterns is
likely to be only the “tip of the iceberg.” This computational
analysis could be an important step toward the further exper-
imental and computational characterization of cellular RNA–
RNA, DNA–DNA, and RNA–DNA interaction networks.

MATERIALS AND METHODS

Overview

The goal of the presented work is to generate and analyze results of
a genome-wide search for long-range covariation in Drosophila ge-
nomes. Starting from genomic alignments, the novel CovaRNA soft-
ware generates an initial set of long-range covariation clusters. The

FIGURE 6. Example of two covariation clusters that were detected. They correspond to two genomic regions that contain exons of the tkv gene as well
as CG9203. Notice that a transcript CG14033 (referred to in the image as CG14033) is overlapping with tkv and has reverse-strand directionality com-
pared with the tkv transcript. This is suggestive of a scenario in which transcripts of tkv and CR14033 hybridize, thus forming extended helical sec-
ondary structures that are processed to endo-siRNAs, which in turn down-regulate the expression of CG9203 (Czech et al. 2008; Okamura et al. 2008).
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genomic alignment pairs corresponding to this initial set of covari-
ation clusters are further analyzed with the help of the novel CovStat
method in order to determine whether the observed covariation pat-
terns are statistically significant. The CovStat method determines
whether a bias toward conserved complementary base pairs is stat-
istically significant. An all-versus-all search for long-range covaria-
tion applied to all euchromatic regions of the Drosophila 12-
genome alignment and three non-Drosophila insect genomes has
been performed (in other words, this search contains exonic,
intronic, and intergenic regions, and is not restricted to regions cor-
responding to known exons). A flowchart (Fig. 2) provides an over-
view of the applied methods. Using various computational methods
(explained in subsequent sections), this initial data set is filtered to
obtain proposed low-confidence and medium-confidence predicted
RNA–RNA interaction networks that are based on the false discov-
ery rate (FDR) corrected P-values or Bonferroni corrected P-values,
respectively.

Definition of long-range (trans) covariation

Two different definitions are used to define the concept of “long-
range,” depending on whether gene annotations were used for a
particular analysis. If predicted regions are analyzed without the
use of FlyBase gene annotations, a covariation cluster is considered
as a potential long-range interaction if its two genomic regions (in-
dicated as “Region 1” and “Region 2” in Fig. 1) are either located on
different chromosomes (or chromosome arms) or are separated by
genomic regions that are at least 6000 nt apart.
Alternatively, if the FlyBase gene annotation is used, a covariation

cluster is considered as long range if its corresponding two genomic

regions are overlapping with two exons, such
that the exons belong to two different genes
whose genomic loci are not overlapping.

Detection of long-range covariation
with CovaRNA

We developed software called CovaRNA that
facilitates high-throughput detection of pairs
of alignment columns in genomic alignments
that show covariation. The key idea of the ap-
proach is to use alignment “columns” as que-
ries and search space. Note that due to the
nature of genomic alignments (frequent
gaps, only some of the provided genomes are
alignable to parts of the reference genome,
missing experimental information) BLAST-
type algorithms are not applicable for this ap-
proach, because they require a minimum
number of consecutive sequence characters
as a seed. Instead, we implemented an ap-
proach that stores for each alignment column
a set of genome-triplet “fingerprints.” Each
“fingerprint” contains the identifiers for three
different genomes as well as three respective
sequence characters corresponding to a par-
ticular alignment column.

For the task of finding all alignment col-
umns that are Watson-Crick complementary

FIGURE 7. Functional similarity between gene pairs as a function of se-
quence similarity of their transcripts. The functional similarity is based
on the measure described byWang et al. (2007). Shown is the mean sim-
ilarity with respect to the three parts of the Gene Ontology (biological
process, molecular function, and cellular component). Red circles cor-
respond to the set of 207 gene pairs with predicted antisense covariation
(referred to as network nw2 in Fig. 2); from this set only 115 gene pairs
are plotted, the nonplotted gene pairs correspond to cases for which the
functional similarity could not be computed due to missing functional
annotation (n = 115, mean sequence similarity: 69.51%, mean function-
al similarity: 0.88). Blue triangles represent the randomized version of
network nw2 (n = 98, mean sequence similarity: 31.60%, mean func-
tional similarity: 0.39). The sequence similarity is based on a pairwise
alignment of gene transcript nucleotide sequences using the MUSCLE
software (Edgar 2004).

TABLE 1. Counts of gene types for gene pairs with detected covariation for the predicted
medium-confidence and (in brackets) the low-confidence network

A. Sense network
Coding miRNA Noncoding Pseudogene tRNA

Coding 3 (125) 0 (1) 2 (8) 4 (5) 0 (4)
miRNA 0 (1) 0 (0) 0 (0) 0 (0) 0 (0)
Noncoding 2 (8) 0 (0) 0 (0) 0 (0) 0 (0)
Pseudogene 4 (5) 0 (0) 0 (0) 0 (0) 0 (0)
tRNA 0 (4) 0 (0) 0 (0) 0 (0) 0 (5)

B. Antisense network
Coding Noncoding Pseudogene snoRNA tRNA

Coding 171 (424) 15 (23) 28 (38) 0 (0) 0 (0)
Noncoding 15 (23) 3 (3) 7 (7) 0 (0) 0 (0)
Pseudogene 28 (38) 7 (7) 7 (7) 0 (0) 0 (0)
snoRNA 0 (0) 0 (0) 0 (0) 0 (2) 0 (0)
tRNA 0 (0) 0 (0) 0 (0) 0 (0) 0 (3)

A sense network corresponds to transcript pairs whose corresponding alignments show
compensatory base pairs; an antisense network corresponds to transcript pairs whose
corresponding alignments show compensatory base-pairing if the reverse complement of
one of the alignments was used. The sense network is shown in A, the antisense
network is shown in B. A predicted gene–gene interaction can be counted more than
once if one or both genes are annotated with more than one gene class. The classifica-
tion of each gene being a protein-coding gene (coding), microRNA gene (miRNA), non-
protein-coding RNA (noncoding), pseudogene, small nucleolar RNA (snoRNA), or transfer
RNA (tRNA) are based on the annotations provided by FlyBase and the Sequence
Ontology.
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to a nonconserved query column, the sequence complement and the
corresponding genome-triplet “fingerprints” of that query column
are computed. The algorithm for finding the set of complementary
alignment columns for a given query alignment column is explained
in detail in the form of a pseudocode (see pseudocode listings in
Supplemental Figs. S1, S2) as well as in the form of an example
(see Fig. 8). A list of candidate columns is obtained by collecting
all alignment columns that have this set of genome-triplet finger-
prints present. Each element of this candidate list is checked if it is

indeed complementary to the original query alignment column. In
addition, column pair i, j is only retained if (1) either column pair
i + 1, j− 1 or i− 1, j + 1 is complementary, and (2) column pairs i
+ 1, j + 1 and i− 1, j− 1 are not complementary. These indices cor-
respond to searches for reverse-complementary stretches on geno-
mic regions with the same strand orientation; for covariation
searches between regions of opposing strand directionality, the in-
dex-logic is adjusted accordingly.

Next, the individual alignment column pairs that exhibit co-
variation are grouped into clusters (called
covariation clusters) using a single-linkage
clustering algorithm (Fig. 1). In other words,
a covarying alignment column pair is added
to an existing cluster if that cluster contains
at least one other covarying alignment column
pair, such that their respective two involved
alignment column indices are within 40 nt;
otherwise, a new cluster is started. The ratio-
nale of the clustering is to separate potential
interacting regions into domains that are sep-
arated by at least 40 nt. Each initial cluster is
required to contain at least five covarying col-
umn pairs.

At least two alignment column pairs have to
appear to belong to the same double helix by
possessing the same “helix-invariant” that is
the sum of genomic coordinates. The ratio-
nale is that if there are, for example, two
base pairs, a and b, that are part of the same
double helix and have the corresponding col-
umn pairs coordinates i, j and i + 2, j− 2, re-
spectively, the sum of their column pair
coordinates in both cases is i + j. For covaria-
tion searches in regions with opposing strand
directionality, the helix invariant is the diffe-
rence of their column pair coordinates. For a
covariation cluster to pass a second filtering
stage, the number of different helix invariants
has to be at least two units lower compared
with the total number of covarying alignment
columns in that covariation cluster. Third, the
length of both regions of a covariation cluster
has to be at least 5 nt. This three-critera filter-
ing of covariation clusters is performed in part
by the CovaRNA program binary, and in part
by a Perl-script that performs post-processing
of the CovaRNA output.

Statistical tests for distinguishing
alignment regions with covariation
from “noise”

Using the R scripting language, we imple-
mented two methods for further analysis
and filtering of the “raw” covariation clusters
obtained from the CovaRNA program and as-
signing a statistical significance to them. The
statistical test is based on the null hypothesis
that the amount of observed covariation is

FIGURE 8. Flowchart (A) and example (B) of CovaRNA search for covarying alignment col-
umns. The approach can be divided in a pre-processing stage, a search stage, and a post-process-
ing stage. Pre-processing: The original genomic alignment blocks (that might contain gaps,
overlaps, and different strand directionalities) are consolidated leading to an unambiguous inter-
nal counting of column positions. Hash keys are generated corresponding to each possible ge-
nome triple and each possible nonconserved nucleotide triple. For each hash key, the
alignment positions at which the three corresponding genomes exhibit the three corresponding
nucleotides of the hash key are stored as the “value” of a hash map. Note that triples that are “con-
served” (that is, the nucleotides corresponding to the three genomes of a triple are either AAA,
CCC, GGG, or UUU) are not stored.
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due to chance. The first tests the probability of obtaining a certain
number (or more) of covarying alignment column pairs between
two regions. The second tests the bias toward antidiagonal arrange-
ments of the covarying alignment column pairs. Both methods re-
sult in a P-value that is a measure of confidence of covariation
between two alignment regions; those two P-values are combined
into one P-value.

A statistical test for a bias toward nucleotide
complementarity

We describe here a statistical test that indicates whether, for two
alignment columns, the six complementary pairings (AU, UA,
GC, CG, GU, UG) are over-represented compared with the 16 pos-
sible different pairings between two nucleotides. Notice that such a
statistical test could be implemented by estimating what fraction of
randomly shuffled alignment columns with the same nucleotide
content lead to the same or higher amount of complementary nucle-
otide pairings. This randomization test is replaced by a binomial
test: Let there be two alignment columns each consisting of n char-
acters for which k nucleotide pairs are complementary. The proba-
bility p of obtaining by chance a complementary nucleotide can be
determined using a contingency table (see Fig. 9). The P-value for
obtaining the observed number (or more) of complementary nucle-
otide pairings is approximated by a P-value of a one-tail binomial
test with n trials, k successes and a probability of success p.
If, for a given alignment column i, m different columns j1,…, jm

are being examined, one obtainsm different P-values, each one test-
ing the null-hypothesis that the nucleotide pairings of two specific
alignment columns are randomly distributed. If one wants to test
the combined null hypothesis that alignment column i is not corre-
lated to any of the columns j1,…, jm, one can achieve this by
combining the P-values corresponding to the null hypothesis H01,
H02,…, H0m. We use the truncated product method as a means of
computing a combined P-value from P-values that originate from
multiple hypothesis tests that are assumed to be independent
(Zaykin et al. 2002).
Now there are n different columns, and for each one there is a P-

value corresponding to the null hypothesis that this particular col-
umn is uncorrelated to any of the alignment columns of the target
region. Next, a combined P-value corresponding to the different
columns of the target region is computed. This combined P-value
corresponds to the null hypothesis that all columns of the query re-
gion are uncorrelated with all columns of the target region. This P-
value can be used for detecting long-range covariation in nucleotide
alignments.

A measure for a bias with respect to anti-diagonals

The idea of this method is that covarying alignment column pairs in
an RNA structure frequently correspond to an RNA double helix. To
measure a bias toward anti-diagonals, we again use the concept of the
helix invariant, explained in the previous section; for a potential base
pair between genomic positions i and j, the helix-invariant is i + j
(because if their were another base pair that is part of the same
RNA double helix, it would have the genomic coordinates i + k,
j− k, leading to the same invariant i + jbecause i + k + ( j− k) = i + j).
The input to this algorithm consists of two alignments corre-

sponding to a covariation cluster (shown schematically in Fig. 1).

For two aligned regions, this method first determines the set of non-
conserved alignment column pairs that are complementary (A-U,
G-C, and G-U pairings are considered). For two genomic regions
consisting of m or n alignment columns, respectively, it generates
am × nmatrix (called covariation matrix) that contains as elements
the value 1 for alignment column pairs that are nonconserved and
complementary, and zero otherwise. For the unshuffled alignment
pair, the number of unique helix invariants is counted. A bias to-
ward anti-diagonals corresponds to a small number of observed
unique helix invariants; in other words, if a region pair (i.e., covari-
ation cluster) corresponds to an RNA–RNA interaction, then ran-
dom shuffles of the m × n matrix while preserving the number of
covarying column pairs should correspond to a larger number of he-
lix invariants compared with unshuffled alignments. The computed
P-value for the bias toward anti-diagonals is the fraction of times
that the number of unique helix invariants in the shuffled align-
ment pairs is smaller than or equal to the unshuffled alignments.
The shuffling is performed by “scrambling” the aforementioned

FIGURE 9. Steps involved in computation of a statistical test for a bias
toward complementary base pairs in two alignment columns. (A) Two
alignment columns that are “input” for a statistical test that measures a
bias toward dinucleotides that are complementary (AU, UA, CG, GC,
GU, or UG). The number and identity of compared organisms corre-
sponding to rows in the two columns must be identical. (B) A contin-
gency table corresponding to counts of all 16 possible nucleotide
pairings is computed. For example, the first row of the two alignment
columns corresponds to a hypothesized “A-U” base-pair interaction.
The column and row entitled “Tot” corresponds to the column-wise
and row-wise sums, respectively. The column and row entitled
“RFreq” corresponds to the relative frequency of that type of nucleotide
in the first or second alignment column, respectively. (C) The expected
relative frequencies of observing a certain nucleotide pairing are com-
puted using the product of the per-column relative frequencies. (D)
The information gathered in the previous steps is used to apply a
one-tailed binomial test. The probability of observing a complementary
nucleotide pairing by randomly picking a nucleotide from the first
alignment column and a nucleotide from the second alignment column
is the sum of the expected relative frequencies that correspond to the
pairings AU, UA, CG, GC, GU, UG. The sum of those terms is pc=
0.44. This probability is used as the “probability of success” in the bino-
mial test. The number of trials is set equal to the number of rows of the
two alignment columns (n = 5). The number of observed successes
among the five trials is x = 4, because for this example one observes
the four complementary base-pairings AU, GC, GC, CG. A one-tailed
binomial test with n = 5, P = 0.44, and x = 4 results in a P-value of
0.1214.

Genome-wide long-range covariation in Drosophila

www.rnajournal.org 1179



covariation matrix; in other words, the positions of the “ones” and
“zeros” in that matrix are randomized without changing their total
number.

Combination of statistical tests

The test for more than expected complementary nucleotide pairs is
combined with the test for an over-representation of anti-diagonals
using a hybrid method for combining P-values. If neither of the
two P-values is less than or equal to a cutoff value of 0.05, the meth-
od of Simes (1986) is used to compute a P-value for the combined
hypothesis that two alignments are uncorrelated (based on two stat-
istical tests that use two different methods and are treated as in-
dependent). Otherwise, the truncated power method is used to
compute a combined P-value (Zaykin et al. 2002). This P-value is
used as a determination of whether two alignments are uncorrelat-
ed. This quantity is computed using the two original alignments as
well as the reverse complement of both alignments.

Generation of shuffled control alignments

A program (called sufflemaf) was written to generate shuffled mul-
tiple sequence alignments that can be used as a control. The approach
was to be “conservative,” in the sense that shuffled control align-
ments should leave many features of the original alignments intact
in order to not make it artificially easy for the prediction software
to dismiss potential predictions that are based on shuffled align-
ments. The approach works as follows: Alignments are “vertically”
shuffled; in other words, only columns are shuffled individually.
The locations of gaps are left unchanged. Also, the first “reference”
sequence (corresponding in this case to the speciesDrosophila mela-
nogaster) is not changed at all. This approach was chosen to demon-
strate that the dramatically reduced number of detected covariation
clusters (see Supplemental Fig. S3) is indeed due to destroyed covari-
ation information in the multiple sequence alignments.

Tools for computational data processing
and analysis

The processing of genomic regions, sequences, and alignments, as
well as the analysis of the properties of the predicted interactions,
were to a large extent performed using the Galaxy genome-analysis
workbench (Giardine et al. 2005; Taylor et al. 2007). For the analysis
of the functional enrichment of genes involved in nucleotide covari-
ation we used the DAVID system (Huang et al. 2009b). From a gene
list, DAVID computes a list of enriched genes. The enriched genes
are grouped by the DAVID method into clusters of genes with sim-
ilar functions. The DAVID clustering algorithm (called heuristic
fuzzy multiple-linkage partitioning) groups enriched genes by func-
tional similarity; note that this method allows a gene to be part of
multiple clusters (Huang et al. 2007). The gene clusters obtained
in this manner are converted to gene function clusters as shown
in Supplemental Table S5. The methodology is described in more
detail in the original publications (Huang et al. 2007, 2009a,b).
Part of the data analysis has been performed using the R computer
language, including the Bioconductor framework and the graphics
package ggplot2 (Csardi and Nepusz 2006; Wickham 2009). Se-
quence similarity estimations have been performed using the
MUSCLE sequence alignment software (Edgar 2004). The function-

al similarity between gene pairs has been estimated using the Gene
Ontology in combination with a measure described by Wang and
colleagues using the implementation of the R package GOSemSim
(Ashburner et al. 2000; Wang et al. 2007; Yu et al. 2010). The plotted
values are an arithmetic mean between the functional similarity
measures with respect to the three parts of the Gene Ontology (bi-
ological pathway, molecular function, cellular component); un-
available functional annotations are ignored. The circular genomic
representation shown in Figure 3 has been generated using the
Circos software (Krzywinski et al. 2009).

Data sets

Alignment and annotation data were obtained from the UCSC ge-
nome browser web and ftp site (Kent et al. 2002). For the genomic
alignment the multiz15way data was used; the data corresponding
to the three non-Drosophila genomes included in the alignment
were not used for the initial CovaRNA screen, but were used for
the statistical analysis of the obtained covarying region pairs (Blanch-
ette et al. 2004; Drosophila 12 Genomes Consortium 2007). This ge-
nomic alignment is based on the Drosophila melanogaster sequence
assembly dm3 (Apr. 2006, BDGP Release 5) (Celniker et al. 2002).
Alignments corresponding to heterochromatic genomic regions as
well as unplaced regions were not considered. To split the com-
pute-jobs into units requiring <8 GB, the genomic alignments were
split into chunks of, at most, 50,000 block alignments. The genome
annotation is based on FlyBase version 5.39 (with the exception of
Fig. 4, which has been generated using FlyBase version 5.12)
(Tweedie et al. 2009).

Data processing steps

The data processing steps are visualized in the form of a flowchart in
Figure 2. The CovaRNA search resulted in 57,253,774 unfiltered and
2,917,973 filtered covariation clusters (the filtering step ensures that
for each covariation cluster the number of helix invariants is at least
two units lower compared with the number of covarying alignment
column pairs). For each covariation cluster, a pair of genomic align-
mentswas created; each alignmentwas extendedby 10nt upstreamof
and downstream from the initially identified region to capture adja-
cent regions that do not necessarily exhibit perfect covariation. For
each alignment pair, two P-values were computed with the CovStat
method, using in the first case the unmodified genomic alignment
pair, and in the second case the reverse complement of both align-
ments. For eachof the twoP-values, an adjustedP-valuewas comput-
ed for each alignment pair using the Bonferroni correction and,
alternatively, the False-Discovery-Rate correction (leading to four
different corrected P-values per alignment pair). Filtering the FDR
corrected P-value of the unmodified or reverse-complementary
alignment pair so that it is smaller than or equal to 0.05 results in
3480 alignment pairs. Requiring instead that the Bonferroni correct-
ed P-value is less than or equal to 0.0001 results in 881 covariation
clusters. Superposing both regions of each covariation cluster with
FlyBase exons of protein-coding aswell as noncoding transcripts (us-
ing the Galaxy “join” command) results in covariation clusters in
which each region corresponds to a FlyBase exon (1671 region pairs
or 831 region pairs, depending on whether the FDR or Bonferroni
correction was used, respectively, in the previous step; see Stage 4
in Fig. 2). Additionally requiring for each covariation cluster that
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the two superposing FlyBase genes are distinct and not overlapping
results in 1131 (FDR) or 506 (Bonferroni) covariation clusters.
From these covariation cluster sets, sets of 145 sense as well 477 anti-
sense gene pairs are generated in the case of the FDR correction, and
in the case of the Bonferroni correction, sets of seven sense and 207
antisense gene pairs (Stage 5 shown in Fig. 2). These sets of gene pairs
are labeled asnetworksnw3,nw4, nw1, andnw2, respectively (Fig. 2).

Statistical procedures

The newly developed CovStat method computes a P-value corre-
sponding to an observed bias in nucleotide covariation between
two alignments corresponding to two genomic regions under the
null-hypothesis that there is no correlation between the observed
mutations. The method is applied to a set of 3840 alignment pairs
that are obtained from the CovaRNAmethod and its subsequent fil-
tering steps (see previous subsection “Data processing steps”). For
each alignment pair, two P-values are computed: The first P-value
(referred to as P1) corresponds to the two unmodified alignments;
the second P-value (referred to as P2) refers to the reverse-comple-
ment of both alignments. Two alternative multiple-testing correc-
tion procedures (Bonferroni as well as False-Discovery-Rate) were
applied to the set of all P1 values and additionally to the set of all
P2 values. However, once the transcript strand orientations of the
involved genes are used, a multiple-testing-corrected P-value is cho-
sen from either the set of P1 or the set of P2 values.
As can be seen in Supplemental Figure S3, the computational

pipeline applied to shuffled control multiple sequence alignments
yields essentially zero “hits” for both the False-Discovery-Rate and
the Bonferroni correction methods. This indicates that the overall
procedure for ascertaining statistical significance is highly “conser-
vative” (small number of false-positive predictions, albeit possibly
at the expense of missed interactions). This suggests that in practice
the less conservative False-Discovery-Rate P-value correction meth-
od is sufficiently conservative for generating reliable results, and
should be preferred over—in this case—the excessively conservative
Bonferroni correction.

Graph randomization procedure

The network graph corresponding to Figure 7 has been randomized
(blue triangles in Fig. 7) with respect to the originally predicted net-
work (red circles), such that (1) the number of vertices and edges is
unchanged, (2) the degree of each of the vertices is unchanged, and
(3) the graph is not allowed to contain edges (representing covaria-
tion) that connect vertices with themselves.

Search

The search stage consists of an outer loop, in which each alignment
column is used as a “query” in order to find all other alignment col-
umns that are complementary to it. For a given query column, the
search consists of identifying the corresponding hash keys and iter-
atively performing the intersection between the hash values (that is
column positions). For performance reasons, it is advantageous to
first perform the intersections between the index sets with the small-
est number of indices. The found alignment columns are only kept if
they are part of a cluster with a user-specified minimum number of
covarying alignment column pairs.

Post-processing

The internal column counting is converted back to the original
counting used in the input data. Because this step can reintroduce
gaps, the clustering is performed again. A text representation of
the found clusters is written to the file system.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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