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ABSTRACT
Background  Programmed cell death protein-1 (PD-
1) expression has been associated with activation 
and exhaustion of both the CD4 and CD8 populations 
in advanced non-small cell lung cancer (aNSCLC). 
Nevertheless, the impact of the balance between 
circulating CD8+PD-1+ and CD4+PD-1+ in patients treated 
with immune checkpoint blockers (ICB) is unknown.
Methods  The CD8+PD-1+ to CD4+PD-1+ ratio (PD-1-
Expressing Ratio on Lymphocytes in a Systemic blood 
sample, or ‘PERLS’) was determined by cytometry in fresh 
whole blood from patients with aNSCLC before treatment 
with single-agent ICB targeting PD-1 or programmed 
cell death-ligand 1 (PD-L1 (discovery cohort). A PERLS 
cut-off was identified by log-rank maximization. Patients 
treated with ICB (validation cohort) or polychemotherapy 
(control cohort) were classified as PERLS+/− (above/
below cut-off). Circulating immune cell phenotype and 
function were correlated with PERLS. A composite score 
(good, intermediate and poor) was determined using the 
combination of PERLS and senescent immune phenotype 
as previously described in aNSCLC.
Results  In the discovery cohort (N=75), the PERLS cut-off 
was 1.91, and 11% of patients were PERLS+. PERLS + 
correlated significantly with median progression-free 
survival (PFS) of 9.63 months (95% CI 7.82 to not reached 
(NR)) versus 2.69 months (95% CI 1.81 to 5.52; p=0.03). 
In an independent validation cohort (N=36), median PFS 
was NR (95% CI 7.9 to NR) versus 2.00 months (95% CI 
1.3 to 4.5; p=0.04) for PERLS + and PERLS−, respectively; 
overall survival (OS) followed a similar but non-significant 
trend. In the pooled cohort (N=111), PERLS + correlated 
significantly with PFS and OS. PERLS did not correlate with 
outcome in the polychemotherapy cohort. PERLS did not 
correlate with clinical characteristics but was significantly 
associated with baseline circulating naïve CD4+ T cells 
and the increase of memory T cells post-ICB treatment. 
Accumulation of memory T cells during treatment was 
linked to CD4+ T cell polyfunctionality. The composite score 
was evaluated in the pooled cohort (N=68). The median OS 
for good, intermediate and poor composite scores was NR 
(95% CI NR to NR), 8.54 months (95% CI 4.96 to NR) and 

2.42 months (95% CI 1.97 to 15.5; p=0.001), respectively. 
The median PFS was 12.60 months (95% CI 9.63 to NR), 
2.58 months (95% CI 1.74 to 7.29) and 1.76 months 
(95% CI 1.31 to 4.57; p<0.0001), respectively.
Conclusions  Elevated PERLS, determined from a blood 
sample before immunotherapy, was correlated with benefit 
from PD-(L)1 blockers in aNSCLC.

INTRODUCTION
Despite recent major advances in ther-
apeutic including targeted therapy and 
immunotherapy lung cancer has a partic-
ularly poor prognosis.1 For patients with 
advanced non-small cell lung cancer 
(aNSCLC), programmed cell death-ligand 1 
(PD-L1)/programmed cell death protein-1 
(PD-1) blockers administered alone or in asso-
ciation with chemotherapy are now the back-
bone of treatment in most clinical settings.2 
PD-L1 expression on biopsy tumorous cells is 
the only biomarker currently used to select 
patients for potential sensitivity to immune 
checkpoint inhibitors (ICB). Nevertheless 
these biomarkers suffer several well-known 
limitations, including result variability related 
to technical issues,3 the need for tumor biopsy 
tissue,4 and the lack of host immune status 
evaluation.

Several circulating biomarkers have been 
studied as potential biomarkers.5 Among 
them, PD-1 expression on circulating immune 
T cells is thought to reflect the activation of 
the PD-1/PD-L1 axis and consequently the 
patient’s sensitivity to ICB. Studies showed 
promising results using circulating lympho-
cytes as biomarkers in patients with aNSCLC. 
Baseline CD8+PD-1+ T cells have been 
described as being associated with good prog-
nosis with ICB.6 Similarly, early CD8+PD-1+ 
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T cell proliferation under ICB has been associated with 
good prognosis.7 8 On the other hand, CD4+PD-1+ has 
been correlated with worse outcome of treatment naïve 
patients eligible for standard of care chemotherapy or 
tyrosine kinase inhibitors9 and with poor clinical outcome 
after anti-PD-L1 treatment.10 However, these evaluations 
are not consistently reported, with the absence of a vali-
dation and control groups.11

We hypothesized that a combination of PD-1 expression 
on both circulating CD4+ and CD8+ T cells before ICB 
treatment could be able to guide therapy for patients with 
aNSCLC. Thus, we explored the CD8+PD-1+ to CD4+PD-1+ 
ratio (PERLS) as a predictive biomarker of response to 
PD-(L)1 blockers.

MATERIALS & METHODS
Patients and treatments
Data were collected from consecutive patients with 
aNSCLC enrolled in three prospective studies: CEC-CTC 
(NCT02666612, (discovery ICB cohort)) between March 
2017 and June 2018, MSN (NCT02105168, polyche-
motherapy (PCT) control cohort) between September 
2017 and July 2018, and PREMIS (NCT03984318) (vali-
dation ICB cohort) between July 2019 and March 2020. 
Fresh whole blood samples were analyzed (maximum 
10 samples over 3 years for each patient). The ethics 
committee approved these studies. All patients provided 
written informed consent.

In the ICB discovery and validation cohorts, patients 
with aNSCLC were treated with single-agent ICB (anti-
PD-1 or anti-PD-L1). In the control cohort, treatment-
naïve patients with aNSCLC received PCT. To be eligible, 
patients had to be 18 years or older, with histologically 
or cytologically confirmed stage III or IV NSCLC and 
have available fresh blood samples collected immediately 
prior to PCT and/or single agent ICB. The pooled cohort 
combined patients from the discovery and the validation 
cohorts.

All radiological evaluations were centrally reviewed by a 
senior radiologist. Tumor response was assessed according 
to Response Evaluation Criteria in Solid Tumors V.1.1.12 
Objective response rate (ORR) was the sum of complete 
response (CR) and partial response (PR), disease control 
rate (DCR) was the sum of CR, PR and stable disease (SD). 
Durable clinical benefit (DCB) was defined as CR and PR, 
plus SD of more than 6 months otherwise patients were 
considered as no-DCB.

Flow cytometry
The procedure to perform blood immune phenotyping 
on fresh whole blood samples has been described else-
where.13 Flow cytometry antibodies and fluorochromes 
used are described in the online supplemental methods 
and table S1. Two PD-1 clones were used; PD-1.3 from 
Beckman (first part; N=35) and MIH4 from eBioscience 
(second part; N=40) which recognize different epitopes 
of PD-1. As patients were treated with PD-1 inhibitor, 

follow-up with the PD-1.3 antibody was not possible due 
to competition with the therapeutic antibody. In the 
second part of the cohort, the MIH4 clone was selected 
as it does not compete with therapeutic PD-1 inhibitors, 
thereby allowing follow-up. Result of ratio was reproduc-
ible in patients with both antibodies.

Senescent immune phenotype (SIP) was defined 
as positive (SIP+) when the percentage of CD28−C-
D57+KLRG1+ among CD8+ T cells was over 39.5%, as 
published elsewhere.14

A differentiation panel allowed phenotypic characteri-
zation of CD4+ T-helper and CD8+ T-cytotoxic cell subsets 
particularly their differentiation status (naïve (TN; 
CD45RA+CCR7+), effector memory (TEM; CD45RA–

CCR7–), central memory (TCM; CD45RA–CCR7+) and 
terminally differentiated (TEMRA; CD45RA+CCR7–) T 
cells). CD4+CD127lo/−CD25high defined regulatory CD4+ 
T cells (Treg) otherwise CD4+ T cells were considered 
as conventional T cells (Tconv). These flow cytometry 
panels as well as their gating strategies has already been 
published.15

Intracellular staining of cytokines to determine the 
polyfunctionality of T cells was realized. Interferon (IFN)
γ, tumor necrosis factor (TNF)α, interleukin (IL)-9, IL-4 
and IL-17A were monitored. Frozen peripheral blood 
mononuclear cells (PBMC) were used from the discovery 
cohort prior to ICB administration (N=25) and after 2 
months of treatment when the sample was received 
(N=18). Polyfunctionality was defined as the ability for a 
lymphocyte to secrete more than one cytokine (two or 
above). DurActive and DuraClone IF T Helper Cell Tubes 
(Beckman Coulter) were used for cytokine assessment. 
DurActive tubes are ready-to-use cell activation mixture 
containing the phorbol ester, PMA (phorbol 12-myristate 
13-acetate) and a calcium ionophore (Ionomycin). Dura-
Clone IF T Helper Cell Tubes are preformulated, dried 
antibody panels of six markers in fluorochrome combi-
nations that provide robust population identification, 
including CD3-AF750, CD4-APC, IL-4-PC7, IL-17A-PB, 
IFNγ−FITC. A drop of IL-9-PE (BioLegend) and TNFα-
AA700 (Beckman Coulter) was added in the DuraClone 
IF T Helper Cell Tubes. For the cytokine staining of 
PBMCs, 50 µL suspension of PBMCs (containing ~5×105 
cells) were directly introduce into the DurActive tube, 
vortexed for 6–8 s and incubated at 37°C for 3 hours. After 
the 3 hours incubation, 25 µL of buffer R1 (PerFix-nc 
fixative reagent, Beckman Coulter) was added and incu-
bate for 15 min at room temperature. After washing with 
2 mL 1× phosphate-buffered saline, 25 µL of fetal bovine 
serum and 300 µL of buffer R2 (PerFix-nc permeabilizing 
reagent) were added and transferred to the DuraClone 
IF T Helper Cell Tube. Tubes were incubated 45 min at 
room temperature and 3 mL of R3 (final solution 1× in 
water) (PerFix-nc wash reagent, Beckman Coulter) was 
added. After centrifugation and aspiration of the super-
natant, 500 µL of R3 (final solution 1× in water) was 
added. After vortex, samples were ready for FACS acqui-
sition. Flow cytometry data were analyzed using Kaluza 
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Flow Cytometry Software (Beckman Coulter) by a single 
operator, blinded to the patients’ clinical data. Graphs for 
flow cytometry data were produced using GraphPad Prism 
V.7.0 or V.8.0 (GraphPad Software, San Diego, California, 
USA). Online supplemental figure S1 illustrates dot plots 
data and gating strategies of immune cell populations.

Statistical analysis
Median values (IQR) and frequencies (percentage) 
were calculated for descriptions of continuous and cate-
gorical variables, respectively. Means and proportions 
were compared using the Student’s t-test and χ2 test (or 
Fisher’s exact test, if appropriate), respectively. Overall 
survival (OS) was defined as the time between ICB initia-
tion and death from any cause. Progression-free survival 
(PFS) was defined as the time between ICB initiation 
and progression or death, whichever occurred first. OS 
and PFS were estimated using the Kaplan-Meier method 
and described using median values with their 95% CIs. 
Follow-up was calculated using the reverse Kaplan-Meier 
method. To better stratify PFS risk, an optimal cut-off for 
the PD-1+ Expression Ratio on Lymphocyte on Systemic 
sample, or ‘PERLS’ (CD8+PD-1+/CD4+PD-1+) was 
obtained with the log-rank maximization method.16 The 
ratio CD8+PD-1+/CD4+ PD-1+, expressed as a percentage 
of total CD8+ or total CD4,+ respectively, was assessed by 
flow cytometry in blood and patients were classified as 
having a high or low PERLS ratio (PERLS+ or PERLS–). 
Analyses were reported according to REMARK guidelines 
for prognostic studies.17 A composite PERLS score was 
determined based on PERLS and SIP; as SIP+ is a marker 
for non-responders, responders were selected by applying 
PERLS to SIP– patients. Patients were categorized as good 
composite score if they were PERLS+ and SIP–, as poor 
composite score if they were PERLS− and SIP+, and as 
intermediate composite score otherwise. The composite 
score was evaluated in patients from the discovery and 
exploratory cohorts with available data for both variables. 
The discrimination of the Cox models was assessed with 
the c-index. Statistical analyses were performed with 
RStudio, V.2.15.2. P values<0.05 were considered statisti-
cally significant and all tests were two-sided.

RESULTS
Patient characteristics
PERLS ratio analyses were performed prior to treatment 
in 84 patients with aNSCLC in the discovery cohort. Of 
them, 76 then received at least one ICB infusion, had 
available cytometry data, and 75 were evaluable for 
response. Patient characteristics for the discovery cohort 
are presented in table  1. Median follow-up was 20.1 
months (95% CI 16.9 to 31.2). Among 75 patients evalu-
able for response, the ORR was 25.3% (19/75), and the 
DCR was 53.3% (40/75), with 35 patients (46.7%) having 
progressive disease as a best response. Median PFS and 
OS were 3.68 months (95% CI 1.87 to 5.68), 9.40 months 
(95% CI 6.77 to 18.96), respectively.

In the PCT cohort, PERLS analysis was performed in 39 
treatment-naïve patients with aNSCLC eligible for PCT. 
After a median follow-up of 6.0 months (95% CI 4.6 to 
6.8), the ORR was 33.3% (13/39), and the DCR was 85.0% 
(33/39). Median PFS and OS were 4.99 months (95% CI 
4.17 to not reached (NR)) and 7.10 months (95% CI 6.96 
to NR), respectively.

In the validation cohort, PERLS analysis was performed 
in 36 treatment-naïve patients with aNSCLC eligible for 
ICB. Patient characteristics of this cohort are reported in 
online supplemental table S2. Median follow-up was 17.3 
months (15.1–20.8), ORR was 25.0% (9/36), and DCR 
was 33.3% (12/36). Median PFS and OS were 2.5 months 
(95% CI 1.8 to 4.7) and 8.6 months (95% CI 3.2 to NR), 
respectively.

PERLS cut-off, outcome and clinical characteristics
Discovery cohort
As both CD8+PD-1+ and CD4+PD-1+ have been implicated 
in outcome with ICB in published data, we focused on 
the CD8+PD-1+/CD4+PD-1+ ratio to define PERLS. In the 
ICB discovery cohort (n=75), the median PERLS value 
was 1.18. The cut-off for survival risk computed by log-
rank maximization method was 1.91. In this cohort, 11% 
(8/75) of patients had PERLS >1.91 and were classified as 
high PERLS (PERLS+).

Patients with DCB had significantly higher PERLS 
than those without (mean 1.42 vs 0.89 p=0.0022) (online 
supplemental figure S2A). No significant difference was 
seen with the CD8+/CD4+ ratio (ie, not incorporating 
PD-1 expression) for either DCB or no-DCB (median 
0.62 vs 0.71; p=0.66) (online supplemental figure S2B). 
PERLS+ patients had significantly better median PFS 
(9.63 months 95% CI 7.82 to NR; p=0.03) compared 
with PERLS− patients (2.69 months; 95% CI 1.81 to 5.52) 
(online supplemental figure S2C). High PERLS was also 
associated with better OS without reaching significance, 
with median OS NR (95% CI 9.6 to NR) versus 8.11 
months (95% CI 6.31 to 18.00).

Validation, pooled and control cohorts
In the ICB validation cohort, PERLS was available for 36 
patients. Median PERLS value was 0.93 (0.77–1.21). Using 
the cut-off of 1.91, patients with a high PERLS value had a 
median PFS of NR (95% CI 7.9 to NR) versus 2.0 months 
(95% CI 1.30 to 4.50; p=0.04) compared with patients 
with a low PERLS value. The same trend was found for 
median OS which was NR (95% CI NR to NR) versus 7.1 
months (95% CI 3.1 to NR; p=0.09).

We then evaluated PERLS in the pooled cohort, 
discovery and validation cohorts (N=111). Patients with 
DCB had significantly higher PERLS values than patients 
with no-DCB (mean 1.43 vs 1.06; p=0.002) (figure 1A). This 
difference was not found for the CD8+/CD4+ ratio (mean 
ratio was 0.69 DCB vs 0.74 no-DCB; p=0.79) (figure 1B). 
PERLS  + patients had significantly longer median PFS 
compared with PERLS− patients (9.63 months, 95% CI 
7.82 to NR vs 2.20 months, 95% CI 1.81 to 4.50; p=0.004) 
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Table 1  Patient characteristics in the discovery cohort

All patients
(N=75)

Low PERLS
(N=67)

High PERLS
(N=8) P value

Age in years, median (IQR) 61 (55.5; 70.5) 61 (56; 71.5) 55.5 (52.75; 61.5) 0.974

Sex, n (%) Female 35 (46.7) 32 (47.8) 3 (37.5) 0.716

Male 40 (53.3) 35 (52.2) 5 (62.5)

Smoking history, n (%) Never 8 (10.8) 6 (9.1) 2 (25) 0.396

Former 39 (52.7) 35 (53.0) 4 (50)

Active 27 (36.5) 25 (37.9) 2 (25)

Missing * * 0

Histology, n (%) Adenocarcinoma 61 (81.3) 53 (79.1) 8 (100) 0.535

Squamous 11 (14.7) 11 (16.4) 0 (0)

Other* 3 (4) 3 (4.5) 0 (0)

TNM†, n (%) III 13 (17.3) 12 (17.9) 1 (12.5) *

IV 62 (82.7) 55 (82.1) 7 (87.5)

Tumorous PD-L1 (% tumorous cells), n (%) <1 10 (25) 8 (22.9) 2 (40) 0.654

1%–49 6 (15) 6 (17.1) 0 (0)

>49 24 (60) 21 (60) 3 (60)

Missing 35 32 ‡

Main molecular alteration, n (%) K-RAS 16 (37.2) 16 (37.2) 0 (0) *

Wild-type‡ 18 (41.9) 18 (41.9) 0 (0)

Targetable§ 9 (20.9) 9 (20.9) 0 (0)

Missing 32 24 8

N metastatic sites, n (%) ≤2 54 (72) 49 (73.1) 5 (62.5) 0.679

>2 21 (28) 18 (26.9) 3 (37.5)

ECOG PS, n (%) 0–1 65 (86.7) 57 (85.1) 8 (100) 0.587

† 10 (13.3) 10 (14.9) 0 (0)

Lines of prior therapy, n (%) 0 6 (8) 4 (6.0) 2 (25) 0.121

≥1 69 (92) 63 (94.0) 6 (75)

Prior chemotherapy, n (%) No 6 (8) 4 (6.0) 2 (25) 0.121

Yes 69 (92) 63 (94.0) 6 (75)

Prior radiotherapy, n (%) No 51 (68) 45 (67.2) 6 (75) *

Yes 24 (32) 22 (32.8) 2 (25)

dNLR ≥3, n (%) No 36 (60) 30 (57.7) 6 (75) 0.457

Yes 24 (40) 22 (42.3) 2 (25)

Missing 15 15 0

IrAEs (grade ≥3 or requiring CS)¶ Yes 5 (67) 4 (6) 1 (13) 0.437

 �  No 70 (33) 63 (94) 7 (87)

LDH≥ULN, n (%) No 20 (47.6) 17 (46.0) 3 (60) 0.656

Yes 22 (52.4) 20 (54.1) 2 (40)

Missing 33 30 ‡

LIPI score**, n (%) Good 10 (24.4) 8 (22.2) 2 (40) 0.482

Intermediate 22 (53.7) 19 (52.8) 3 (60)

Poor 9 (22.0) 9 (25) 0 (0)

NA 34 31 ‡

*Large cell lung cancer, non-small cell lung cancer, not otherwise specified.
†TNM stage eighth edition.
‡Absence of EGFR mutations, KRAS, ALK, ROS1 rearrangements.
§EGFR mutations, ALK, ROS1 rearrangement, HER2 mutations, MET alterations, BRAF mutations. Radiotherapy (including stereotactic radiotherapy) on any site 
(including bone or central nervous system).
¶Two patients with grade 3 colitis, one with grade 3 pneumonitis and two patients with grade 2 pneumonitis requiring cortico-steroids treatment.
**LIPI high: dNLR ≥3 and LDH ≥ULN; LIPI intermediate: dNLR <3 and LDH ≥ULN or dNLR ≥3 and LDH <ULN; LIPI low: dNLR <3 and LDH <ULN.
dNLR, derived neutrophil to lymphocyte ratio (neutrophils/(leukocytes -neutrophils)); IrAEs, immune related adverse events; LDH, lactate dehydrogenase; LIPI, lung 
immune prognostic index; PD-L1, programmed cell death-ligand 1 ; PS, performance status; TNM, tumour, node, metastases; ULN, upper limit of normal.
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(figure 1C). High PERLS was also associated with better 
OS (NR, 95% CI NR to NR vs 7.98 months, 95% CI 5.95 to 
14.90; p=0.02) (figure 1D).

To assess the predictive or prognostic role of PERLS, we 
evaluated a control cohort of patients treated with PCT 
without ICB (N=39). There was no significant difference 
in PFS for patients with high or low PERLS (5.91 months, 
95% CI 4.17 to NR vs 4.83 months, 95% CI 3.84 to NR; 
p=0.20) (online supplemental figure S3).

PERLS and clinical characteristics
Clinical and pathological characteristics of both the 
discovery and validation cohorts are summarized in 
table 1 and online supplemental table S2 for the whole 
cohort and according to PERLS status. No clinical char-
acteristics were associated with the PERLS ratio, notably 
PD-L1 (by immunohistochemistry), mutational status or 
tumor burden. Nine patients had an oncogenic addic-
tion, including four patients with BRAF (two patients 
with V600E mutation), one patient with EGFR activating 

mutation, two patients with HER2 mutation, one patient 
with ROS1, and one patient with RET rearrangement. 
Patient with EGFR mutation and one patient with BRAF 
V600E were pretreated with tyrosine kinase inhibitor 
before ICB. All these patients with oncogenic mutation 
had a low PERLS.

Regarding immune-related adverse events (IrAEs) we 
focused on the grade ≥3 or those of grade 2 but requiring 
medical intervention including suspension or stop of ICB 
and corticosteroids treatment. There was no difference 
between the low and high PERLS groups in the discovery 
or validation cohort.

PERLS correlation with lymphocyte phenotypic profile
At the time of data analysis, a differentiation panel and a 
Treg panel were available for 75 and 42 patients, respec-
tively, in the discovery cohort. Evaluation after 2 months 
of ICB treatment (D60) was available in 24 of the 75 
patients (32%) for PERLS and in 43 of the 75 patients 
(57%) for the differentiation panel.

Figure 1  PERLS is associated with disease clinical benefit (DCB) in advanced non-small cell lung cancer treated with immune 
checkpoint blockers. Blood T cells populations from patients included in the discovery and the validation cohorts, that is, 
pooled cohort. (A) PERLS ratio from the pooled cohort in patients with no-DCB and DCB. (B) As in (A) but with the CD8+/CD4+ 
ratio. (C) As in (A) but with CD8+ PD-1+/Tconv PD-1+ ratio. (D) As in (A) but with the CD8+PD-1+/TregPD-1+ ratio. (E) PFS 
according to PERLS. (F) Overall survival according to PERLS. PD-1, programmed cell death protein-1; PFS, progression-free 
survival.
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PERLS and Treg
Since a higher CD8+PD-1+/CD4+PD-1+ ratio is associated 
with better prognosis, we wondered whether increased/
decreased immunosuppression could influence this 
outcome. To answer this question, we monitored Treg in 
a subcohort of 42 patients and we analyzed Tconv (non-
Treg CD4+ T cells) and Treg separately. Interestingly, 
both CD8+PD-1+/TconvPD-1+ and CD8+PD-1+/TregPD-1+ 
ratio were higher in patients with DCB compared with 
patients with no-DCB (p=0.004 and p=0.007, respectively; 
figure 1E–F). This suggests that a greater accumulation 
of CD4+PD-1+ relative to CD8+PD-1+ is deleterious irre-
spective of the regulatory or non-regulatory phenotype 
of CD4+ T cells.

PERLS, T cell differentiation and polyfunctionality
PERLS was positively correlated with the proportion 
of blood naïve CD4+ T cells (CD45RA+CCR7+) at base-
line (r=0.60; p<0.001) (figure  2A and B). The propor-
tion of naïve CD4+ T cells was not correlated with DCB 
(figure  2C), however the negative evolution (decrease) 
between D60 and D0 of naïve CD4+ T cells was associated 
with DCB (figure 2D, left panel). Interestingly, only the 
positive evolution (increase in memory T) between D60 
and D0 of memory CD8+ T cells was associated with DCB 
(figure  2D, right panel). This suggests that differenti-
ation from naïve to memory T cells was associated with 
clinical benefit. In accordance with this observation, an 
increase of cytokine production in CD4+ T cells at D60 was 

Figure 2  The PERLS ratio correlates with naïve T cells at baseline and induction of memory T cells under ICB treatment. 
Proportion of naïve (CCR7+CD45RA+), effector memory (TEM; CCR7–CD45RA–), central memory (TCM; CCR7+CD45RA–) and 
terminally differentiated (TEMRA; CCR7–CD45RA+) among CD4+ (CD3+CD4+) and CD8+ (CD3+CD8+) T cells were assessed 
at baseline (D0) and post-ICB treatment (D60) in the blood of patients. (A) Correlation matrix of PERLS and T cell subsets at 
baseline (B) Baseline (D0) correlation of naïve CD4+ T cells and PERLS. (C) Baseline (D0) naïve CD4+ T cells in patients with 
no-DCB and DCB. (D) Evolution (%) from D60 to D0 (%D60–%D0) of naïve CD4+ T cells (left panel) and evolution (%) from D60 
to D0 (%D60–%D0) of memory CD8+ T cells (right panel). (E) Correlation of PERLS and evolution (%) of memory CD4+ (black 
circles) and CD8+ T (white circles) cells. (F) Correlation of memory CD4+ (black circles) and CD8+ T cells (white circles) at D60 
and polyfunctionality of CD4+ T cells at D60. DCB, durable clinical benefit; ICB, immune checkpoint blockers.
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observed only in patients benefiting from the treatment 
(online supplemental figure S4B) and not in patients 
with no-DCB (online supplemental figure S4A). More-
over, in patients with DCB, polyfunctional CD4+ T cells 
were significantly more frequent at D60 compared with 
patients with no-DCB (online supplemental figure S4D). 
No such difference could be observed at D0 suggesting 
that polyfunctional T cells were induced by ICB treatment 
(online supplemental figure S4C). We next evaluated if 
PERLS could be linked to the induction of memory T 
cells after ICB treatment. Among the 42 patients where 
both data were collected, PERLS was positively correlated 
with the positive evolution (increase) of memory T cells 
(figure  2E). This correlation was more significant for 
the evolution of memory CD8+ T cells (r=0.31; p=0.04). 
Among patients where polyfunctionality of T cells was 
assessed before treatment (N=25), 18 were also moni-
tored at D60. Among these 18 patients, the proportion of 
memory CD8+ (r=0.46, p=0.05; N=18) and CD4+ (r=0.58, 
p=0.01; N=18) T cells at D60 was positively associated 
with the polyfunctionality of T cells after ICB treatment 
(figure 2F), no such observation could be depicted at D0 
(data not shown).

PERLS and senescence
Based on a previous study showing an association between 
SIP and worse prognosis,13 we evaluated our population 
according to a composite prognostic score using the 
pooled discovery and validation cohort. PERLS was avail-
able for 111 patients, 13 of whom (11.2%) had a high 
PERLS. Overall, 69 patients had a SIP evaluation, 19 of 
whom (28.0%) were SIP+. PERLS and SIP were avail-
able in 68 patients, with 8 (11.8%), 18 (26.5%) and 42 
(61.8%) having good, poor or intermediate composite 
score, respectively. In the overall population, PERLS 
alone had a specificity and sensitivity of 38.9% and 93.5%, 
respectively, to detect responders. SIP and PERLS were 
inversely correlated (figure  3A). As described in our 
previous study,13 in the pooled cohort, SIP− was associated 
with longer median PFS of 5.06 months (95% CI 2.0 to 
12.0; p<0.0001 for SIP–) versus 1.82 months (95% CI 1.31 
to 4.5) and longer median OS of 20.80 (95% CI 7.80 to 
NR; p=0.002) versus 2.43 months (95% CI 2.17 to 15.5). 
Considering the composite score, outcomes differed for 
the good, the intermediate and the poor composite score 
groups. Indeed, the median PFS was 12.6 months (95% CI 
9.63- to NR) versus 2.58 months (95% CI 1.74 to 7.29) and 
1.76 months (95% CI 1.31 to 4.57; p<0.0001) (figure 3C) 
and the median OS was not reach (95% CI NR to NR) 
versus 8.54 months (95% CI 4.96 to NR) and 2.42 months 
(95% CI 1.97 to 4.73; p=0.001), respectively, (figure 3D). 
The c-index of this strategy was 0.627 for PFS and 0.646 
for OS. Of note all patients in the good composite score 
group had a DCB (8/8). Only one patient with poor 
composite score had a DCB (1/18) (figure 3B). None of 
the 8 patients in the good composite score group died 
early (<3 months) compared with 24% in the interme-
diate composite score group (10/42 patients) and 56% of 

the poor composite score group (10/18; p=0.007; online 
supplemental figure S3).

DISCUSSION
We describe here the predictive value of a preimmuno-
therapy ratio, CD8+PD-1+/CD4+PD-1+ (PERLS) in blood 
samples, for patients with aNSCLC and treated with ICB. 
These results also shows that PERLS is associated with a 
naïve CD4+ T cells at baseline and suggest that the ability 
to accumulate memory T cells and polyfunctional CD4+ T 
cells during treatment is associated with better prognosis. 
Moreover, PERLS seemed to predict ICB response and 
not only prognosis since no such observation was made in 
the chemotherapy cohort.

Most of studies have focused on tumor-infiltrating 
lymphocytes (TILs) and other immune cells in the tumor 
microenvironment (TME). Many studies have shown that 
ICB efficacy was dependent on rejuvenation of TILs,18 
CD8+ T cells from the invasive margin of the tumor.19 
CD8+PD-1+ TILs have been shown to be more tumor 
specific.20 21 PD-1high TILs have been associated with better 
prognosis under ICBs.21 Nevertheless, there is increasing 
evidence suggesting that expansion and recruitment of 
peripheral T cells during ICB treatment may have a prom-
inent role to play in disease progression.22 First, several 
studies have confirmed that intratumor T lymphocytes 
have limited expansion ability in melanoma.23 24 Second, 
some studies suggested that circulating T cells can be 
recruited, leading to a ‘clonal replacement’ rather than 
the rejuvenation of existing T cell clonotypes.24 T cell 
receptor (TCR) clonotype analysis in mice and humans 
have shown that new clonotypes appear in tumors during 
treatment and that some of these novel TIL clones can 
be recruited from peripheral sources.24 In another study, 
clonotypic expansion of effector-like T cells in tumor 
tissue, adjacent tissue and peripheral blood has been asso-
ciated with better response to PD-(L)1 therapy. A recent 
study compared both single cell TCR sequencing and 
RNA sequencing on paired tumor and blood samples.25 
In this study, CD8+ T cells that developed in tumors was 
preexisting in blood. These data support that in respon-
sive patients, intratumor T cells are replenished with 
fresh, non-exhausted T cells, that originate from outside 
the tumor.25

We focused on blood T cells and particularly PD-1+ 
expressing T lymphocytes. As in TME, circulating PD-1+ 
T cells have also been reported to be tumor-specific in 
melanoma.26 Notably, circulating and tumor infiltrating 
CD8+PD-1+ shared a similar TCR repertoire suggesting that 
there is a relationship between circulating and infiltrating 
PD-1+ T lymphocytes.26 PD-1+ T cell in tumor-draining 
lymph nodes were also described as tumor-specific,27 
and can interact closely with dendritic cells. In mice, the 
targeting of PD-L1-expressing dendritic cells in the tumor 
draining lymph node induced seeding of the tumor site 
with T cells, and improved tumor control.27 In a recent 
study, deeper characterization of exhausted CD8+ T 

https://dx.doi.org/10.1136/jitc-2021-004012
https://dx.doi.org/10.1136/jitc-2021-004012
https://dx.doi.org/10.1136/jitc-2021-004012
https://dx.doi.org/10.1136/jitc-2021-004012
https://dx.doi.org/10.1136/jitc-2021-004012
https://dx.doi.org/10.1136/jitc-2021-004012
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cells population was evaluated. This work highlighted 
the existence of a four-stage developmental hierarchy of 
exhausted CD8+ T cells.28 Two populations were progen-
itor (TCF1highToxhigh and TCF1intToxhigh), with TCF1high-

Toxhigh being quiescent and resident and able to convert to 
TCF1intToxhigh. This conversion was associated with a delo-
calization from lymphoid residence to blood locations and 
a proliferation-driven transition to a third subpopulation 

TCF1negT-bethighToxint that have similarities to circulating 
‘effector-like’ cells. Finally TCF1negT-bethighToxint could 
convert into TCF1negT-betlowToxhighEomeshigh these termi-
nally differentiated exhausted CD8+ T cells are absent 
from the blood but can accumulate in tumors.28 Interest-
ingly, intermediate circulating ‘effector-like’ exhausted 
CD8+ T cells can be activated and proliferate under 
PD-(L)1 blockade while terminally exhausted CD8+ T cells 

Figure 3  SIP and PERLS composite score. Proportion of SIP (CD3+CD8+CD28–CD57+KLRG1+) cells were determined at D0 in 
the blood of patients treated with immune checkpoint blockers. (A) Correlation of SIP and PERLS. (B) Number of patients with 
DCB and no-DCB according to the good (SIP− and PERL+), poor (SIP+, PERLS−) and intermediate (SIP+, PERLS+ or SIP−, 
PERLS−) composite score. (C) Progression-free survival according to the good, intermediate and poor composite score. (D) As 
in (C) but with overall survival. DCB, durable clinical benefit; SIP, senescent immune phenotype.
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cannot,28 suggesting a prominent role for these circulating 
T cells during immunotherapy. These results support that 
the recruitment of new T cell clones has an important role 
in the response to treatment and not only expansion/
reactivation of intratumor T cells that were already in the 
tumor site before the initiation of treatment.

In our study the PD-1+ population have a predictive role 
in patients with aNSCLC treated with ICB. The CD8/CD4 
ratio has been associated with chronic activation of the 
immune system, in particular in the elderly.29 Nevertheless, 
in our study elevated CD8/CD4 ratio was not associated 
with outcomes. As PD-1 is expressed by CD4+ and CD8+ 
during activation,30 the consideration of these two param-
eters via the PERLS ratio integrates the balance between 
‘helper’ CD4+ T cells and ‘cytotoxic’ CD8+ T cells. As already 
stated, the prognostic value of circulating CD8+PD-1+ and 
CD4+PD-1+ in patients with aNSCLC has already been 
explored. However, while CD8+PD-1+ T cells tended to be 
associated with a favorable clinical outcome,6 CD4+PD-1+ T 
cells were associated with a poor outcome.9 10 In our study, 
high PERLS is associated with good prognosis while low 
PERLS with poor prognosis. This data demonstrates the 
importance of both the CD8+ T cell and the CD4+ T cell 
compartments. In line with this observation blocking the 
migration of immune cell from the secondary lymphoid 
organ impaired response to ICB in murine preclinical 
models. In this model, peripheral T cells were mandatory 
for antitumor activity, in particular a subset of activated 
effector memory Th1 CD4+ T cells, expressing low levels 
of PD-1 and CD127.31 This work emphasized the need of 
poorly exhausted CD4+ T cells to reach clinical response 
in hosts treated with ICB. Another work showed that IL-6 
could favor PD-1 upregulation on both blood CD8+ and 
CD4+ in aNSCLC and that high IL-6 levels was associated 
with altered T cells functions.32 In this work, IL-6 increased 
more PD-1 on CD4+ T cells than on CD8+ T cells suggesting 
that a low PERLS could also reflect inflammatory mech-
anisms associated with resistance during ICB treatment. 
Thus, the addition of the helper CD4+ compartment may 
improve the accuracy of blood biomarkers and thus help 
to better identify patients likely to respond to ICB.

ICB have been suspected to favor immunoregulation 
by activating T regulator (Treg), however the impact of 
PD-1/PD-L1 axis on Treg remains poorly understood.33 34 
CD8+PD-1+/Treg PD-1+ and CD8+PD-1+/Tconv PD-1+ were 
both associated with good prognosis under ICB in our 
study. This data suggests that the PERLS predictive value is 
not due to the Treg or the Tconv compartment but is linked 
to PD-1 expression among CD4+ T cells. Altogether, this 
suggests that the restriction of CD4+ T cells functions may 
be deleterious for ICB clinical activity.

As PERLS may be associated with response and the 
ability to mobilize patient immune system we had a 
focus on IrAEs. We found no association between PERLS 
and IrAEs but this analysis suffers from possible under-
reporting of low-grade events and from a low numbers of 
severe IrAEs.

We next explored the relationship between PERLS and 
multiple immune blood biomarkers. Only the propor-
tion of naïve T cells at baseline was related to this ratio. 
Circulating naïve T cells are less frequent in patients with 
tumors than in healthy individuals.35 In previous studies, 
patients with metastatic melanoma treated with ICB and 
with a higher frequency of naïve CD4+ T cells at baseline 
were shown to better respond to ICB while non-responders 
have more differentiated CD4 effector memory at base-
line.36 After immunotherapy there was a shift to greater 
differentiation of CD4+ and acquisition of more cytotoxic 
capacity for CD8+ cells in responder patients.36 This shift 
was not found after chemotherapy.36 Another study in 
patients with melanoma, showed that expansion of CD8+ 
cells with a cytotoxic profile was associated with response 
during ICB.37 38 Valpione et al describe the emergence 
during ICB treatment of a cytotoxic memory effector 
peripheral T cell subset only in responding-patients with 
melanoma. Of note, this T cell subset has been associated 
with effector T cells migrating from lymph nodes to the 
blood,37 suggesting that naïve T cell population, able to 
differentiate during ICB treatment is mandatory for an 
effective immune response. In line with this previous 
observation, PERLS was associated with the increase from 
D0 to D60 of memory T cells, this increase being asso-
ciated with clinical benefit. This demonstrate that the 
differentiation from naïve to memory T cells was associ-
ated with clinical benefit, PERLS being linked to positive 
evolution of memory T cells.

Polyfunctional capacity, or the ability to produce several 
soluble factors at the single cell level, is a key factor of T 
cell effectiveness. Several studies demonstrated that poly-
functional capacity of T cells correlates with the immune 
control during viral infections or after vaccination.39–41 
There is growing evidence in cancer-bearing hosts that T 
cell polyfunctionality may favor immunological control of 
the tumor. Recently, Imai and colleagues showed in mice 
that the presence of CD4+ T cells was mandatory for the 
generation of polyfunctional tumor-specific CD8+ T cells 
with long persistence in vivo resulting in enhanced tumor 
regression.42 T cell polyfunctionality was associated with 
clinical response with different approach of immuno-
therapy such as CAR-T cells43 or anti–PD-1 after stereotactic 
body radiation therapy in a mouse model.44 In patients 
with melanoma treated by autologous TIL infusion, a 
subset of tumor-reactive CD8+T cells, expressing PD-1 with 
polyfunctional features, accumulated over time.45 Another 
study has shown that NSCLC-reactive TILs can be poly-
functional.46 However, in our knowledge no data exist 
in patients with aNSCLC treated with ICB. In our study, 
we brought evidence that post-treatment polyfunctional 
CD4+ T cells are more frequent in patients with a favorable 
outcome. Since, polyfunctional T cells and the proportion 
of memory T cells after ICB were positively associated and 
PERLS associated with the induction of memory T cells, we 
believe that PERLS measured at baseline could reflect that 
the patient’s immune system will be able to shift towards a 
memory and polyfunctional T cell response.
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Our group has recently proposed that SIP may be a 
biomarker associated with resistance to ICB.13 PERLS 
inversely correlated with SIP. This is not surprizing since 
SIP is mainly composed of terminally differentiated 
T cells. The composite score PERLS and SIP helped 
to identify a subpopulation of patients admittedly low 
(11.8%) but in whom the treatment was systematically 
effective. Thus, we propose that PERLS and SIP could be 
complementary tools, and together these two circulating 
biomarkers can accurately select patients benefiting from 
ICB monotherapy.

Taken together these results may suggest that PERLS 
that correlates with a naïve T cell, could reflect the 
capacity of T cells to differentiate and become polyfunc-
tional during treatment, functional properties essential 
for a clinical benefit in patients treated with therapeutic 
monoclonal antibodies that target and block PD-(L)1 
molecules.

Even though our study has strengths such as performed 
in a large cohort, with prospective acquisition of fresh 
whole blood immune data, with control and validation 
cohorts. Moreover, PERLS is a ratio with a better reliability 
regardless of the PD-1 clone used for flow cytometry thus 
easy to implement in routine practice across laborato-
ries. We can also enumerate limitations. First, CD4 PD-1+ 
and CD8 PD-1+ population may represent a mixture of T 
cells and a deeper characterization should be carried out. 
Second, we did not explore their functional capacity or 
their tumor specificity this is lacking and currently part 
of our perspectives. We have only studied T cell polyfunc-
tionality in a small number of patients, which makes the 
exploration of the direct link with the PERLS ratio very 
difficult.

In conclusion, we propose that PERLS reflects an 
immunological status necessary for therapeutic response 
in patients with aNSCLC. This ratio is determined before 
treatment using an ‘untouched’ whole blood sample 
and has few technical requirements. Further studies are 
needed to better decipher mechanisms underlying our 
observations, however our finding suggests that the use 
of therapies that promote CD4+ T cell amplification and 
activation or limit their exhaustion may be of interest in 
patients with aNSCLC.
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