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Schizophrenia is a multifaceted chronic psychiatric disorder that affects the way a human thinks, feels, and behaves. Inevitably,
natural randomness exists in the psychological perception of schizophrenic patients, which is our primary source of inspiration for
this research because true randomness is the indubitably ultimate valuable resource for symmetric cryptography. Famous in-
formation theorist Claude Shannon gave two desirable properties that a strong encryption algorithm should have, which are
confusion and diffusion in his fundamental article on the theoretical foundations of cryptography. Block encryption strength
against various cryptanalysis attacks is purely dependent on its confusion property, which is gained through the confusion
component. In the literature, chaos and algebraic techniques are extensively used to design the confusion component. Chaos- and
algebraic-based techniques provide favorable features for the design of the confusion component; however, researchers have also
identified potential attacks on these techniques. Instead of existing schemes, we introduce a novel methodology to construct
cryptographic confusion component from the natural randomness, which are existing in the psychological perception of the
schizophrenic patients, and as a result, cryptanalysis of chaos and algebraic techniques are not applicable on our proposed
technique. )e psychological perception of the brain regions was captured through the electroencephalogram (EEG) readings
during the sensory task. )e proposed design passed all the standard evaluation criteria and validation tests of the confusion
component and the random number generators. One million true random bits are assessed through the NISTstatistical test suite,
and the results proved that the psychological perception of schizophrenic patients is a good source of true randomness. Fur-
thermore, the proposed confusion component attains better or equal cryptographic strength as compared to state-of-the-art
techniques (2020 to 2021). To the best of our knowledge, this nature of research is performed for the first time, in which psychiatric
disorder is utilized for the design of information security primitive. )is research opens up new avenues in cryptographic
primitive design through the fusion of computing, neuroscience, and mathematics.
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1. Introduction

Schizophrenia is a multifaceted psychiatric disorder, which
consists of several varied causes such as environmental,
developmental, and genetic factors. Due to numerous
complications of its causes, inevitable natural randomness
exists in the electroencephalographic readings of patient’s
psychological responses. Patients who suffer from schizo-
phrenia show randomness in their clinical presentation of
symptoms, characteristics, and related prognosis. It is dis-
tinguished by three major clusters of symptoms consisting of
cognitive symptoms including impairment of short- or long-
term working memory, negative symptoms like social
withdrawal, and positive symptoms like hallucinations or
delusions. )ese symptoms stimulate diverse neural activ-
ities in the different regions of brain. Natural randomness
has been acknowledged as the ideal method for cryptog-
raphy and a lot of researchers endorse the true random
numbers for cryptography due to the reason that true
random numbers are irreversible, unpredictable, and
unreproducible, even if their internal construction and re-
sponse history are identifiable to the adversaries [1–8].

Naturally, in the characteristics of the schizophrenic
patients, diverse spectrum of disorders inevitably exists,
which was our core source of inspiration because these
disorders are the potential source of natural randomness.
For example, in the delusion characteristic, patients lose
their brain control due to their delusionary beliefs about the
world around them. )e loss of control stimulates uncertain
and indistinct neural activities in different parts of the brain.
)ese delusions could include grandiose, erotomaniac, and
persecutory. Another characteristic of schizophrenic pa-
tients is the variation in the presentation of their sensory
hallucinations, which differs between each patient. )ese
hallucinations could be auditory, visual, tactile, gustatory, or
olfactory. )ese hallucinations are also responsible for the
arbitrariness of neural activities in brain regions. )e third
characteristic is a derailment, in which patients have vari-
ations in the thinking patterns and these disorganized
thinking patterns are also a cause of irregular neural activity
in different brain regions. )e last characteristic is grossly
disorganized or catatonic behavior, which causes variation
in their presentation of motor behavior due to the imbal-
anced neural activities. )ese involuntary motor behaviors
can range from childlike “silliness” to unpredictable agita-
tion, which causes difficulty in goal-directed behavior.

Protecting secret information is a global challenge, and
block cipher has been a standout among the most reliable
option by which security is accomplished [9–12]. Block
ciphers belong to the family of deterministic algorithms that
operate on the fixed length of bits (n), called a block. A block
cipher algorithm divides the plaintext into several fixed-
length blocks of n bits, to produce a block of ciphertext of k
bits. Block cipher combines both confusion and diffusion
components within a round function and repeats the
function multiple times to produce a ciphered text. Ad-
vanced Encryption Standard and Data Encryption Standard
are the most prominent block ciphers. For the block ciphers,
differential and linear attacks are considered very powerful

attacks [13–17]. )e main objective of the differential attack
is to find the nonrandom pattern of the output, and for this
objective, the attacker attempts to impose a certain set of
input to track the differences in the output. Similarly, the
main objective of the linear attack is to try to learn the linear
association between the parity bits of cipher text, plaintext,
and the symmetric key. Responsibility to make the corre-
lation between ciphertext and the key, as undetectable as
possible, is only on the confusion component, as well as
resistance against the cryptanalysis attacks totally depends
upon the confusion component [13–22]. )e confusion
component of the block cipher is normally known as sub-
stitution box (S-box) or nonlinear block cipher primitive.
Nonlinear block cipher primitive transforms m bits input to
n bits output by using S: {0,1}n⟶{0,1}k.

)e ultimate goal of this research is to propose a
methodology for the problem “how to construct the non-
linear primitive of block cipher using the strength of true
randomness.” )e core concept of this research is to extract
true random bits, by calculating the difference between each
electrode reading of one patient and those of all other pa-
tients, and to design a technique for the generation of
nonlinear primitive of block cipher. )e remaining study is
arranged as follows: Section 2 presents our main contri-
bution; Section 3 describes attacks on existing confusion
component designs; Section 4 explains the proposed scheme;
Section 5 presents the results and its evaluation; and Section
6 presents the application of the proposed dynamic con-
fusion components in image encryption technique.

2. Contribution

)e main contribution of this research is as follows:

(a) A novel method is proposed, to generate true random
bits from the psychological perception of schizo-
phrenic patients. As test, one million true random bits
are assessed through the NISTstatistical test suite, and
the results proved that the psychological perception of
schizophrenic patients is outstanding source of true
randomness.

(b) Instead of algebraic structures and chaotic systems,
our technique relies on inevitable natural random-
ness, which are existing in EEG of schizophrenic
patients for the design of confusion component, and
as a result, attacks of algebraic- and chaos-based
techniques are not applicable and irrelevant for our
proposed technique.

(c) To the best of our knowledge, this nature of research
is performed for the first time, in which psychiatric
disorder is utilized for the design of any block cipher
primitive.

(d) )is research opens up new avenues in crypto-
graphic primitive design through the fusion of
computing, neuroscience, and mathematic.

(e) As the application of our proposed dynamic con-
fusion components, an image cipher based on
confusion-diffusion principal is also developed and
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the resultant encrypted images are examined
through various security analyses and statistical
tests. All the results of these tests are passed, and it
also confirms that the proposed confusion com-
ponents are competent enough for the image
cipher.

3. Attacks on Confusion Component
Design Schemes

Asmentioned earlier, chaos- and algebraic-based techniques
are extensively used to design the confusion component.
Chaos- and algebraic-based techniques provide favorable
features for the design of confusion components; however,
researchers have also identified various cryptanalysis on
these techniques including interpolation attacks [9–12],
Gröbner basis attack [13–19], SATsolver [20–27], linear and
differential attacks [28–42], XL attacks [43–45], and XSL
attack [9, 46–55]. Similarly, chaos-based techniques are also
commonly applied in the designs of confusion components
[56–68], dynamical degradation of chaotic systems [69–73],
predictability [74–85], discontinuity in chaotic sequences
[70, 86–90], small number of control parameters
[76, 77, 91, 92], finite precision effect [70–72, 86, 88], and
short quantity of randomness [71, 72, 86, 88–90, 93–96].

On the other side, a lot of researchers endorse the true
random numbers for cryptography due to the purpose that
true random numbers are unpredictable, unreproducible,
and irreversible, even if their inner structure and past re-
sponses are known to the adversary. [1–8]. Our proposed
technique extracts true random bits, from the readings of
patient’s electrode scalp sites (Fz, FCz, Cz, FC3, FC4, C3, C4,
CP3, CP4) during the sensory task.

4. Proposed Design

)e proposed technique has two phases: true random bits
extraction and dynamic generation of confusion components.
)e system architecture diagram is depicted in Figure 1 and
the whole design is explained in the following phases.

Phase 1. True random bits extraction

(a) Acquire EEG readings from the basic sensory button
press task
)e dataset that is used in this research was obtained
from Refs. [97, 98], and for this, forty-nine schizo-
phrenia patients were selected by professional and
clinical psychologists after the initial screening of
schizophrenia symptoms. Symptoms of the schizo-
phrenia are assessed through three standardized psy-
chological instruments: Scale for Negative Symptoms
(SANS), Scale for Positive Symptoms (SAPS), and
Positive and Negative Syndrome Scale (PANSS). )e
age range of the schizophrenia patients is 20 to 60
(μ� 42.82, σ � 13.12) years, and different subtypes of
schizophrenic patients included such as residual
schizophrenia, paranoid schizophrenia, undifferenti-
ated schizophrenia, schizophrenia unknown subtype,

schizoaffective disorder, and disorganized schizo-
phrenia. Event-related potential (ERP) averages of nine
electrode scalp sites (Fz, FCz, Cz, FC3, FC4, C3, C4,
CP3, CP4) are obtained, and readings of the electro-
encephalography are continuously digitalized at
1024Hz. )e topological positions of the 64-channel,
active-electrode layout is illustrated in Figure 2 [98].
)e sensory task given to the participants consisted of a
button press at every 1–2 seconds, to deliver 1000Hz,
80dB sound pressure level, and tones with zero delay
between press and tone onset. )e task was stopped
after 100 tones had been delivered.

(b) Difference calculation between each electrode
reading of one patient and each electrode reading of
all other patients
Each reading of the 1st channel is subtracted, from the
1st channel reading, of all other patients. Similarly,
each reading of the 2nd channel is subtracted, from the
2nd channel reading of all other patients. Subtracted
readings of every channel are stored individually in
vector data structure and then parsed into binary
format.)is process is repeated over the readings of 64
channels and 4900 vectors generated. As test, one
million of these binary bits are assessed through the
NIST statistical test suite, and the results of Table 1
proved that the psychological perception of schizo-
phrenic patients is a good source of true randomness.

(c) True Random Bits Fusion

)e output of the last step is fused through the proposed
DIFFERENCE_FUSION () algorithm, which is attached in
annexed (Figure S1). A visual representation of the algo-
rithm is depicted in Figure 3. )is algorithm takes true
random bits in the multiple of four vectors and then traverse
in a specific order based on z-ordering. If the value of
quadrant NW is 0, then retrieve bits from left to right, and if
the value of quadrant NW is 1, then retrieve bits from right
to left. Two variations of the z-ordering scheme are
implemented here: the first is local z, which operates on
2× 2 bits, and the second is global z, which operates on 2× 2
local z.

Phase 2. Dynamic generation of confusion components

(a) Difference-based Two-Dimensional Map Genera-
tion (D2DMG)
Vectors of the last step are passed as parameters to
the D2DMG() algorithm for the generation of two-
dimensional maps. Visual representation of the al-
gorithm is depicted in Figure 4, and the D2DMG()
algorithm is attached in annexed (Figure S2).

(b) Dynamic Confusion Component Generator (DCCG)

Pairwise randomly traverse all vectors from Phase 1 and
then assign arbitrary indexes. Arbitrary indexes are produced
simply by applying the module 3 operation on every byte of the
vector. Here, arbitrary indexes work as indexes of the vector
elements. To get the values of the confusion component, pa-
rameters (pair of vectors with their arbitrary index and map
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Figure 1: Proposed system design.
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Figure 2: 64-channel active-electrode layout.
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with its index) are passed to the ConfusionValuesGenerator()
algorithm. ConfusionValuesGenerator algorithm is attached in
annexed (Figure S3), and the visual representation of the al-
gorithm is depicted in Figure 5. Due to the pure randomized
nature, on every call, this algorithm returns 0 to 8 values.
Resultant streamof theConfusionValuesGenerator( ) algorithm
was passed to the DCCG() algorithm for the generation of
dynamic confusion components. )e DCCG algorithm returns
dynamic confusion components depending upon the size of
stream; theDCCG algorithm is attached in annexed (Figure S4).
From the results, six confusion components are randomly
picked as samples, and first randomly picked confusion com-
ponent and its inverse is shown in Tables 2 and 3 respectively,
and the remaining five confusion components are shown in
annexed (Table S1). )e reverse S-box algorithm is shown in
Algorithm 1.

5. Results Evaluation

In this section, sample confusion components of Section
4 are evaluated through the standard confusion com-
ponent evaluation criteria [32–44], which includes bit
independence criterion(BIC), linear approximation
probability (LP), strict avalanche criterion (SAC), non-
linearity score, and differential approximation proba-
bility (DP).

5.1. Nonlinearity. Nonlinearity is one of the most important
confusion component properties, which indicates the re-
sistance ability of confusion components against the linear
attacks, and the nonlinearity of cipher is expressed by the
nonlinearity score. It is known as the smallest distance of
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Boolean function from the set of affine functions. )e
nonlinearity score is the total number of bits altered to get
the nearest affine function in the Boolean truth table. To
calculate the nonlinearity score, the distance of all affine
functions and Boolean function is determined. When the
initial distance is calculated, the nearest affine function is
achieved by changing the amount of bit values in the
Boolean function’s truth table. )e Walsh spectrum defines
the nonlinearity of a Boolean function by using the following
formula:

Ng � 2n− 1 1 − 2− n max
φεGF 2n( )

|S(g)(φ)|􏼠 􏼡, (1)

where S(g)(φ) is defined as

S(g)(φ) � 􏽘
φ∈GF 2n( )

(−1)
g(x)⊕x.φ

, (2)

where φ is a n-bit vector and φ ∈ GF(2n). )e dot product
between x and φ is denoted as x · φ:

x · φ � x1⊕φ1 + x2⊕φ2 · · · + xn⊕φn. (3)

)e nonlinearity score of our randomly picked confu-
sion components 1,2,3,4,5,6 is 110.50, 106.75, 106.50, 106.75,
107.50, and 107.25, respectively. In Table 4 we can see that
the nonlinearity score of our proposed confusion compo-
nents is higher or equal from the state-of-the-art techni-
ques(year 2020 to 2021).

5.2. Strict Avalanche Criteria (SAC). SAC specify that all the
output bits will be modified with 1/2 probability by flipping a
bit of input. SAC analyze the impact of avalanche effects in
encryption. )e change in the input generates a number of
changes in the output. Having an even output pattern
prevents linear attacks. )erefore, the changes in the output
bits must be independent. SAC counts the number of
changed output bits caused by complementing a single bit of
input. All output bits will deviate with the probability of one
half for an algorithm to be more secure. To test the SAC of
the confusion component, we used the dependency matrix.
S-box fulfils the SAC property, if all the elements and mean
value in the dependency matrix are approximately equal to
0.5. )e offsets of the dependence matrix are calculated by
the following formula:

S(g) �
1
n
2 􏽘

1≤r≤n
􏽘

1≤w≤n

1
2

− Qr, w(g)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (4)

where

Qr, w(g) � 2− n
􏽘

xεBn

gw(x) ⊕gw x⊕ er( 􏼁, (5)

er � [θr, 1θr, 2 . . . θr, n]T is the transpose of matrix θr,w �

0, r≠w Or θr,wθr,w � 1, r � w

)e SAC (average) score of our randomly picked six
confusion components (1,2,3,4,5,6) is 0.498779, 0.500244,
0.503662, 0.497314, 0.500732, and 0.508545, respectively.

Table 1: NIST statistical tests of SP-800-22.

Type of test P-value
Frequency test (monobit) 0.64785502
Frequency test within a block 0.673576240
Run test 0.170731649
Longest run of ones in a block 0.875317043
Binary matrix rank 0.285809935
Discrete Fourier transform (spectral) 0.465626931
Nonoverlapping template matching 0.879441943
Cumulative sums (reverse) 0.896802069
Cumulative sums (forward) 0.631657291
Overlapping template matching 0.687280196
Serial test 0.625578760
Linear complexity 0.185625430
Random excursions variant
State Chi-squared P-value
−4 2.693559056 0.747103374
−3 4.472941176 0.483511959
−2 2.645606391 0.754424291
−1 8.647058824 0.123997312
1 12.29411765 0.030972537
2 1.730573711 0.885025702
3 3.344094118 0.647097954
4 3.152387486 0.676505457
Random excursions variant test
State Counts P-value
−9 2 0.532681604
−8 5 0.595163147
−7 7 0.634322683
−6 7 0.605094946
−5 7 0.567551017
−4 6 0.475830847
−3 5 0.357385716
−2 8 0.372857936
−1 9 0.170066961
1 21 0.492716677
2 16 0.921126555
3 17 1
4 16 0.948317021
5 17 1
6 27 0.605094946
7 39 0.295361031
8 46 0.19909242
9 50 0.169870808

in: 2D array of integers, sbox [16, 16];
out: 2D array of integers, ReverseSbox [16, 16];
(1) ReverseSbox⟶ |16||16|
(2) for row⟶ 0 . . . (16) do
(3) for col⟶ 0 . . . (16) do
(4) rowIS⟶ sbox row,col div 16
(5) colIS⟶ sbox row,col mod 16
(6) value⟶ row∗ 16 + col
(7) ReverseSbox rowIS, colIS⟶ value
(8) end for
(9) end for
(10) return ReverseSbox

ALGORITHM 1: Reverse S-box (S-box).
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Figure 5: Confusion value generator.

Table 2: Proposed confusion component-1.

94 133 206 66 120 92 68 118 187 114 56 167 243 93 75 143
209 64 67 36 202 151 211 57 233 162 109 21 223 150 208 161
11 203 195 180 165 37 215 157 63 28 212 78 61 213 122 72
108 231 121 90 74 250 190 8 105 31 155 216 16 160 136 185
32 7 6 152 127 25 59 44 163 49 39 198 166 81 175 159
83 60 10 13 148 204 251 3 239 69 42 123 135 228 181 17
249 196 54 230 80 189 222 244 255 110 85 176 179 182 154 221
170 19 174 15 132 43 0 86 245 177 113 234 58 142 197 207
34 12 73 146 254 134 76 124 27 218 130 2 38 186 5 252
191 242 201 219 126 106 139 156 119 115 226 103 168 45 224 220
48 210 241 140 178 173 172 138 4 248 41 227 97 89 128 40
164 30 192 141 70 235 9 77 232 125 246 199 26 200 65 253
55 184 35 238 100 101 107 1 145 102 104 82 47 112 129 144
14 205 99 169 23 194 91 53 247 217 84 98 193 171 225 240
62 236 33 116 87 79 18 183 131 22 229 20 52 214 111 88
51 46 158 96 237 149 95 188 29 153 117 71 24 147 137 50

Table 3: Inverse of confusion component-1.

118 199 139 87 168 142 66 65 55 182 82 32 129 83 208 115
60 95 230 113 235 27 233 212 252 69 188 136 41 248 177 57
64 226 128 194 19 37 140 74 175 170 90 117 71 157 241 204
160 73 255 240 236 215 98 192 10 23 124 70 81 44 224 40
17 190 3 18 6 89 180 251 47 130 52 14 134 183 43 229
100 77 203 80 218 106 119 228 239 173 51 214 5 13 0 246
243 172 219 210 196 197 201 155 202 56 149 198 48 26 105 238
205 122 9 153 227 250 7 152 4 50 46 91 135 185 148 68
174 206 138 232 116 1 133 92 62 254 167 150 163 179 125 15
207 200 131 253 84 245 29 21 67 249 110 58 151 39 242 79
61 31 25 72 176 36 76 11 156 211 112 221 166 165 114 78
107 121 164 108 35 94 109 231 193 63 141 8 247 101 54 144
178 220 213 34 97 126 75 187 189 146 20 33 85 209 2 127
30 16 161 22 42 45 237 38 59 217 137 147 159 111 102 28
158 222 154 171 93 234 99 49 184 24 123 181 225 244 195 88
223 162 145 12 103 120 186 216 169 96 53 86 143 191 132 104
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)ese results proved that our proposed confusion components
are enough capable.)e SAC result of confusion component-1
presented in Table 5 is the sample

5.3. BIT Independent Criterion (BIC). BIC is used to analyze
the output bits behavior by changing the input bits. Con-
fusion component holds the BIC property when output bits
behave independently from each other. BIC characteristic
states that output bits j and k will modify individually if any
single input bit i is reversed. )is will improve the profi-
ciency of confusion function. )e independence between
pair of avalanche variables is measured through the coef-
ficient of correlation. )e bit independence of the jth and kth

bits of Bei is

BIC bj, bk􏼐 􏼑 � max
1≤i≤n

corr b
ei
j , b

ei′
j􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (6)

Shannon’s confusion function(C) is represented as C: {0,
1}n ⟶{0, 1}n. BIC parameter for Shannon’s confusion
function is measured by the given mathematical expression:

BIC(C) � max
1≤j,k≤n

BIC bj, bk􏼐 􏼑. (7)

)e shift in output bits is an important parameter for
determining the strength of the encryption process. )e
average BIC score of our randomly picked confusion
components from 1 to 6 is 0.50105, 0.50272, 0.50112,
0.50223, 0.50105, and 0.50105, respectively. )ese results
proved that our proposed confusion components strongly
fulfill the bit independent criteria. )e SAC-BIC results of
confusion component-1 presented in Table 6 are the sample.

5.4. Linear Approximation Probability (LP). LP is another
important criteria for evaluating Shannon’s confusion
component. LP is the function’s capability to avoid linear
attacks and is the highest value of the disparity of an event.
)e input bit’s parity selected by the mask c1 and the output
bit’s parity selected by the c2 mask are equal. )e masks of
input and output bits are evaluated to obtain the imbalance
of an event. Linear approximation probability is measured
by the following mathematical expression:

LPf � maxc1,c2≠0
xεX | x · c1 � S(x).c2􏼈 􏼉

2n −
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (8)

where c1 represents the input mask and c2 represents the
output mask in the above equation. X represents the set of all
possible inputs, and 2n is the total number of elements in the
confusion component. )e maximum LP score of our con-
fusion components(1 to 6) is 0.1171875,0.1328125,0.12500,
0.1328125, 0.140625, and 0.140625, respectively; these results
also fulfills the LP criteria.

5.5. Differential Approximation Probability (DP). DP char-
acteristic examines the XOR distribution among the input
and output bits. In order to be resilient against the differ-
ential attacks, the XOR values of all outputs must have equal
probability with the XOR values of all inputs. In the dif-
ferential approximation table, the probability of all the XOR

values of input and the probability of all XOR values of
output are equal. )e exclusive-or distribution among the
inputs and outputs of S-box is calculated by

DP (Δw⟶Δz) �
# wεX | S(w)⊕ S(w⊕Δw) � Δz{ }

2i
􏼢 􏼣.

(9)

Here X represents the set of all possible input values and
2i represents cardinality of set. )e maximum DP score of
our confusion components (1 to 6) is 0.046875, 0.046875,
0.046875, 0.054688, 0.039062, and 0.054688, respectively;
here, we can see that these results also fulfills the DP criteria.
As a sample, the DP results of the confusion component-1
are presented in Table 7.

6. Application of Proposed Dynamic Confusion
Components in Image Encryption

As the application of our proposed dynamic confusion
components, an image cipher based on confusion-diffusion
principal is developed, which is depicted in Figure 6. )e
structure of the mage cipher is depicted in Figure 6. It
consists of repeating rounds of dynamic confusion layers,
static diffusion layer, and the key addition, which make them

Table 4: Nonlinearity of state-of-the-art techniques.

State-of-the-art confusion
components Nonlinearity score gained

[99], 2021 106.25
[101], 2021 106.5
[103], 2021 102.25
[105], 2020 106.5
[107], 2020 106.87
[109], 2020 104.25
[111], 2020 102.50
[113], 2020 106.25
[115], 2020 105.5
[117], 2021 106.75
[114], 2020 103.5
[118], 2020 106.5
[119], 2020 106.3
[121], 2021 104.0
[122], 2021 108.5
[100], 2021 109.75
[102], 2021 106.5
[104], 2021 105.5
[106], 2021 107.0
[108], 2020 105.25
[110], 2020 100.5
[112], 2020 104.0
[114], 2020 103.5
[116], 2020 105.0
[118], 2020 106.5
[111], 2020 102.5
[109], 2020 104.25
[120], 2020 101.75
[121], 2021 104.0
[123], 2021 105.25
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hard for cryptanalysis. For the key generation process, the
chaotic interval of the logistic map and tent map is en-
hanced by synthesizing the parameters of both maps to
obtain the increased keyspace [86]. )e chaotic field of the
logistic map only lies in the range between 3.57≤ σ ≤ 4, and
similarly, the chaotic field of the tent map lies in the range
between 2≤ σ ≤ 4. Logistic map and tent map are defined in
(10) and (11), respectively, and their enhanced chaotifi-
cation structure of logistic tent system(LTS) is defined in
(12). Finally for the subkey generation, divide the resultant
values of LTS into the blocks of 256 bytes. In the same way
for the permutation process, apply XOR operation on the
values generated from (11) and (12). )ese resultant values
are in the range between 0 and 255. Select first 256 distinct
values as permutation. We examined the encrypted images
through various security analyses and statistical tests in-
cluding NPCR, UACI, correlation-coefficient analysis, and
2D, 3D histogram analysis. All the results of these tests are

passed; it also confirms that the proposed confusion is
competent enough for the image cipher:

zn+1 � σzn 1 − zn( 􏼁, 0< σ ≤ 4; zn ∈ [0, 1]. (10)

zn+1 �

c
zn

2
zi <

1
2
,

c 1 − zn( 􏼁

2
zi >

1
2
,

0< σ ≤ 4; zn ∈ [0, 1].

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(11)

zn+1 �
σzn 1 − zn( 􏼁 +(4 − σ)zn/2( 􏼁mod 255zi <(1/2)

σzn 1 − zn( 􏼁 +(4 − σ) 1 − zn( 􏼁/2( 􏼁mod 255zi >(1/2)
.􏼨

(12)

6.1. Resistance against Differential Analysis. )e key re-
quirement of the encryption algorithm is its ability to resist

Table 5: SAC of confusion component-1.

0.453125 0.500000 0.500000 0.531250 0.515625 0.500000 0.484375 0.500000
0.453125 0.562500 0.515625 0.515625 0.500000 0.468750 0.484375 0.453125
0.531250 0.515625 0.515625 0.468750 0.515625 0.500000 0.500000 0.515625
0.515625 0.468750 0.500000 0.468750 0.500000 0.500000 0.531250 0.515625
0.546875 0.515625 0.500000 0.468750 0.468750 0.546875 0.500000 0.453125
0.531250 0.515625 0.484375 0.578125 0.468750 0.515625 0.546875 0.468750
0.437500 0.515625 0.468750 0.484375 0.515625 0.500000 0.515625 0.484375
0.500000 0.406250 0.484375 0.515625 0.484375 0.500000 0.500000 0.500000

Table 6: SAC of BIC.

— 0.490234 0.505859 0.501953 0.513672 0.509766 0.507812 0.498047
0.490234 — 0.503906 0.513672 0.486328 0.494141 0.488281 0.480469
0.505859 0.503906 — 0.488281 0.503906 0.513672 0.513672 0.527344
0.501953 0.513672 0.488281 — 0.507812 0.490234 0.503906 0.513672
0.513672 0.486328 0.503906 0.507812 — 0.513672 0.480469 0.501953
0.509766 0.494141 0.513672 0.490234 0.513672 — 0.474609 0.470703
0.507812 0.488281 0.513672 0.503906 0.480469 0.474609 — 0.531250
0.498047 0.480469 0.527344 0.513672 0.501953 0.470703 0.531250 —

Table 7: DP of the confusion component-1.

.00000 .02344 .03125 .02344 .02344 .03125 .02344 .02344 .03125 .02344 .02344 .02344 .02344 .02344 .02344 .02344

.02344 .03125 .02344 .03125 .02344 .02344 .02344 .02344 .02344 .02344 .02344 .03125 .03125 .03125 .03125 .03125

.02344 .02344 .02344 .02344 .02344 .02344 .03125 .02344 .03125 .02344 .02344 .01562 .03125 .02344 .02344 .01562

.02344 .02344 .02344 .02344 .02344 .03125 .03125 .03125 .02344 .03125 .03125 .02344 .02344 .02344 .02344 .03125

.02344 .03125 .03125 .03125 .02344 .02344 .02344 .02344 .02344 .03125 .02344 .03125 .02344 .02344 .02344 .03125

.02344 .03906 .03125 .02344 .02344 .03125 .03125 .02344 .02344 .03125 .02344 .02344 .03125 .02344 .03125 .03125

.03125 .03125 .02344 .02344 .02344 .03125 .03906 .02344 .03125 .02344 .03125 .02344 .03125 .02344 .04687 .03125

.02344 .03125 .02344 .02344 .02344 .02344 .02344 .02344 .03125 .03125 .03125 .02344 .02344 .03125 .01562 .02344

.03125 .02344 .02344 .02344 .02344 .02344 .02344 .02344 .02344 .02344 .01562 .02344 .02344 .02344 .03125 .02344

.02344 .02344 .02344 .02344 .02344 .02344 .02344 .03125 .02344 .02344 .03125 .02344 .02344 .03125 .02344 .02344

.02344 .03125 .03125 .02344 .03125 .02344 .03125 .02344 .03125 .02344 .03125 .02344 .02344 .02344 .02344 .03125

.02344 .02344 .01562 .02344 .02344 .03125 .02344 .02344 .02344 .02344 .03125 .02344 .02344 .03125 .01562 .03125

.02344 .02344 .02344 .02344 .02344 .02344 .02344 .02344 .03906 .03125 .03125 .03906 .03906 .03125 .02344 .02344

.03125 .02344 .02344 .01562 .02344 .03125 .02344 .02344 .02344 .02344 .02344 .03906 .03125 .03125 .02344 .02344

.02344 .015625 .02344 .02344 .03125 .03125 .03125 .02344 .02344 .02344 .02344 .01562 .02344 .03125 .02344 .02344

.03125 .02344 .03125 .02344 .02344 .02344 .03906 .03125 .02344 .02344 .03125 .02344 .02344 .02344 .03906 .03125
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the differential attacks. Differential cryptanalysis is difficult
when a small shift in original image will generate completely
different ciphered image. We examined the image

encryption results on various standard color test images
(Lena, pepper, nature, bird, baboon, grapes, sparrow, but-
terfly), and here as a sample, original image pepper over the
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Figure 6: Confusion- and diffusion-based image cipher.
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RGB channels is shown in Figures 7(a)–7(c) and their
correspondent cipher pictures are presented in Figures 7(d),
7(e), and 7(f ). )e NPCR and UACI are the two frequently
used tests of the image cipher to check the strength against
the differential attacks. NPCR is defined as follows
[124, 125]:

NPCR �
􏽐i,jD(i, j)

W × H
× 100%. (13)

D(i,j) is described as D(i,j) � 0 if I (i, j)� J(i, j), D(i,j) � 1 if
I(i, j)� J(i, j)

UAIC measure the mean variation of pixel intensity of
two encrypted images at same location. It is determined by

UACI �
1

W × H
× 􏽘

i,j

×
C1(i, j) − C2(i, j)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

255
⎡⎢⎢⎣ ⎤⎥⎥⎦ × 100%,

f(x) �

0, if C1(i, j) � C2(i, j),

1, if C1(i, j)≠C2(i, j),

⎧⎪⎨

⎪⎩

(14)

where C1(i, j) and C2(i, j) indicate the pixel value of two
encrypted images at location (i, j). W represents the number
of rows and H presents the number of columns of the plain

image. )e encryption security is improved with a large
UACI value. )e NPCR and UACI are measured through
the following formulas:

NPCRE � 1 − 2− n
( 􏼁 × 100%,

UACIE �
1
22n

􏽐
2n−1
i�1 i(i + 1)

2n
− 1

× 100% �
1
3

1 + 2− n
( 􏼁 × 100%,

(15)

where n is the number of bits used to denote the various
bit planes of an image. High values of UACI and
NCPR have strong resistance against differential attacks.
Table 8 indicates the values of NPCR and UACI. NPCR
and UACI values of our encrypted images are near to
99.63 and 336.50, respectively, which are very good
results.

6.2. Correlation Coefficient Analysis. Neighbor pixels of the
unencrypted images are extremely correlated and can show
visual traits to the adversaries. An efficient cipher technique
would reduce the correlation between adjacent pixels of an
encrypted image in all the three directions. Before the en-
cryption, the correlation coefficient value should be around 1

(a) (b) (c)

(d) (e) (f )

Figure 7: Original and encrypted test image of the pepper. (a) Before encryption(Channel:R); (b) before encryption (Channel:G); (c) before
encryption (Channel:B); (d) after encryption(Channel:R); (e) after encryption (Channel:G); (f ) after encryption (Channel:B).
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Table 8: NPC and UACI.

Images Location NPCR UACI
Proposed Proposed

Lena
R 99.6221 33.5514
G 99.6127 33.5158
B 99.5517 33.5212

Pepper
R 99.6231 33.4525
G 99.6462 33.4642
B 99.6652 33.4935

Nature
R 99.5925 33.6789
G 99.6186 33.4987
B 99.6245 33.6506

Bird
R 99.6621 33.4065
G 99.6651 32.9154
B 99.6266 32.9365

Baboon
R 99.6578 33.6534
G 99.6256 33.6385
B 99.6344 33.7265

Grapes
R 99.6231 33.7596
G 99.6652 32.7821
B 99.6632 33.5063

Sparrow
R 99.6551 33.4798
G 99.6225 33.4125
B 99.6432 32.9098

Butterfly
R 99.6591 33.5215
G 99.6652 32.9952
B 99.6063 33.0563
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Figure 8: Scatter plots of the test image pepper over the R channel. (a) Plain image (direction: horizontal); (b) plain image (direction:
vertical); (c) plain image (direction: diagonal); (d) cipher image (direction: horizontal); (e) cipher image (direction: vertical); (f ) cipher
image (direction: diagonal).
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Figure 9: Scatter plots of the test image pepper over the G channel. (a) Plain image (direction: horizontal); (b) plain image (direction:
vertical); (c) plain image (direction: diagonal); (d) cipher image (direction: horizontal); (e) cipher image (direction: vertical); (f ) cipher
image (direction: diagonal).
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Figure 10: Scatter plots of the test image pepper over the B channel. (a) Plain image (direction: horizontal); (b) plain image (direction:
vertical); (c) plain image (direction: diagonal); (d) cipher image (direction: horizontal); (e) cipher image (direction: vertical); (f ) cipher
image (direction: diagonal).
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Figure 11: 3D Histogram of the original images.

Table 9: Correlation analysis of the adjacent pixels.

Images Location
Horizontal Vertical Diagonal

Plain Encrypted Plain Encrypted Plain Encrypted

Lena
R .9302 −.000005 .9806 .00011 .9306 .000071
G .9426 −.000462 .9752 −.00005 .9360 −.000051
B .9061 .000012 .9503 .00078 .8803 .000077

Pepper
R .9252 .000021 .9303 .00026 .8745 .000048
G .9566 −.000295 .9806 −.00008 .9363 −.000065
B .9312 .000212 .9308 .00015 .8896 .00023

Nature
R .9472 −.000012 .9512 .00015 .9101 −.000069
G .8833 .000352 .9313 −.00012 .8693 .000019
B .9702 .000009 .9708 −.00082 .9513 .000038

Bird
R .9806 .000021 .9705 .00010 .9596 −.000007
G .9612 −.000005 .9603 .00006 .9298 .000201
B .9633 −.000511 .9512 .00007 .9319 −.000039

Baboon
R .9659 −.00008 .9519 −00006 .9127 .000047
G .9559 .000615 .9201 −.000031 .8539 −.00078
B .9313 −.000018 .9499 −.00002 .9206 .000071

Grapes
R .9836 .000051 .9826 .00005 .9568 .000068
G .9852 .000005 .9756 −.000031 .9627 −.000064
B .9788 −.000047 .9702 .00003 .9608 −0.00051

Sparrow
R .8866 .000057 .9236 −.00004 .9906 −.000043
G .9503 −.000049 .8352 .00008 .9804 .000059
B .9306 −.000008 .7952 −.00070 .9402 .000021

Butterfly
R .9512 −.000048 .9800 −0.0006 .8845 −.000034
G .8999 −.000007 .8306 .00021 .9269 .000062
B .8802 −.000008 .7789 .00056 .8417 .000081
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and after the encryption should be around 0. Adjacent pixel
pairs of the test image pepper are plotted in Figures 8, 9 and
10. From the both original and encrypted images, 1000 pixels
are plotted in the diagonal, horizontal, and vertical direction.
Correlation coefficient among two neighboring pixels are
calculated by

rxy �
cov(x, y)

�����
D(x)

􏽰 �����
D(y)

􏽰 ,

cov(x, y) �
1
N

􏽘

N

i�1
xi − E(x)( 􏼁 yi − E(y)( 􏼁,

D(x) �
1
N

􏽘

N

i�1
xi − E(x)( 􏼁

2
,

E(x) �
1
N

􏽘

N

i�1
xi,

(16)

where xi and yi show the values of two adjacent pixels and N
is the total number of duplets. )e mean value of xi is
denoted by E(x), and the mean value of yi is denoted by E(y).
)e calculated value of the correlation coefficient in plain
images is closer to 1 along diagonal, horizontal, and vertical
directions, whereas the value of correlation coefficient in
encrypted image is closer to 0. We can see that the values of

the correlation coefficient over the encrypted images are
totally different from the values of plain images, so the
correlation coefficient attack fails to provide any clue of the
original image. )e results of the correlation coefficient
analysis on horizontal, vertical, and diagonal directions are
displayed in Table 9.

6.3. Histogram Analysis. )e histogram is the graphical
representation of the distribution of pixels in the picture by
measuring a number of pixels at each intensity level. An-
alyzing the histogram shows how pixels are distributed over
encrypted image. Effective cipher encrypts the original
image into the cipher image, which contains random RGB
pixel. In Figure 11, we can see that 3D histogram of the
standard test images shows some information, but in Fig-
ure 12, encrypted test images have uniformly random pixel
values. )e histogram of the encrypted and original images
are completely different, so the attacker cannot extract any
relation between encrypted image and plain image.

7. Conclusion

Randomness is a fundamental feature in nature and a valuable
resource for the cryptography. First time, this nature of re-
search is performed in which psychiatric disorder is utilized
for the generation of truly random bits, and based on these
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Figure 12: 3D Histogram of the encrypted images.
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true random bits, confusion components are constructed.
Instead of algebraic- and chaotic-based approaches, our
technique relies on inevitable natural randomness, which
exists in the EEG of schizophrenic patients, and as a result,
attacks of chaos- and algebraic-based techniques are bypassed
in our proposed approach. For the evaluation of the true
random bits, NISTstatistical test suite was adopted, and for the
evaluation of the confusion component, standard evaluation
criteria were adopted. As a test case, one million true random
bits are assessed through the NISTstatistical test suite, and the
results proved that the psychological perception of schizo-
phrenic patients is a good source of true randomness. Con-
fusion components are evaluated through SAC, LP, DP, BIC,
and nonlinearity. )e outcomes of these criteria verified that
the proposed confusion component is effective for block ci-
phers. We will expand this research in future, for the dynamic
generation of lattice primitives [70].
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