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Abstract1

RNA velocity estimation is a potentially powerful tool to reveal the directionality of2

transcriptional changes in single-cell RNA-seq data, but it lacks accuracy, absent advanced3

metabolic labeling techniques. We developed a novel approach, TopicVelo, that disentangles4

simultaneous, yet distinct, dynamics by using a probabilistic topic model, a highly interpretable5

form of latent space factorization, to infer cells and genes associated with individual processes,6

thereby capturing cellular pluripotency or multifaceted functionality. Focusing on process-7

associated cells and genes enables accurate estimation of process-specific velocities via a8

master equation for a transcriptional burst model accounting for intrinsic stochasticity. The9

method obtains a global transition matrix by leveraging cell topic weights to integrate process-10

specific signals. In challenging systems, this method accurately recovers complex transitions11

and terminal states, while our novel use of first-passage time analysis provides insights into12

transient transitions. These results expand the limits of RNA velocity, empowering future13

studies of cell fate and functional responses.14
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Introduction15

One of the key challenges in single-cell data science, trajectory inference (TI) leverages genome-16

wide transcriptional profiles to estimate the position of each cell in an underlying, ordered biological17

process [1–3]. While embryonic development and cellular development are common applications,18

trajectory inference is also important in the analysis of other dynamic processes, such as im-19

mune responses and tumorigenesis [4–6]. The destructive nature of single-cell RNA-sequencing20

(scRNA-seq) technologies limits the input data to static snapshots, rather than temporal records.21

Computational innovations glean true dynamic information by exploiting inadvertently captured22

reads from unspliced pre-mRNA, as well as targeted reads from mature, spliced mRNA, to model23

the transcriptional kinetics of genes and thereby estimate a time derivative of the transcriptional24

state, known as RNA velocity [7, 8].25

Unlike similarity-based “pseudotime” TI methods (e.g., [9–11], reviewed in [3]), RNA velocity26

reveals the directions and patterns of complex flows, even within a single time point, and thus also27

precursor and terminal cell populations. The unique capabilities and possible extensions of RNA28

velocity make it a potentially powerful tool in the analysis of diverse dynamic biological systems,29

particularly when there is limited prior knowledge. Yet, despite the advances, the effective appli-30

cation of RNA velocity for TI has been impeded by a lack of robustness and accuracy driven by31

multiple factors [12–16]. Recent approaches have used a variety of techniques to improve RNA32

velocity [17–26], but they do not account for distinct processes, beyond lineages, that occur simul-33

taneously, or pluripotency. Moreover, most methods are based on ordinary differential equations34

and do not model intrinsic transcriptional stochasticity. The persistent gap between the promise35

and reality of RNA velocity has largely restricted its application.36

To create an effective RNA velocity tool for investigating complex systems, such as immune37

responses, we created TopicVelo, a novel approach that disentangles potentially simultaneous pro-38

cesses using a probabilistic topic model [27, 28], also known as a grade-of-membership model [29,39

30], which is a highly interpretable, Bayesian non-negative matrix factorization. Focusing on the40

specific cells and genes involved in distinct processes enables us to better capture distinct dynamics.41

To infer kinetic parameters for process-specific genes, TopicVelo fits integer transcript counts to42

a physically meaningful transcriptional burst model [31]. Based on the extent to which each cell43

participates in each process, TopicVelo integrates the process-specific dynamics to infer a global44

model of cell transitions (Fig. 1).45

In addition to using standard visualizations of streamlines, we assessed RNA velocity results46

with Markovian techniques, including mean first passage time analyses that identify transient47

transitions not observed via traditional approaches. In diverse datasets, TopicVelo offers new48

insights and performs significantly better than state-of-the-art approach scVelo [8], without the49

aid of metabolic labeling or multiple time points, by recovering velocities, transition flows, and50

terminal states that are more consistent with known biology.51

In the rest of the paper, we give an overview of TopicVelo and highlight its performance in a52

human hematopoiesis dataset, for which the correct dynamics were previously inferred only with53

the aid of metabolic labeling [18]. We also illustrate the capability of TopicVelo to handle com-54

plex developmental systems with stage-dependent dynamics [12, 32]. Lastly, we show TopicVelo55

infers validated, complex, convergent trajectories underlying the inflammatory responses of skin56

lymphocytes, using only a single time point [33].57
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Overview of TopicVelo method58

A single scRNA-seq snapshot may capture multiple biological processes, even within one cell type,59

including ubiquitous processes, such as proliferation and ribosomal synthesis, as well as system-60

specific processes, such as differentiation and immune responses (Fig. 1a). Each process involves61

a set of genes, or gene program, for which the process- and gene-specific kinetics are typically62

governed by a bursty transcription model [34]. The resulting transcriptional profiles of cells in the63

system also reflect the varying degrees to which different processes have been active in each cell64

up to the time of capture. These considerations are absent in existing RNA velocity approaches but65

must be accounted for in an accurate model of the generative processes of scRNA-seq data. The66

need to capture these key biological features motivated our approach to TopicVelo. Because the67

joint inference of all parameters in such a generative model may be computationally intractable,68

TopicVelo separates the inference of program-specific genes and cell-specific activity levels from69

the inference of kinetic parameters.70

Specifically, TopicVelo operates in the following three stages:71

1. Process-specific inference. Inspired by previous works that effectively use probabilistic topic72

models to distinguish biologically relevant signals in scRNA-seq data [33, 35–37], we apply topic73

modeling to the combined unspliced and spliced transcript matrix (Fig. 1b) [38]. The result is a74

representation of each cell as a probability distribution over topics (gene programs, in the context of75

scRNA-seq), while each topic is a probability distribution over individual genes (Fig. 1b). Process-76

associated cells, i.e., cells with relatively high weights in a topic, and process-specific genes,77

determined using previous strategies [33, 37], serve as the input for inferring process-specific78

kinetic parameters. Within process-associated cells, process-specific genes can reveal important79

dynamic information that is hidden at the global scale and hence missed by existing methods80

(Fig. 1c).81

The number of topics is a user-selected parameter, which, like clustering resolution, often82

has multiple, biologically meaningful settings. We explored several metrics developed in natural83

language processing (e.g., [39–41]) (Methods), and also used the literature to assess interpretability84

of topic-specific gene programs. Regardless, in our applications, we did not observe sensitivity of85

the overall results to the exact choice of topic number.86

2. Bursty transcription model. In contrast to the ODE-based one-state model underlying scVelo,
TopicVelo efficiently fits a more faithful physical model that accounts for transcriptional bursting,
adapting a previous model for studying mRNA transport [31] (Fig. 1a, c). The chemical master
equation of the model for a given gene is:

𝜕𝑝(𝑢, 𝑠, 𝑡)
𝜕𝑡

= 𝑘on

[ 𝑢∑︁
𝑧=0

𝑝𝑧𝑝(𝑢 − 𝑧, 𝑠, 𝑡) − 𝑝(𝑢, 𝑠, 𝑡)
]

+ 𝛽
[
(𝑢 + 1)𝑝(𝑢 + 1, 𝑠 − 1, 𝑡) − 𝑢𝑝(𝑢, 𝑠, 𝑡)

]
+ 𝛾

[
(𝑠 + 1)𝑝(𝑢, 𝑠 + 1, 𝑡) − 𝑠𝑝(𝑢, 𝑠, 𝑡)

]
,

(1)

where 𝑝(𝑢, 𝑠, 𝑡) is the probability of observing a cell with 𝑢 unspliced pre-mRNA transcripts and87

𝑠 spliced mature mRNA transcripts at time 𝑡; 𝑘on is the rate of the Poisson process governing the88

burst event; 𝑝𝑧, the probability of producing 𝑧 unspliced pre-mRNA transcripts during a single burst89
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event, is governed by a geometric distribution; 𝛽 is the splicing rate; and 𝛾 is the rate of degradation90

of spliced mRNA. Parameters are initialized with the method of moments or another heuristic.91

For a given parameter setting, TopicVelo uses an implementation of the Gillespie algorithm [42]92

to estimate the full joint distributions of unspliced and spliced transcript counts. Then the Nelder-93

Mead algorithm implemented in SciPy [43] is used to infer the maximum likelihood parameter94

values (Supplementary Fig. 1).95

3. Integration of process-specific dynamics. A key feature of TopicVelo is the capability to96

integrate process-specific transition matrices into a global transition matrix (Fig. 1d). First, from97

the inferred process-specific kinetic parameters, TopicVelo constructs process-specific transition98

matrices, based on a previous approach [8], namely by applying a exponential kernel to the cosine99

similarities between velocities and differences in spliced expression among nearest neighbors. Each100

transition matrix characterizes the probabilistic flow of process-specific transcriptional changes101

across process-associated cells. Then a larger scale or global transition matrix is constructed by102

linearly combining process-specific transition matrices, using the topic weights of cells. This103

strategy enables locally important dynamics to be accurately recovered and then woven into larger-104

scale, complex trajectories. The user-selected topic weight threshold, which determines topic-105

associated cells, balances an inherent trade-off between the benefit of separating dynamic processes106

and the risk of losing dynamic range and/or information in overlaps among topic-associated cells.107

4. Revealing cell state transitions by analyzing the integrated transition matrix. In addition108

to assessing results with typical streamline visualizations, we use the stationary distribution of the109

integrated transition matrix to identify terminal cell populations. Furthermore, we introduce the110

use of mean first passage time (MFPT) analysis to gain insights into transient transitions invisible111

at the global scale with traditional approaches.112

We analyzed the performance of TopicVelo in diverse applications, detailed below, which113

revealed its accuracy and capacity to offer interpretable, biological insights (Fig. 1e).114

TopicVelo infers challenging trajectories in human hematopoiesis without metabolic labeling115

RNA velocity inference without metabolic labeling is often inaccurate [18], but incorporating116

metabolic labeling into scRNA-seq remains an experimental challenge [44]. To test the effectiveness117

of TopicVelo, we applied it to human hematopoiesis data from a recent study in which RNA118

velocity was extended to leverage single-cell metabolic labeling techniques that distinguish newly119

synthesized versus preexisting transcripts [18]. The published analysis reconstructed a complex,120

multifurcating trajectory of transitions which scVelo fails to capture. Using TopicVelo on the121

data without the metabolic labels, we inferred the correct transitions, including streamlines that122

accurately delineate the trajectories of monocytes, basophils, erythrocytes, and megakaryocytes123

(Fig. 2a).124

To obtain global transition matrix of TopicVelo, we first performed topic modeling [37, 38],125

resulting in an 8-topic model that identifies gene programs associated with both known cell types126

(topics 1 and 3) and heterogeneous cell states during differentiation (Supplementary Fig. 2, Sup-127

plementary Table 1). For example, megakaryocyte-associated topic 3 appropriately features the128

gene F13A1, which codes for a subunit of plasma factor XIII known to be produced by megakary-129

ocytes [45] (Supplementary Fig. 2d, 3a). Though a global phase plot of F13A1 indicates little130

transcriptional activity, focusing on cells with highest weight in topic 3 brings the dynamical131

features of F13A1 into relief (Fig. 2b).132
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Based on the burst model, TopicVelo then inferred topic-specific kinetic parameters for topic-133

specific genes. By assuming a steady state can be approximated by the joint distributions of spliced134

and unspliced counts of topic-specific genes in topic-associated cells, TopicVelo substantially135

improved upon the parameter estimates inferred from the one-state model underlying scVelo. For136

example, it more accurately recovered the experimental joint distribution of F13A1 over topic-3137

high cells (Fig. 2c). Indeed, while velocities of topic-3 specific genes F13A1, PLEK, and ZYX138

were inferred to be negative by scVelo, TopicVelo inferred them to be positive, consistent with139

experimental evidence that these genes are up-regulated during megakaryocytic differentiation [46,140

47] (Supplementary Fig. 3a–c). Similarly, whereas scVelo inferred down-regulation of the basophil-141

associated, topic-1 specific genes GATA2 and HPGD, TopicVelo predicted their up-regulation in the142

basophil lineage, consistent with previous experiments showing that GATA2 is critical for basophil143

development [48] and HPGD is enriched in basophils [49] (Supplementary Fig. 3d, e). Using144

the inferred topic-specific signals, TopicVelo then created topic-specific transition matrices, whose145

corresponding streamlines were consistent with those inferred for the same regions using metabolic146

labeling data (Fig. 2d).147

Finally, these topic-specific transition matrices were integrated to obtain the global transition148

matrix and corresponding streamlines (Fig. 2a). To quantitatively evaluate the quality of inference149

by TopicVelo, we computed the stationary distribution as a proxy for identifying terminal states.150

While both scVelo and TopicVelo assigned relatively high stationary probabilities to erythroid151

and monocytes, TopicVelo additionally recognized megakaryocytes as terminal states (Fig. 2e).152

Furthermore, aggregation of the stationary probabilities by cell types illustrated that, compared153

to scVelo, TopicVelo suggested higher stationary probability for terminal cell types and lower154

probability for progenitors, consistent with the expected cell-fate transitions.155

To investigate the dynamics and the trajectories of differentiation, we used the MFPT to gauge156

the identities of ancestral populations and assess the likelihood of populations transitioning into157

terminal states. For instance, we computed cell-specific MFPTs to megakaryocyte-like cells and158

observed that the MFPTs derived from scVelo versus TopicVelo displayed very different trends159

(Fig. 2g). In particular, TopicVelo estimated lower MFPTs for progenitors than for other, non-160

megakaryocyte terminal cell types, whereas scVelo estimated the opposite. The inference from161

TopicVelo agrees better with the established biological understanding (reflected in the cell names)162

that megakaryocytes originate directly from progenitors, rather than from other terminally differ-163

entiated populations.164

Collectively, these results demonstrate the capacity of TopicVelo to identify biologically mean-165

ingful dynamic genes, infer more biologically accurate RNA velocity, and provide more meaningful166

insights into the terminal states and trajectories of differentiation.167

TopicVelo recovers complex developmental trajectories in mouse and human168

Several studies have observed that some genes exhibit developmental-stage dependent transcription169

rates, termed “multiple rate kinetics (MURK)” [8, 12–14, 32]. Moreover, scVelo does not account170

for this stage dependency and erroneously produced reversed streamlines for mouse erythropoiesis171

when MURK genes were included in the data [12]. In contrast, TopicVelo produced the correct172

trajectories in this setting (Fig. 3a). A stationary distribution analysis further confirmed the173

streamline visualization; whereas scVelo falsely identified intermediate erythroid stages as terminal174

states, TopicVelo correctly suggested that essentially all of the stationary probability is in the175

5 of 36

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 13, 2023. ; https://doi.org/10.1101/2023.06.13.544828doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.13.544828
http://creativecommons.org/licenses/by-nc-nd/4.0/


erythroid 3 cell state (Fig. 3b).176

Biologically informative results were achieved by TopicVelo using 2 topics, which accurately177

modeled expression patterns during the maturation of blood progenitors to erythroid cells (Supple-178

mentary Fig. 4, Supplementary Table 1). Topic 0 has weights increasing across the developmental179

process and features the archetypal red blood cell genes Hba-x and Hbb-y [12], and their unspliced180

counterparts, as well as Smim1, which influences red blood cell traits [50](Fig. 3c, Supplementary181

Fig. 4a). Inversely, topic 1 weights decrease across the developmental process, as does the expres-182

sion of topic-1 specific genes, such as Gata2, Fn1 and Fscn1 (Fig. 3d, Supplementary Fig. 4b).183

These results corroborate previous observations that Gata2 is highly expressed in progenitors, with184

expression declining after erythroid commitment [51], and that Ccnd2 expression is anti-correlated185

with erythroid progression [52].186

In another challenging setting involving complex, multi-furcating, human hematopoietic stem187

cell (HSC) differentiation [32], TopicVelo used a 10-topic model to recover the expected trajectories188

and identify key genes involved in cell-fate commitments, without the prior knowledge of starting189

state required by pseudotime inference (Supplementary Fig. 5) and without inferring erroneous190

reversals in directionality, as did scVelo (Fig. 3e). The stationary distribution analysis confirmed191

that scVelo incorrectly identified early stage HSCs as terminal states, whereas most of the stationary192

probability derived from TopicVelo was associated with true terminal states (Fig. 3f, g).193

The inferred topics characterized different stages of development and identified key, lineage-194

specific genes, leading to velocity predictions that are more consistent with known biology. For195

example, topic 6 is relatively high in erythroid cells and includes the gene KLF1, previously shown to196

be correlated with erythroid commitment [32]. In contrast to scVelo predictions that early erythroid197

cells (Ery 1) down-regulate KLF1, TopicVelo accurately predicted that they up-regulate KLF1198

(Fig. 3h). TopicVelo also highlighted several other patterns previously observed in the literature,199

including up-regulation of MPO during monocyte commitment [32] (Fig. 3i), up-regulation of CA1200

in the peripheral blood erythroid cells [53], association of IRF8 with monocyte development and201

dendritic cell function [54]; expression of SELP during megakaryocyte development [55], down-202

regulation of CRHBP in HSCs during differentiation [56], and expression of the chemotactic gene203

AZU1 in monocytes [57] (Supplementary Fig. 6, Supplementary Table 1).204

Together, these results indicate that TopicVelo outperforms the state-of-the-art in settings of205

complex cellular differentiation and gene expression patterns, recovering much more biologically206

accurate trajectories and highlighting informative genes.207

TopicVelo predicts bidirectional and convergent immune responses of innate lymphoid cells208

An important motivation for developing TopicVelo was to meet the challenge of analyzing complex209

immune responses, including those involving unconventional trajectories, such as convergence on210

one cell state from multiple origins and functional plasticity between cell types [33, 58, 59].211

With different gene programs involved in conversions in opposite directions between cell types,212

traditional approaches to RNA velocity and trajectory inference do not reveal such intricacies. We213

tested TopicVelo in this setting by analyzing our previously published scRNA-seq data from innate214

lymphoid cells (ILCs) isolated from the skin of mice in a model of psoriasis [33]. To disentangle215

transcriptional states of skin ILCs and model their trajectories, the study leverages scRNA-seq216

data collected from mice sacrificed at five time points (days 0–4) during the inflammatory immune217

response, in combination with topic modeling and density-based pseudotime inference. The218
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detailed analysis and extensive experimental validations demonstrate multiple possible transitions219

to a pathogenic ILC3-like state, including an ILC2-ILC3 transition, confirmed using a transgenic220

fate-mapped mouse, which may occur via two routes, as well as a quiescent-ILC3 transition and221

possibly bidirectional quiescent-ILC2 transition (Fig. 4b).222

Using data from day 3 only, we assessed the capability of TopicVelo to predict these complex223

immune response trajectories without information from multiple time points or specification of root224

and terminal states. Consistent with the previous analysis, a 10-topic model identified three topics225

strongly associated with the ILC states involved in the transitions previously analyzed (Fig. 4c–e),226

as well as other topics characterizing this heterogeneous ILC landscape (Supplementary Fig. 7,227

Supplementary Table 1). Topic 4 is strongly associated with the ILC3-like cells, and characterized228

by proinflammatory, ILC3- and TH17-associated genes, such as Il17a, Il23r, Gzmb, and Il1r1 [60]229

(Fig. 4c). Topic 6 features a gene program previously identified as “quiescent-like” [33], including230

Klf2, a transcription factor associated with T cell quiescence [61] (Fig. 4d). Topic 9 features ILC2-231

and TH2–associated genes, such as Il1rl1 (ST2, the receptor for IL-33) [60], as well as chemokines,232

such as Ccl1 and Cxcl2, and their unspliced counterparts (Fig. 4e).233

Though the RNA velocity analyses of these data by both TopicVelo and scVelo suggested a234

quiescent-ILC3 transition Fig. 4f) and predicted the observed down-regulation of Klf2 and Fos [33]235

during the transition (Supplementary Fig. 9a, b), only TopicVelo revealed the transition path of the236

biologically important ILC2-ILC3 trajectory or suggested a possible bi-directional quiescent-ILC2237

transition (Fig. 4f). To quantitatively confirm these intertwined transitions, we computed rescaled238

mean first passage times (rMFPT) to different target cell populations. First, we use cells very239

strongly associated with the ILC3-like gene programs as target cells. The rMFPTs derived from240

scVelo show little to no variation across cells, whereas results from TopicVelo showed a clear241

distinction that suggested that, relative to transitions from other populations, the quiescent-ILC3242

and ILC2-ILC3 transitions may both occur at a relatively fast timescale (Fig. 4g, Supplementary243

Fig. 8a, b). For quiescent-like cells as the target, both methods suggested a low likelihood of244

a reverse ILC3-quiescent transition; furthermore, TopicVelo suggested a possible ILC2-quiescent245

conversion (Fig. 4h, Supplementary Fig. 8c, d). For ILC2-like cells as targets, scVelo revealed the246

possible ILC2-ILC3 conversion, and both methods suggested a possible quiescent-ILC2 transition,247

though TopicVelo offered a clearer distinction between the quiescent-like cells and other origin248

sub-populations (Fig. 4i, Supplementary Fig. 8e, f). The discrepancies between TopicVelo and249

scVelo results were at least partly due to differences in velocity estimates. For example, the observed250

up-regulation of Il23r, Il1r1, and Lgals3 during ILC3 response [33] was more faithfully captured251

by TopicVelo than scVelo (Supplementary Fig. 9c–e).252

Taken together, these results suggest that the TopicVelo approach is effective in the analysis253

of immune responses, where cells may be more likely than in developmental differentiation to254

exhibit functional plasticity or reflect varying contributions of simultaneous, very distinct, dynamic255

processes.256

Discussion257

RNA velocity inference has recently been improved via different machine learning techniques [18,258

21–26, 62, 63]; but challenges remain. In this work, we present TopicVelo, a new method and259

framework for RNA velocity that improves on the state of the art and conceptually complements260
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other approaches. Existing methods typically include genes based on their fit to a velocity model [8,261

24–26], which makes strong assumptions about a globally determined steady state, potentially262

excluding genes that are informative specifically for locally dynamic processes. In contrast, by263

using topic modeling to discover biologically relevant gene programs or processes (“topics”) and264

the cells in which their activity levels are relatively high, TopicVelo hones in on genes that are265

informative for the kinetic parameters for different processes, while preventing cells that are not266

associated with a process from distorting its parameter estimates. To provide a global view of cell-267

state transitions, TopicVelo leverages the probabilistic topic weights to integrate process-specific268

transition matrices into a unified transition matrix.269

TopicVelo infers gene-specific parameters of a transcriptional burst model by efficiently esti-270

mating the full joint distribution of unspliced and spliced gene counts given by a chemical master271

equation, thus explicitly accounting for higher-order moments. In contrast, the leading method272

scVelo [8] and others[18, 22, 24, 26, 62], which infer kinetic parameters based on ordinary differ-273

ential equations (ODEs) from counts smoothed across cell neighborhoods in the 𝑘-NN graph, can274

distort second- or higher-order moments [15]. A recent method also incorporated a global burst275

model, fit via numerical gradient descent, rather than the simplex-based optimization in TopicVelo,276

though the study focused on analyzing the effects of gene-length dependent capture rates of un-277

spliced RNA [64]. In our analyses of real, biologically varied, single-cell datasets, we find that278

the transcriptional burst model enables TopicVelo to more accurately estimate kinetic parameters,279

particularly for lowly expressed genes, which can play impactful biological roles [65, 66].280

A critique [16] of the scVelo approach notes that smoothing actually occurs at multiple stages281

and leads to a potentially problematic, strong dependence of the parameters, especially in the282

dynamical model, on the structure of the 𝑘-NN graph, which ideally models the underlying manifold283

and is visualized in the UMAP embedding. At the gene level, TopicVelo circumvents this issue by284

inferring kinetic parameters from unsmoothed counts. Furthermore, by computing a different 𝑘-NN285

for each topic, TopicVelo loosens the coupling between the transition matrix and UMAP embedding.286

While TopicVelo, like scVelo, uses the inferred velocity matrix and a matrix of differences of287

smoothed spliced counts to compute transition probabilities, the TopicVelo framework also naturally288

permits (noisier) transition probabilities to be computed from differences of unsmoothed counts.289

Using its dissection-then-integration approach, TopicVelo inferred robust, accurate dynamics in290

complex systems, including plastic immune responses and multi-furcating differentiation, without291

requiring multiple time points or the support of metabolic labeling. The combination of topic292

modeling with a steady-state transcriptional model may allow TopicVelo to implicitly handle some293

non-steady state contexts. Future challenges include developing methods that merge the advantages294

of TopicVelo with other recent, complementary advances, such as incorporation of more sophisti-295

cated topic models [67], transcriptional models (e.g., [68]), improved transcript quantification [64,296

69], a Bayesian deep generative framework for quantifying statistical uncertainty, which was devel-297

oped for ODE velocity models [22, 62, 63], improvements in robustness by post-processing noisy298

velocity vectors using representation learning[23, 70], and multi-omic data and models [17, 19].299

Another set of challenges is the interpretation of RNA velocity data. Traditional approaches heavily300

rely on streamline visualizations and pseudotime, which may be inadequate or misleading. In the301

vein of our application of fundamental Markovian techniques to quantitatively assess transition302

matrices, future work may borrow ideas from nonequilibrium statistical mechanics and relevant303

sampling frameworks, potentially leading to more reliable tools to provide mechanistic insights304

into cell state transitions. We believe TopicVelo provides a framework for developing more sophis-305
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ticated RNA velocity methods, while serving as a valuable biological tool for inferring accurate306

simultaneous dynamics of interpretable gene programs and cell state transitions in diverse systems.307

Methods308

Topic modeling and differential expression analysis309

We use previous work on topic model inference [37, 38, 71]. First, we use the tomotopy Python310

package [71] to efficiently infer topic models for a range of values of 𝐾 , the number of topics. After311

evaluating those results to select a final value for 𝐾 , we use the FastTopics R package [38] to infer312

the final model and compute topic-specific differentially expressed genes.313

In the probabilistic topic model for scRNA-seq data, for cell 𝑖, 𝑥𝑖 = (𝑥𝑖1, ..., 𝑥𝑖𝑀) is drawn from314

a multinomial distribution315

𝑥𝑖1, ..., 𝑥𝑖𝑀 | 𝑡𝑖 ∼ Multinom(𝑡𝑖; 𝜋𝑖,1, ..., 𝜋𝑖,𝑀) ∀1 ≤ 𝑖 ≤ 𝐶 (2)

where 𝐶 is the number of cells, 𝑀 is the number of genes, 𝑥𝑖𝑚 is number of mRNA transcripts for316

gene 𝑚 in cell 𝑖, and 𝑡𝑖 =
∑𝑀
𝑚=1 𝑥𝑖𝑚 is the total number of transcripts in cell 𝑖. The multinomial317

probabilities are318

𝜋𝑖,𝑚 =

𝐾∑︁
𝑘=1

𝐿𝑖𝑘𝐹𝑚𝑘 (3)

where 𝐾 is the user-specified number of topics; 𝐿 ∈ R𝐶×𝐾+ is the cell topic weight matrix, and 𝐿𝑖𝑘319

is the probability of topic 𝑘 in cell 𝑖; 𝐹 ∈ R𝑀×𝐾
+ is the gene topic weight matrix, and 𝐹𝑚𝑘 is the320

weight of gene 𝑚 in topic 𝑘 .321

For a given 𝐾 , we exploit the equivalence of the maximum likelihood estimates for Poisson322

non-negative matrix factorization (NMF) and the multinomial topic model [38]. The negative of323

the log-likelihood of the Poisson NMF [72] for cell 𝑖 and gene 𝑚 is:324

− log 𝑝NMF(𝑥𝑖𝑚 |𝐿, 𝐹) = − log

(
(𝐿𝑇

𝑖
𝐹𝑚)𝑥𝑖𝑚𝑒−𝐿

𝑇
𝑖
𝐹𝑚

𝑥𝑖𝑚!

)
(4)

After discarding the terms that are not related to 𝐿 and 𝐹 and summing over all cells and genes,325

we arrive at a suitable loss function [38]:326

minimize 𝑙 (𝐿, 𝐹) =
𝐶∑︁
𝑖=1

𝑀∑︁
𝑚=1

𝐿𝑇𝑖 𝐹𝑚 − 𝑥𝑖𝑚 log(𝐿𝑇𝑖 𝐹𝑚)

subject to 𝐿 ≥ 0, 𝐹 ≥ 0

(5)

where 𝐿𝑖 and 𝐹𝑚 are the column vectors (of size 𝐾) containing row 𝑖 of 𝐿 and row 𝑚 of 𝐹. In327

other words, the optimal 𝐿 and 𝐹 are fitted such that, accounting for the heterogeneity in cells over328
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the topics and the contributions of individual genes to each topic, the input count matrix should be329

recovered on expectation.330

Since each transcript count is generated by a Poisson model, the differentially expressed genes331

can be identified by computing the log fold change (LFC) of each gene in topic 𝑘 [38], defined as332

𝑘′ = arg min
𝑘 ′≠𝑘

���� 𝐹𝑚𝑘𝐹𝑚𝑘 ′
− 1

����
𝐿𝐹𝐶 (𝑘) = log2

(
𝐹𝑚𝑘

𝐹𝑚𝑘 ′

)
.

(6)

The posterior distribution of the LFC and local false sign rate (lfsr) [73] are then estimated with333

MCMC and stabilized with adaptive shrinkage.334

For an optimized value of 𝐾 , the above procedures were performed using FastTopics [38] as335

follows:336

t o p i c m o d e l f i t <− f i t t o p i c m o d e l ( c o u n t m a t r i x , k=K)337

d e r e s u l t s <− d e a n a l y s i s ( t o p i c m o d e l f i t , c o u n t m a t r i x )338

where the input count matrix is constructed by stacking the raw spliced count matrix and the raw339

unspliced count matrix for top 2000 highly variable genes.340

Topic modeling evaluation metrics341

To estimate the optimal number 𝐾 of topics, we computed established metrics [39–41] on topic342

models inferred using tomotopy [71] for a range of values of 𝐾 . For each dataset, at least one of343

these metrics plateaued as a function of increasing values of 𝐾 , and we selected the smallest value344

of 𝐾 in the intersection of those regimes across metrics.345

The first metric we considered uses average distance among topics to measure stability [39]:346

correlation(𝑘, 𝑘′) =
∑𝑀
𝑚=1 𝐹𝑚𝑘𝐹𝑚𝑘 ′√︃∑𝑀

𝑚=1(𝐹𝑚𝑘 )2
√︃∑𝑀

𝑚=1(𝐹𝑚𝑘 ′)2

ave cosine dis =
∑𝐾
𝑘=1

∑𝐾
𝑘 ′=𝑘+1 correlation(𝑘, 𝑘′)
𝐾 (𝐾 − 1)/2

(7)

where correlation(𝑘, 𝑘′) is the standard cosine distance between topics 𝑘 and 𝑘′. A smaller347

ave cosine dis indicates more stability.348

The second metric we considered is the information divergence between all pairs of topics [40]:349

𝐷 (𝑘 | |𝑘′) = 1
2

𝑀∑︁
𝑚=1

𝐹𝑚𝑘 log( 𝐹𝑚𝑘
𝐹𝑚𝑘 ′

) + 𝐹𝑚𝑘 ′ log(𝐹𝑚𝑘
′

𝐹𝑚𝑘
)

ave info dis =
∑
𝑘,𝑘 ′ 𝐷 (𝑘 | |𝑘′)
𝐾 (𝐾 − 1)

(8)
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where 𝐷 (𝑘 | |𝑘′) is the Jensen-Shannon distance between two topics. A bigger ave info dis indicates350

more independence and more information in the topic model.351

We also tested a few coherence measures, which are based on the point-wise mutual information352

(PMI) of the top-weighted or highest ranked (by log-fold change) topic-specific genes [41]:353

PMI(𝑔𝑚, 𝑔𝑚′) = log
𝑃(𝑔𝑚, 𝑔𝑚′) + 𝜖
𝑃(𝑔𝑚) · 𝑃(𝑔𝑚′) (9)

where 𝑃(𝑔𝑚, 𝑔𝑚′) is the joint probability of observing genes 𝑔𝑚 and 𝑔𝑚′ in a cell, and 𝑃(𝑔𝑚) and354

𝑃(𝑔𝑚′) are the marginal probabilities of observing gene 𝑔𝑚 and 𝑔𝑚′ in a cell, respectively; 𝜖 is355

a small number (e.g. 10−12) to prevent the PMI from reaching 0. For the top 𝑁 genes (either356

topic-specific or highest weighted), the UCI coherence is calculated as:357

𝐶𝑈𝐶𝐼 =
2

𝑁 (𝑁 − 1)

𝑁−1∑︁
𝑚=1

𝑁∑︁
𝑚′=𝑖+1

PMI(𝑔𝑚, 𝑔𝑚′) (10)

Small values of |𝐶𝑈𝐶𝐼 | indicate higher topic coherence and higher probability that the top genes358

are co-expressed.359

Finally, to prevent overfitting, we also consider the Akaike information criterion (AIC) and the360

Bayesian information criterion (BIC):361

𝐴𝐼𝐶 = 2 · 𝑀 · (𝐾 − 1) − 2 · L𝐾 (11)
𝐵𝐼𝐶 = (𝐾 − 1) · 𝑀 · log(𝐶) − 2 · L𝐾 (12)

where L𝐾 is the log-likelihood of the model for 𝐾 topics.362

In addition, interpretability, i.e. a reasonable number of potentially biologically meaningful363

differentially expressed genes, is another important criterion. For most datasets, “topic-specific364

genes“ were selected from the differentially expressed genes for downstream analysis (e.g., RNA365

velocity) if, for either the spliced or unspliced form, the lfsr is at most 0.001 and the LFC is at least366

0.5 in absolute value. This criterion is a very conservative estimate of differential expression and,367

in practice, produces 50–250 topic genes for each topic.368

RNA velocity parameter estimation via the one-state model369

The one-state transcription model is governed by the following master equation:370

𝜕𝑝(𝑢, 𝑠, 𝑡)
𝜕𝑡

=𝛼

[
𝑝(𝑢 − 1, 𝑠, 𝑡) − 𝑝(𝑢, 𝑠, 𝑡)

]
+ 𝛽

[
(𝑢 + 1)𝑝(𝑢 + 1, 𝑠 − 1, 𝑡) − 𝑢𝑝(𝑢, 𝑠, 𝑡)

]
+ 𝛾

[
(𝑠 + 1)𝑝(𝑢, 𝑠 + 1, 𝑡) − 𝑠𝑝(𝑢, 𝑠, 𝑡)

] (13)
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in which 𝛼 is the rate of transcription, 𝛽 is the splicing rate, and 𝛾 is the degradation rate. The371

steady-state distribution when 𝛽 ≠ 𝛾 is the product of two independent Poisson distributions for 𝑢372

and 𝑠 respectively [74]:373

𝑝(𝑢, 𝑠) =

(
𝛼

𝛽

)𝑢 (
𝛼

𝛾

) 𝑠
𝑢!𝑠!

exp
(
−𝛼
𝛽
− 𝛼

𝛾

)
(14)

Then the log likelihood for observing 𝐶 cells at steady state with unspliced and spliced counts374

{𝑢𝑖, 𝑠𝑖}𝐶𝑖=1 conditioned on a set of kinetic parameters is:375

L({𝑢𝑖, 𝑠𝑖}𝐶𝑖=1 |𝛼, 𝛽, 𝛾) = ln
𝐶∏
𝑖=1

𝑝(𝑢𝑖, 𝑐𝑖)

= −𝐶
(
𝛼

𝛽

)
+ ln

(
𝛼

𝛽

) 𝐶∑︁
𝑖=1

𝑢𝑖 −
𝐶∑︁
𝑖=1

ln(𝑢𝑖!)

− 𝐶
(
𝛼

𝛾

)
+ ln

(
𝛼

𝛾

) 𝐶∑︁
𝑖=1

𝑠𝑖 −
𝐶∑︁
𝑖=1

ln(𝑠𝑖!)

(15)

The maximum likelihood estimate of 𝛾/𝛽 is:376

0 =
𝜕

𝜕 (𝛼/𝛾) L({𝑢𝑖, 𝑠𝑖}𝐶𝑖=1 |𝛼, 𝛽, 𝛾)

𝛼

𝛾
=

1
𝐶

𝐶∑︁
𝑖=1

𝑠𝑖 = ⟨𝑠⟩

similarly,
𝛼

𝛽
= ⟨𝑢⟩

→ 𝛾

𝛽
= 𝛾′ =

⟨𝑢⟩
⟨𝑠⟩

(16)

where ⟨·⟩ denotes expectation, and ⟨𝑠⟩ and ⟨𝑢⟩ are the average abundance of 𝑢 and 𝑠 over all cells377

in steady-state.378

We note that, rather than using this analytical estimate on unsmoothed counts, scVelo in379

stochastic mode actually computes the moments for each cell using a 𝑘-NN graph. For each gene,380

a generalized least squares is performed by solving a system of linear equations involving the first381

and second moments for the cells in steady state (top right corner of the (𝑢, 𝑠) phase plot) [8].382

Though this does not agree with the analytical estimate exactly, the deviation is small in practice383

for unsmoothed data, since the first and second moments are time-invariant under the steady-state384

assumption. However, different choices for constructing the 𝑘-NN graph can affect parameter385

estimates in unexpected ways [15, 16].386
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RNA velocity parameter estimation via the geometric burst model387

To estimate the steady-state joint distributions, we implemented a Gillespie algorithm [42] to388

simulate the master equation (Equation 1) in Python, accelerated via Numba [75]. The burn-in389

period represents the time before the system converges to a steady state. For a trajectory with390

burn-in period 𝑡burn-in and total simulation time 𝑡total, the probability 𝑝(𝑢, 𝑠) of observing a cell with391

𝑢 unspliced mRNA and 𝑠 spliced mRNA for a given gene in the steady state is392

𝑝(𝑢, 𝑠) = 1
𝑡total − 𝑡burn-in

∫ 𝑡total

𝑡burn-in

𝛿(𝑢, 𝑠, 𝑡) 𝑑𝑡 (17)

where 𝛿(𝑢, 𝑠, 𝑡) = 1 if the cell has 𝑢 unspliced counts and 𝑠 spliced counts at time 𝑡, and 𝛿(𝑢, 𝑠, 𝑡) = 0393

otherwise.394

To infer the kinetic parameters governing the dynamics, we initialize the parameters with the395

method of moments, which was previously derived [31, 64]:396

�̂� =
⟨𝑢2⟩
⟨𝑢⟩ − 1 (18)

�̂�on =
⟨𝑢⟩
�̂�

(19)

�̂� =
⟨𝑢⟩
⟨𝑠⟩ (20)

where the moments are estimated from the observed distribution. Then to find the optimal kinetic397

parameters, the KL divergence is minimized using the Nelder-Mead algorithm implemented in398

SciPy [43]. In some cases, the method of moments estimate is a local minimum that is close to the399

global minimum, and the optimizer can get stuck. In this case, we used 3�̂�, �̂�on/3, and �̂� to restart400

the search for the global minimum. The convergence criterion was chosen to be a relative change401

in KL divergence between two subsequent iterations smaller than 1/1000 or reaching a maximum402

number of iterations.403

To verify the correctness of this estimation approach, we compared the simulated joint distri-404

bution for parameters 𝑘on = 0.5, 𝑏 = 5, 𝛾 = 3 with the joint distribution simulated from the inferred405

parameters; the two distributions are nearly identical (Supplementary Fig. 1a). To visualize the406

path of the optimization, we plotted it on the KL divergence landscape of 𝑘on versus 𝑏 for 𝛾 fixed407

at 0.3, and the KL divergence landscape of 𝛾 versus 𝑏 with for 𝑘on fixed at 0.5; we observed that408

the optimizer ended very close to the ground truth (Supplementary Fig. 1b, c).409

We aimed to find choices for the number of simulation steps (or reactions) and the maximum410

number of iterations for the Nelder-Mead optimization that perform well in this inference scheme.411

We considered a total of 27 parameter combinations across different dynamical regimes in which412

average mRNA abundances vary over the span of several orders of magnitudes (Supplementary Fig.413

1d). First, we fixed the number of simulation steps at 5 × 105 and analyzed how different choices414

for the maximum number of optimization iterations affect the performance. For each choice, we415

simulated 10 replicates of the 27 combinations and computed the average KL divergence within416

each replicate (Supplementary Fig. 1e). We observed that the performance stopped improving417
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when more than 50 iterations were used. Similarly, we fixed the maximum number of iterations at418

50 and examined how different choices for the number of simulation steps affected inference. We419

observed that the performance improvement became negligible when more than 5× 105 steps were420

used (Supplementary Fig. 1f). Therefore, we chose 5 × 105 as the number of reactions and 50 as421

the maximum number iterations for parameter inference. In both settings, the bimodality of the422

average KL divergence that we observed may be due to the optimizers getting stuck in local minima.423

To ameliorate this effect in the analysis of real datasets, we perform 5 independent optimizations424

for each gene and, for downstream analysis, use the set of parameters that corresponds to the lowest425

KL-divergence.426

In the scRNA-seq data applications, the joint distribution of spliced and unspliced counts was427

typically computed from the size-normalized data (not on the log scale), rounded to the nearest428

integer. Under the steady-state assumption, a time-invariant splicing rate 𝛽 = 1 was assumed for429

all genes; 𝑘on, 𝑏, and 𝛾 were estimated for each gene. To illustrate the parameter inference scheme430

on real data, we used the observed distributions of Grin2b from the granule mature cells in the431

dentate gyrus dataset [76], which serve as a proxy for steady state since these cells are terminally432

differentiated. By capturing the diffusiveness and low expression regimes of the distribution more433

accurately, the geometric burst model recovers a joint distribution that is closer than the one434

inferred via the one-state model to the observed distribution (Supplementary Fig. 1g). The inferred435

parameters from the burst model for Grin2b are located within a regime of low KL divergence as436

shown on the KL divergence landscapes (Supplementary Fig. 1h). We performed the analogous437

analysis for the gene Btbd9 and observed similar results (Supplementary Fig. 1i, j).438

Determination of topic-associated cells439

For each topic within a given dataset, topic-associated cells are defined as cells above a certain topic440

weight. Kinetic parameters for topic-specific genes are inferred from topic-associated cells, which441

in this model are assumed to represent a topic-specific steady state. In the scVelo implementation,442

the up-regulation and down-regulation steady states for a given gene are modeled as the top right443

corner and the bottom left corner of the phase plot, respectively. The exact determination is444

dependent on arbitrary expression thresholds; the default setting uses the 5th and 95th percentiles.445

Instead of assuming each gene has its own set of steady-state cells, TopicVelo uses topic association446

as a criterion for choosing topic-specific steady state cells, which tends to be more robust and447

biologically meaningful because the genes in the topic-specific gene programs have correlated448

expression patterns.449

While one approach for choosing a topic weight threshold is to associate each cell with the450

topic in which it has the highest weight, which discretely clusters the cells, this has a number of451

drawbacks: (1) a cell may have relevant information about a topic in which it participates but for452

which it does not have the highest weight; (2) by the same token, the cells assigned this way to453

a topic may not capture the full dynamic range of an associated process; and (3) for the purpose454

of computing transitions, this approach is problematic because there is no potential for transitions455

between cells assigned to different topics.456

In general, we used the following procedure to identify a reasonable range for the choice of457

topic weight threshold. For a given topic 𝑘 , we denote the set of cells with topic-𝑘 weights above the458

𝑛𝑡ℎ-percentile as 𝐴+
𝑛,𝑘

, and the set of cells with topic-𝑘 weights below or equal to the 𝑛𝑡ℎ-percentile459

as 𝐴−
𝑛,𝑘

. Note that 𝐴+
𝑛,𝑘

⋃
𝐴−
𝑛,𝑘

= 𝐴 where 𝐴 is the set of all cells. For integers 𝑛 from 1 to 99, we460
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compute what we call an average rescaled KL divergence, denoted by 𝐷+
𝑛,𝑘

as follows: for each461

topic-specific gene, we compute the KL divergence of the joint 𝑢-𝑠 distribution of 𝐴+
𝑛,𝑘

to that of 𝐴,462

and rescale the divergence to [0, 1]; then we average the rescaled KL divergences over the genes.463

We perform an analogous procedure to compute 𝐷−
𝑛,𝑘

, the average rescaled KL divergence for the464

distribution from 𝐴−
𝑛,𝑘

to that of 𝐴. 𝐷+
𝑛,𝑘

approachs 0 as 𝑛 approaches 0. We observed a sharp465

decline in 𝐷+
𝑛,𝑘

at a relatively large value of 𝑛, which we denote by 𝑛+
𝑘
. If the topic weight threshold466

is chosen in the regime 𝑛 > 𝑛+
𝑘
, the full dynamic range of topic-associated process is not properly467

accounted for. Similarly, 𝐷−
𝑛,𝑘

approaches 0 as 𝑛 approaches 100, and a sharp decline in 𝐷−
𝑛,𝑘

is468

observed for a relatively small value of 𝑛 denoted by 𝑛−
𝑘
. Topic weight thresholds in the regime469

𝑛 ≤ 𝑛−
𝑘

risk including cells not meaningfully associated with the topic-associated process. The470

interval [𝑛−
𝑘
, 𝑛+
𝑘
] is a natural and simple heuristic for the range of suitable thresholds for topic 𝑘 .471

For the majority of topics and datasets, we observed [𝑛−
𝑘
, 𝑛+
𝑘
] = [30, 70] to be a range in which472

both 𝐷−
𝑛,𝑘

and 𝐷+
𝑛,𝑘

were relatively flat, though in other cases, this range was observed be around473

[75, 95], and these topics often corresponded to a rare cell type or when the process is very distinct.474

Construction of topic-specific transition matrices475

While we use unsmoothed counts for kinetic parameter inference, we compute the transition flows476

on smoothed counts to remove noise in the visualization. However, we did not observe significant477

distortions in the overall trends using smoothed versus unsmoothed counts. For cell 𝑖 and gene 𝑚,478

the first moments �̃�𝑖𝑚 and 𝑠𝑖𝑚 represent the smoothed counts, computed as the number of unspliced479

and spliced transcripts, respectively, averaged over the cells in the neighborhood of 𝑖 in the NN (for480

30 nearest neighbors) graph, computed from the top 30 PCs of the global principal components481

(PC) analysis of the log-normalized spliced expression matrix.482

The velocity vector for cell 𝑖 associated to topic 𝑘 is ṽ𝑖,𝑘 = (�̃�𝑖1,𝑘 , �̃�𝑖2,𝑘 ..., �̃�𝑖𝑀𝑘 ,𝑘 ), for topic-483

specific velocity vector �̃�𝑖𝑚,𝑘 defined as �̃�𝑖𝑚,𝑘 = �̃�𝑖𝑚 − 𝛾′
𝑚,𝑘
𝑠𝑖𝑚 for gene 𝑚, where 𝑀𝑘 is the number484

of topic-specific genes, and 𝛾′
𝑚,𝑘

is the topic-specific degradation rate for gene 𝑚. Across small485

neighborhoods in the NN graph, the first moments of the smoothed data are not as distorted as486

higher-order moments, and the velocity ṽ𝑖,𝑘 is a reasonable smoothed approximation.487

Then a cosine similarity between the velocity vectors and the differences in spliced expression488

can be computed, as previously done [8]:489

𝑝𝑖 𝑗 ,𝑘 = cos(s̃ 𝑗 ,𝑘 − s̃𝑖,𝑘 , ṽ𝑖,𝑘 ) (21)

where s̃𝑖,𝑘 is the vector of smoothed spliced counts in cell 𝑖 for topic-𝑘 specific genes.490

For each topic 𝑘 , a topic-specific NN graph is constructed on just the topic-associated cells491

using the top 30 PCs of the global PCA as distances. The topic-specific transition probability492

𝑝𝑖 𝑗 ,𝑘 from cell 𝑖 to cell 𝑗 for topic 𝑘 is obtained by applying an exponential kernel to the cosine493

similarities over the set 𝑁𝑘 (𝑖) of cells in the topic-specific neighborhood of cell 𝑖:494

𝑝𝑖 𝑗 ,𝑘 =
1
𝑧𝑖𝑘

exp
(
𝑝𝑖 𝑗 ,𝑘

𝜎2

)
(22)

where 𝜎 is the kernel width parameter and 𝑧𝑖𝑘 =
∑
𝑗∈𝑁𝑘 (𝑖) exp

(
𝑝𝑖 𝑗 ,𝑘

𝜎2

)
is the normalization factor.495
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Integration of process-specific dynamics496

Because the topic-associated cells and global set of cells may have different indices, we switch to497

using 𝑐 to denote the identity of a cell instead of using its index. To compute the global transition498

matrix, we first renormalize the topic weights �̃�𝑐𝑘 over just the topics that cell 𝑐 is associated to:499

�̃�𝑐𝑘 =
𝐿𝑐𝑘∑

𝑘 ′∈{𝑘𝑐} 𝐿𝑐𝑘 ′
if 𝑘 ∈ {𝑘𝑐}, 0 otherwise, (23)

where {𝑘𝑐} is the set of topics associated to cell 𝑐.500

The global probability of a transition from cell 𝑐 to 𝑐′ is computed as501

𝑇𝑐𝑐′ =

𝐾∑︁
𝑘=1

�̃�𝑐𝑘 𝑝
′
𝑐𝑐′,𝑘 (24)

where 𝑝′
𝑐𝑐′,𝑘 = 𝑝𝑐𝑐′,𝑘 if 𝑘 ∈ {𝑘𝑐}

⋂{𝑘′𝑐} and 𝑝′
𝑐𝑐′,𝑘 = 0 otherwise.502

RNA velocity evaluation metrics503

We use the stationary distribution to assess the overall directionality of the transition matrix. We504

use the mean first passage time (MFPT) to evaluate the short-term dynamics and the directionality505

of transient conversions. Without loss of generality, suppose the integrated transition matrix 𝑇 is506

irreducible. By construction, 𝑇 is positive-recurrent and aperiodic. The stationary distribution 𝜋 is507

the solution to the eigenvalue problem 𝜋𝑇 = 𝜋𝑇𝑇 . The MFPT matrix 𝑀 (where element 𝑀𝑖, 𝑗 is the508

MFPT from state 𝑖 to 𝑗) is the solution to the following matrix equation:509

(𝐼 − 𝑇)𝑀 = 𝐽 − 𝑇 (𝐼 ⊙ (𝜋1𝑇 ))−1 (25)

where 𝐼 is the identity matrix and 𝐽 is a matrix of all ones. For a set of target cells 𝐶𝑎, the vector510

of MFPTs to 𝐶𝑎, denoted as 𝑀𝐶𝑎 is511

𝑀𝑖,𝐶𝑎 =


0 ∀𝑖 ∈ 𝐶𝑎

1
|𝐶𝑎 |

∑
𝑗∈𝐶𝑎

𝑀𝑖, 𝑗 ∀𝑖 ∉ 𝐶𝑎
(26)

To highlight trends beyond absolute magnitude, for each velocity method, for each 𝐶𝑎, we rescale512

𝑀𝐶𝑎 by the median of nonzero elements in 𝑀𝐶𝑎 to obtain the rescaled mean first passage time513

(rMFPT). If extremely distinct populations are contained within a given dataset, 𝑇 may be reducible514

(i.e., 𝑇 contains multiple disconnected components), in which case the stationary distribution and515

MFPT must be analyzed within individual irreducible components. This was not an issue in the516

datasets analyzed here.517
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Preprocessing of scRNA-seq datasets518

For each dataset, genes were filtered so that there are at least 20 cells that have both spliced and519

unspliced mRNA transcripts for each gene. Counts were size-normalized to the median total counts,520

including spliced and unspliced transcripts.521

A principal components analysis was performed on the log-normalized spliced counts matrix522

using the top 2000 highly variable genes. From the top 30 principal components, a 𝑘-nearest-523

neighbor (𝑘-NN) graph was constructed (using the default of 𝑘 = 30). (We use the standard524

parameter terminology, but the 𝑘 in the definition of the 𝑘-NN is completely independent of the525

parameter 𝑘 in the topic model.)526

Then the first and second moments of each cell were estimated over the 𝑘-NN graph.527

The above procedures were performed via scVelo [8]:528

scVelo . pp . f i l t e r a n d n o r m a l i z e ( a d a t a , m i n s h a r e d c o u n t s =20)529

scVelo . pp . moments ( a d a t a , n p c s =30 , n n e i g h b o r s =30)530

Analysis of the human hematopoiesis scNT-seq data531

This dataset contains count matrices with or without metabolic labels. We focused our analysis532

on the latter. We used default settings for the scVelo stochastic and dynamical models to infer533

velocities and obtained streamline embeddings. The dynamical model gave streamline embeddings534

more consistent with biological expectation. We then applied topic modeling with 8 topics and535

identified topic-specific genes. We removed topic-specific genes from topics 5 and 6 for downstream536

analysis because they are strongly associated with minichromosomal and ribosomal genes and are537

ubiquitously expressed. We selected topic-associated cells as those with weights above the 65th-538

percentile for each topic to infer the kinetic parameters and global transition matrix. We compared539

topic-specific velocities to the global velocity inferred by the scVelo dynamical model.540

Analysis of the mouse gastrulation data541

After standard preprocessing, we applied the scVelo stochastic model, rather than the dynamical542

model, which is more prone to wrongly inferring transcriptional boosting as down-regulation [12].543

We performed topic modeling with 2 topics, which resulted in a large number (1,961) of topic-544

specific genes. To focus the analysis on the genes with the best signal given the low unspliced/spliced545

ratio in this dataset, we removed genes for which the ratio of the maximum of spliced counts to546

the maximum of unspliced counts is greater than 10 or less than 0.01, as the ratios of spliced547

over unspliced counts in this dataset tend to be very high. Furthermore, we observed that this548

dataset contains many genes that are highly expressed in specific cell subsets, which standard549

size-normalization steps do not handle well, potentially leading to improper assessment of the550

dynamics of lowly expressed genes. To avoid this possibility, we used the raw counts (rather than551

the size-normalized counts) to infer kinetic parameters. We used cells with topic weights above552

the 40th percentile for each topic to infer the kinetic parameters and global transition matrix. We553

compared topic-specific velocities to the global velocity inferred by the scVelo dynamical model.554
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Analysis of the human bone marrow data555

After standard preprocessing, we applied the scVelo stochastic model. Like the mouse gastrulation556

data, this data contain genes with transcriptional boosting patterns that are not handled well by the557

dynamical model [13]. We performed topic modeling with 10 topics. We used cells with topic558

weights above the 65th-percentile for each topic to infer the kinetic parameters and to construct the559

global transition matrix.560

Analysis of the mouse ILCs data561

This dataset contains data from five different days. We only used the data collected on day 3.562

To maintain comparisons with the previous analysis, we focused on the highly variable genes563

as determined previously by a variance stabilizing transformation [33]. We still performed gene564

filtering, and then performed topic modeling with 10 topics. For the global analysis, we used565

the 82nd-percentile for each topic to infer the kinetic parameters and global transition matrix.566

For analyzing velocities, we focused on comparing the TopicVelo topic-specific velocities and the567

global velocity from the scVelo dynamical model; in this dataset, the stochastic and dynamical568

scVelo models give very similar results. For the mean-first passage time analysis, the target cells569

were selected as the cells above 95th-percentile from topics 4, 6, and 9 respectively.570

Data availability571

The gastrulation [14] and bone marrow [32] data are available in the scVelo package [8]. The human572

hematopoiesis scNT-seq [18] and ILCs data [33] and are available in the NCBI Gene Expression573

Omnibus (GEO) under accession numbers GSE193517 and GSE149622, respectively.574

Code availability575

The source code, Jupyter notebooks, and R markdown files for reproducing figures and results in576

this paper are available for reviewers during the editing process. TopicVelo will be available as an577

open-source Python package for public use.578
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Figure 1: TopicVelo combines topic modeling and a burst model for accurate, robust RNA velocity inference. a, The generative model
motivating TopicVelo accounts for distinct stochastic dynamics of transcriptional processes for different gene programs (left). Program- and gene-
specific transcription follows a bursty transcriptional model governed by several parameters: the typical burst frequency 𝑘on, the burst size 𝑏, which
has a geometric distribution, the splicing rate parameter 𝛽, and the degradation rate 𝛾 (middle). By accounting for the varying activity levels of
each program 𝑖 across cells (𝐿𝑖), the transcriptional profiles can be generated and characterized by the matrices 𝑈 and 𝑆, specifying the number
of unspliced and spliced transcripts, respectively, of all genes in all cells (right). b, A probabilistic topic model gives a Bayesian non-negative
matrix factorization of the combined 𝑈 and 𝑆 matrix for a heterogeneous population of cells, which reveals distinct, possibly overlapping, cells
and genes associated with underlying, individual programs, thereby capturing cellular pluripotency or multifaceted functionality. c, For many
genes, the joint distribution over all cells of spliced and unspliced transcripts is concentrated at (0,0), as the gene is not involved in most cell states
(top). Zooming in, the joint distribution of a topic-specific gene in topic-associated cells reveals detailed, process-specific dynamics (middle). To
infer those dynamics, we fit the burst model of transcription by minimizing the KL divergence between inferred and experimentally observed joint
distributions of spliced and unspliced transcripts (bottom). d, Cell-specific topic weights are leveraged to integrate process-specific transition signals
into a global transition matrix. e, Results enable robust, accurate trajectory inference, as assessed by transition streamline visualizations, as well as
by new mean first-passage time and terminal states analyses.
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Figure 2: TopicVelo inferred multi-furcating trajectories of human hematopoiesis whose recovery previously required metabolic labeling.
a, Previously published [18] UMAP embedding of hematopoiesis data shows cells colored by annotated progenitor (HSC, hematopoietic stem
cell; MEP-like, megakaryocyte and erythrocyte progenitor; GMP-like, granulocyte and monocyte progenitor) and terminal (Ery, erythrocyte; Bas,
basophil; Mon, monocyte; Neu, neutrophil; Meg, megakaryocyte) cell types. Streamlines (arrows) were inferred either with metabolic labeling, by
Dynamo (left), or without it, by the scVelo dynamical model (middle), and by TopicVelo with an 8-topic model (right); TopicVelo but not scVelo
captures key cell-type differentiation (green versus red arrows). b, Plots show the experimental joint distribution of spliced and unspliced mRNA
counts in all cells, or cells with highest weight in topic 3, of the topic-3 specific gene F13A1, which is known to be expressed in megakaryocytes [45].
c, Plots show the joint distribution of F13A1 in topic-3 high cells, inferred using the one-state model, or maximum likelihood estimates for the
burst model; the latter better captures both the diffuseness of the joint distribution and the empirical concentration at (0,0). d, Topic-specific
streamlines obtained from topic-specific transition matrices for topics 3 and 7 respectively. The color bar indicates the topic weights for cells used
in the parameter inference. The topic 3 plot demonstrates transitions into mature megakaryocytes and the topic 7 plot suggests transitions into
erythroid. e, f, TopicVelo identified terminal states missed by scVelo. UMAPs (e) show stationary probabilities for scVelo (left) and TopicVelo (right)
transition matrices; summary heatmap (f) highlights relatively high probabilities from TopicVelo for terminal versus progenitor cell types (columns).
In particular, TopicVelo identifies megakaryocytes as a terminal state concurring with the global and topic-specific streamlines. g, h, TopicVelo
estimated shorter transition times for true differentiation pathways. UMAPs (g) show mean first-passage times to megakaryocytes (Target, blue),
rescaled by median, based on scVelo (left) and TopicVelo (right); summary violin plots (h) highlight shorter transition times from progenitors versus
others (x axis) estimated by TopicVelo, but not scVelo. (White dot: median, black vertical lines: 25th-75th percentile.)
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Figure 3: TopicVelo correctly captures mouse erythropoiesis and human bone marrow development trajectories. a, b, TopicVelo accurately
identifies erythroid 3 as a terminal state. Previously published [12, 14] UMAP embeddings of cells in erythropoiesis, colored by cell-type annotation
(a), shows streamlines (arrows) inferred by the scVelo stochastic model (left), which erroneously suggests differentiation of erythroid 3 into erythroid
2 cells (red arrow), or by TopicVelo (right), which recovers the expected differentiation trajectory (green arrow). Heatmap (b) shows the stationary
probability distributions (color) from scVelo and TopicVelo (rows), aggregated by cell types (columns). c, d, UMAP plots for the topic-specific
genes Smim1 (c) and Gata2 (d), with cells colored by smoothed gene expression (left), and by velocities (negative, red; positive, blue) inferred by
scVelo (middle), or by TopicVelo (right). e–g, TopicVelo correctly discovers terminal cell types in human bone marrow development. Previously
published [32] 𝑡-SNE plot of cells from human bone marrow, colored by annotated cell type (e), shows streamlines inferred by scVelo stochastic
model (left), which incorrectly predicts that precursors, megakaryocytes (Mega), and erythrocytes (Ery) differentiate into hematopoietic stem cells
(HSC) (red arrow), or by TopicVelo (right), using 10 topics, which recovers the expected trajectories for all major lineages (green arrow). (Mono:
monocyte, DC: dendritic cell, CLP: common lymphoid progenitor.) Same 𝑡-SNE plots of cells colored by stationary probability (f) as inferred by
scVelo (top) and TopicVelo (bottom). Heatmap (b) shows the stationary probability distributions from scVelo and TopicVelo, aggregated by cell
types. h, i, TopicVelo gives markedly different velocity results from those of scVelo for topic-specific genes. For the erythroid-associated gene KLF1
(h) and monocyte-associated gene MPO (i), 𝑡-SNE plots show cells colored by smoothed gene expression (left), and by velocities inferred by scVelo
(middle), or by TopicVelo (right).
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Figure 4: Using data from only one of five time points, TopicVelo reveals complex transitions underlying the inflammatory response of skin
ILCs. a, b, Previously published [33] force-directed layout (FDL) embedding of scRNA-seq profiles of skin innate lymphoid cells (ILCs) from a
mouse model of psoriasis, colored by day of collection (a), and by pseudotime (b) in independently inferred, diffusion-based trajectories (panels),
with directionality (arrows) imposed by the presence of ILC3-like cells (orange circle) at day 3 but not at day 0. c–e, Highlights of 3 topics from
a 10-topic model of both spliced and unspliced mRNA transcripts for day-3 cells, only. For ILC3-like topic 4 (c), quiescent-like topic 6 (d), and
ILC2-like topic 9 (e), the FDL plots show day-3 cells, colored by topic weight (top left) and by the log-normalized expression of topic-specific
genes (bottom left, right); bar chart (top right) shows the top 10 topic-specific genes by largest log-fold change, colored by z-score (’ U’ appended
to gene symbol indicates unspliced transcript). A subset of induced cells has relatively high topic weights for both topics 4 and 9 (orange circle,
e). f–i, TopicVelo disentangles simultaneous but distinct dynamics of ILC responses. FDL plots of day-3 cells, colored by most strongly associated
topic (f), show streamlines (arrows) from scVelo dynamical model (left) or TopicVelo (right), using the topic model from c–e. Focusing on the
transitions to ILC3-like cells (yellow, high in topic 4, as in c), both methods predict the transition from quiescent-like cells (blue, high in topic 6, as
in d), but only TopicVelo correctly predicts the experimentally validated transition from ILC2-like cells (green, high in topic 9, as in e) via a subset
of cells high in both topics 4 and 9. Violin plots show the distributions of median-rescaled mean first passage times, estimated using scVelo (light
blue) and TopicVelo (pink), from different groups of non-target cells (x axis) to different target populations, i.e., ILC3-like (g), quiescient-like (h),
and ILC2-like (i) cells. Smaller values indicate faster inferred transition times, suggesting better support for that biological transition. (White dot:
median, black vertical line: 25th–75th percentile.)
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Supplementary Figure 1: The geometric burst model more accurately recovers experimental distributions than the one-state model. a,
An example joint distribution of spliced (𝑠) and unspliced (𝑢) transcript counts, as simulated by the Gillespie algorithm for the geometric burst
model with fixed parameters 𝑘on = 0.5, 𝑏 = 5, and 𝛾 = 0.3 (top), and with maximum-likelihood estimates (MLEs) inferred from the simulated data
(bottom). b, Log KL divergence (color) landscape for 𝛾 = 0.3 over a range of values of 𝑏 and 𝑘on, with close-up (right) of restricted range (orange
box, left). True parameter values marked by red cross; optimization path (yellow) shown across iterations (points, colored by inferred 𝛾 value) to end
point (triangle). c, Analogous to b, for 𝑘on = 0.5 and varying 𝑏 and 𝛾. d, Table of 27 parameter combinations used to assess effects of the number
of simulation steps and maximum number of optimization iterations. e, For a fixed number (5 · 105) of simulation steps and varying maximum
number of iterations (x axis, color), bar plots show the average KL divergence across the 27 parameter combinations in d, for 10 replicates (points).
f, Analogous to e, for a fixed maximum number (50) of optimization iterations. g, The joint distribution of the gene Grin2b in the granule mature
cells in the dentate gyrus dataset [76], as observed (left), computed from MLEs for the one-state model (middle), and simulated from the MLEs
for the geometric burst model (right), annotated by log KL divergence from the observed. The burst model better matches the observed values in
the region where probability mass is concentrated (pink dashed box). h, For the burst model, plots show the log KL divergence to the observed
distributions of Grin2b for 𝑏 versus 𝛾 with 𝑘on fixed to the MLE (left), and 𝑏 versus 𝑘on with 𝛾 fixed to the MLE (right), with optimizer end points
indicated (red dots). i, j, Analogous to g, h, but for Btbd9. The log of KL divergence is base 10.
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Supplementary Figure 2: Topic modeling analysis of scNT-seq data from human hematopoiesis. a, For topic 0, UMAP plots shows cells colored
by topic weights (top) and by log-normalized expression of topic-specific genes (bottom right); bar plot (bottom left) shows top 10 topic-specific
genes ranked by log-fold change (x axis) and colored by absolute value of z-score; ’ U’ indicates unspliced transcripts. b–h, Analogous to a, for
topics 1–7, respectively.
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Supplementary Figure 3: TopicVelo recovers more biologically plausible velocity estimates than those of scVelo for the scNT-seq data.
a–c, Analysis of topic-3 specific genes. UMAP plots colored by smoothed size-normalized counts of unspliced (Mu) (far left) and spliced (Ms)
(middle left) transcripts, and by velocities inferred by scVelo (middle right) and TopicVelo (far right), for the genes F13A1 (a), PLEK (b), and ZYX
(c). d, e, Analysis of topic-1 specific genes GATA2 and HPGD, analogous to a–c.
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Supplementary Figure 4: Topic modeling of the gastrulation data revels key genes underlying the differentiation of blood progenitors to
erythroid. a, For topic 0, UMAP shows cells colored by topic weights (top) and by log-normalized expression of topic-specific genes (bottom
right); bar plot (bottom left) shows top 20 topic-specific genes ranked by log-fold change (x axis) and colored by absolute value of z-score; ’ U’
indicates unspliced transcripts. b, Analogous to a, for topic 1.
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Supplementary Figure 5: Topic modeling of the human bone marrow data provides insights into the different stages of differentiation
along all lineages. a, For topic 0, 𝑡-SNE plots shows cells colored by topic weights (top) and by log-normalized expression of topic-specific
genes (bottom); bar plot (middle) shows top 10 topic-specific genes ranked by log-fold change (x axis) and colored by absolute value of z-score;
’ U’ indicates unspliced transcripts. b–j, Analogous to a, for topics 1–9, respectively. Topics are generally associated with annotated stages of
development: topic 0 (mature erythroid), 1 (megakaryocyte), 2 (dendritic cells), 3 (one lineage of monocytes), 4 (common lymphoid progenitors), 5
(hematopoietic stem cells), 6 (erythroid), 7 (another lineage of monocytes), 8 (precursors to monocytes), 9 (hematopoietic stem cells and precursors
to dendritic cells).
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Supplementary Figure 6: TopicVelo recovers better biologically supported velocities than scVelo for the human bone marrow data. a, For
topic-0 specific gene CA1, UMAP plots are colored by smoothed size-normalized counts of unspliced (Mu) (far left) and spliced (Ms) (middle
left) transcripts, and by velocities inferred by scVelo (middle right) and TopicVelo (far right). b–e, Analogous to a, for topic-2 specific gene IRF8
(Supplementary Table 1), topic-1 specific gene SELP, topic-5 specific gene CRHBP, and topic-7 specific gene AZU1, respectively.
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Supplementary Figure 7: Topic modeling analysis of the ILCs data from only day 3. a, For topic 0, force-directed layout (FDL) embeddings
shows cells colored by topic weights (top) and by log-normalized expression of topic-specific genes (bottom right); bar plot (bottom left) shows top 10
topic-specific genes ranked by log-fold change (x axis) and colored by absolute value of z-score; ’ U’ indicates unspliced transcripts. b–g, Analogous
to a, for topics 1–8, respectively.
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Supplementary Figure 8: Mean first-passage time analysis of the skin ILCs data. a, b, Median-rescaled mean first-passage time (rmfpt) to
target group ILC3-like cells. FDL plots (a) show cells colored by rmfpt to target group ILC3-like cells (blue), as estimated by scVelo (top) and
TopicVelo (bottom). Violin plots (b,) show distributions of rmfpt to ILC3-like cells for subsets of cells, grouped by the topic for which they have
highest weight (x axis). c, d, Analogous to a, b, with target group set to quiescent-like cells. e, f, Analogous to a, b, with target group set to ILC2-like
cells.

35 of 36

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 13, 2023. ; https://doi.org/10.1101/2023.06.13.544828doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.13.544828
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mu Ms scVelo TopicVelo

Klf2

Fos

a

b

c

d

e

Il23r

Il1r1

Lgals3

Supplementary Figure 9: TopicVelo recovers more biologically plausible velocities than scVelo for the skin ILCs data. a, b, Analysis of topic-6
specific genes. FDL plots colored by smoothed size-normalized counts of unspliced (Mu) (far left) and spliced (Ms) (middle left) transcripts, and
by velocities inferred by scVelo (middle right) and TopicVelo (far right), for the genes Klf2 (a) and Fos (b). c–e Analysis of topic-4 specific genes
Il23r, Il1r1, and Lgals3, analogous to a, b.
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