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Human brains are extremely energy costly in neural connections and activities. However,

it is unknown what is the difference in the brain connectivity between top athletes

with long-term professional trainings and age-matched controls. Here we ask whether

long-term training can lower brain-wiring cost while have better performance. Since

elite swimming requires athletes to move their arms and legs at different tempos in

time with high coordination skills, we selected an eye-hand-foot complex reaction

(CR) task to examine the relations between the task performance and the brain

connections and activities, as well as to explore the energy cost-efficiency of top

athletes. Twenty-one master-level professional swimmers and 23 age-matched non-

professional swimmers as controls were recruited to perform the CR task with concurrent

8-channel EEG recordings. Reaction time and accuracy of the CR task were recorded.

Topological network analysis of various frequency bands was performed using the

phase lag index (PLI) technique to avoid volume conduction effects. The wiring number

of connections and mean frequency were calculated to reflect the wiring and activity

cost, respectively. Results showed that professional athletes demonstrated better eye-

hand-foot coordination than controls when performing the CR task, indexing by faster

reaction time and higher accuracy. Comparing to controls, athletes’ brain demonstrated

significantly less connections and weaker correlations in upper beta frequency band

between the frontal and parietal regions, while demonstrated stronger connectivity in

the low theta frequency band between sites of F3 and Cz/C4. Additionally, athletes

showed highly stable and low eye-blinking rates across different reaction performance,

while controls had high blinking frequency with high variance. Elite athletes’ brain may

be characterized with energy efficient sparsely wiring connections in support of superior

motor performance and better cognitive performance in the eye-hand-foot complex

reaction task.
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INTRODUCTION

Human brain is complex and has multiple levels of organization.
The realization of cognitive function is a result of coordination
and multilevel coupling of various brain regions, including
information encoding, decoding, and communication (Jun
et al., 2019). These processes come at high metabolic costs
(Shulman et al., 2009) that are used for signaling activity
(i.e., electrochemical signal generation, propagation, and
synaptic communication across neurons; Herman et al., 2009;
Sanganahalli et al., 2016; Yu et al., 2018) and for non-signaling
processes (i.e., supporting housekeeping mechanisms and
maintaining resting potential; Engl and Attwell, 2015; Yu et al.,
2018). This is supported by experimental studies showing a large
amount of energy are required to maintain the electrical activity
of neurons and the organization of neural networks in the
mammalian brain (Laughlin and Sejnowski, 2003; Hasenstaub
et al., 2010; Sengupta et al., 2010). Previous study suggested
that the high-order brain may make certain economic trade-offs
during their function, tending to minimize the energy cost
while maximize the output efficiency (Laughlin and Sejnowski,
2003). The energy consumption rate can be captured by
electroencephalogram (EEG) frequency components and shows
a linear relationship with the brain activity rate (Buzsaki et al.,
2012). However, little is known about the determinants of
the energy-efficiency in the brain. Recently, a study suggested
that the learning process, which relied on synaptic plasticity,
might promote efficient coding at a low cost (Yu et al., 2018).
In the present study, we investigated whether the long-term
professional athletic training such as swimming would influence
the efficiency of energy consumption in the brain by alerting the
functional connectivity.

In professional sports, the intrinsic functional state of the
brain, such as the sensitivity of sensory perception, the degree
of concentration, the speed of information processing, and the
degree of neuromuscular control (Pei, 2020), is essential to
athletes’ performances. EEG is a non-invasive technology with
a million second temporal resolution. It can be used to detect
the neural activities from the scalp reflecting functional states
of the brain. For example, golfers with expert putting skills
showed increased frontal midline θ power and parietal α2 power
(Baumeister et al., 2008), increased α and β power were found
in the left hemisphere of rifle shooters during the preparation
process before aiming, and increased θ power was found along
the frontal midline during the aiming phase (Hillman et al., 2000;
Doppelmayr et al., 2008); increased δ and θ frequency activity
were found during ball sports exercises (Ermutlu et al., 2015);
increased α activity was found in the left hemisphere of archers
as the aimed (Salazar et al., 1990); increased α and β activity
was recorded from widely distributed sites on the scalp after
treadmill exercise (Mierau et al., 2009; Schneider et al., 2009);
decreased α activity and increased β activity were found during
cycling (Kubitz and Mott, 1996); and an increased α/β index in
the frontal lobe was related to long-term fatigue from cycling
(Nielsen et al., 2001).

Functional connectivity is used to quantify statistical
interdependencies among physiological time series recorded

from different brain areas (Lee et al., 2003; Fingelkurts et al.,
2005). The brain functional connectivity can be evaluated by
coherence, Granger causality (Granger, 1969), phase coherence
(Tass et al., 1998), synchronization likelihood (Stam and vanDijk,
2002), phase lag index (PLI) (Stam et al., 2007), and the imaginary
part of coherency (Nolte et al., 2004). PLI quantifies connectivity
strength on the basis of phase synchronization and was designed
to overcome the volume conduction problem (Stam et al.,
2007). Research has found that an individual’s functional brain
connectivity profile is unique and similar to one’s fingerprint
(Finn et al., 2015). An individual can be identified from a large
group of subjects solely relying on the basis of the connectivity
matrix, especially in the frontoparietal networks (Finn et al.,
2015). In the context of sports, distinguish relationships between
different sport events and the characteristics of brain networks
have been reported. For example, functional connective edges
in the right hemisphere was significantly greater than those in
the left hemisphere during shooting (Liwei et al., 2018). Table
tennis players showed reduced EEG coherence in multiple
frequency bands comparing to novices (Zhiping et al., 2016).
However, there has scarce EEG research on the brain functional
connectivity to reflect the cost-efficiency of professional athletes.

Swimming is a speed event relying on cyclical movements
and requires high levels of reaction, movement and displacement
speeds. Long-term systematic physical and skill training leads to
superior reaction behaviors in professional athletes (Mori et al.,
2002; Williams et al., 2002; Kida et al., 2005; Simonek, 2011).
Specifically, a study showed that the hand-foot coordination
was positively correlated with swimming speed and competitive
performance (Takagi et al., 2004). In the same vein, the complex
reaction (CR) (i.e., a type of choice reaction) is considered as a
behavioral characteristic that distinguishes elite swimmers from
thousands of beginner swimmers (Guang et al., 2013). However,
it is unknown what role energy cost-efficiency plays in the CR
performance. Hence, the present study aimed to (1) seek for
potential electrophysiological markers identifying top swimmers;
and (2) explore the brain energy cost-efficiency of ES using
functional connectivity methods.

MATERIALS AND METHODS

Participants
Twenty-one elite swimmers (ES) from Shanghai Swimming
Management Center (Supplementary Tables 1–4) and 23 college
students with no history of specialized swimming or other
professional sports training (control group, CG) were recruited.
All participants read and signed informed consent forms. The
study was approved by the Ethics Committee of the Fudan
University. Participants were all right-handed. The handedness
was determined by self-reports and verified by the observation
of their hand use in writing and performing the task. None of
them had reported a history of mental illness. The EEG and
behavioral data of 5 elite swimmers and 7 controls were excluded
from the analysis because their EEG signals contained too many
instabilities or drifts. The final sample consisted of 16 ES and
16 CG (n = 32, 15 Female). Sixteen swimmers (13 master-level)
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were distributed to 5 specialties (6 Free style; 4 Backstroke; 3
Breaststroke; 2 Individual Medley; 1 Butterfly) (for participant
demographics, see Supplementary Tables 1, 2).

Experimental Procedures
Participants were seated comfortably in an armchair in a
soundproof room. The experiment started with a 2-min waking
eyes-closed (EC) period, followed by a 2-min eyes-open (EO)
period with eyes fixed on a screen with a crosshair. Then,
participants were required to perform the CR task while keeping
the head still, followed by another EC (2min) and EO (2min)
states. After each state, there was a 1-min short break. EEG
signals were recorded throughout the process. Prior to perform

the CR task, participants were instructed to practice several
trails till they successfully completed one trail by themselves.
In the CR task there were 8 trails and each trial involved
6 different blocks connected by directional arrows, and every
block contained 4 balls connected by lines. The participant
was required to use left/right finger or foot to indicate the
location of the ball which appeared in one of the four corners
of the screen (i.e., left finger = upper left, right finger =

upper right, left foot = lower left, and right foot = lower
right). If the participant responded correctly, the ball would
disappear. Participants were required to respond as quickly and
accurately as possible while keeping the head stable. The trial-
by-trial reaction time and the total number of errors were

FIGURE 1 | Experimental procedures. Participants were asked to keep their eyes closed for 2min without thinking about anything and then to keep their eyes open

and fixed on the “+” in the middle of the screen for 2min. After a 1-min break, they were required to complete 8 trials of the complex reaction task according to the

instructions on the screen.
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documented. The experimental procedure is illustrated in detail
in Figure 1.

EEG Recording and Data Preprocessing
EEG signals were recorded from an 8-channel EEG system (eego,
ANT Neuro, Berlin, Germany) and digitized at a sampling rate
of 1,000Hz. The reference electrode was placed between the Cz
and Pz channels, and others (Fpz, Fz, F3, F4, Cz, C3, C4, and Pz)
were distributed around the frontal and parietal areas according
to the extended 10–20 international system. The impedance of all
electrodes was kept below 10 k�.

EEG data were preprocessed in EEGLAB v.13.0.0.b, a
MATLAB-based open toolbox (Delorme and Makeig, 2004).
Segments with a duration of 1min (from 30 to 90 s of the
collected 120 s data) were selected from the EC and EO resting-
state EEG, respectively, and all data associated with the CR task
were imported for preprocessing. Raw data were re-referenced
to the common average reference and filtered to a frequency
range of 0.5–30Hz. After running eye blink recognition, artifacts
associated with eye movements and blinks were removed by
using the AAR1.3 toolbox plugin, which performed automatic
electrooculogram (EOG) artifact correction using blind source
separation (BSS) and identified the EOG components using
fractal analysis (Gomez-Herrero et al., 2006). After that, the
resting states and CR task data were all segmented into epochs
with a duration of 2 s each. Subsequently, the epochs with
abnormal values beyond the upper limit of 75 µV were rejected
(Collin et al., 2012). Overall, 10.1% epochs from the resting
states and 16.2% from the CR task were excluded due to
artifact contaminations.

It’s well-known that the alpha blocking phenomenon appears
during relax wakefulness and conceptualized as desynchronized
neural population activity during active stimuli. Previous study
has demonstrated that the alpha blocking phenomena could
reflect wakefulness-to-sleepiness levels (Jiao and Lu, 2017).
They estimated the degree of falling in sleepiness from drivers’
wakefulness by calculating the alpha blocking rate from EEG
wave. In present study, we calculated the alpha blocking rate
(αblockingrate) to reflect a subject’s switch from eye-close (EC) to
eye-open (EO) states as an estimate of degree of wakefulness
as well as stability of subjects during experiment. We used the
rate of change of the alpha blocking rate (αblockingrate) effect of
the EC and EO resting states before and after the CR task to
monitor the stability of the experimental recording process and
verify the validity of EEG data after preprocessing (Zheng et al.,
2018). We set 20% as the stability threshold of the rate of change
of the alpha blocking rate based on our long-term observations in
experimental study. We observed that once subject’s αblockingrate
decreased its value above 20% change, it was very likely that the
subject became sleepy in long-term experiment. On the contrary,
if it increased its value above 20% change, it was very likely the
intrinsic brain behavior state had changed, which introduced
some unexpected noise to the experiment, and affected the
interpretability of the data. After the CR task, the αblockingrate
values of the 2 groups were both reduced by<20% in comparison
to those before the CR task (Table 1, Supplementary Figure 1,
and Supplementary Method 1).

TABLE 1 | Descriptive statistics for the variables of interest.

ES CG

Mean ± SD Mean ± SD P-value

Complex Reaction (CR)

CR reaction time 15.85 ± 4.19 s* 19.06 ± 5.13 s* 0.033

CR accuracy 94.86% ± 2.51%* 87.79% ± 8.99%* 0.005

CR speed 4.08 ± 0.8 trials/min* 3.47 ± 0.92 trials/min* 0.049

αblocking rate

Before CR tasks 78.55% ± 22.83% 71.92% ± 16.71% 0.356

After CR tasks 73.54% ± 26.2% 61.85% ± 20.2% 0.168

Lateralization Index (LI)

EC LIfrontal −0.011 ± 0.156 −0.050 ± 0.198 0.552

EC LIparietal −0.092 ± 0.225 0.009 ± 0.212 0.200

EO LIfrontal 0.008 ± 0.150 −0.066 ± 0.117 0.128

EO LIparietal 0.029 ± 0.203 −0.048 ± 0.181 0.269

CR LIfrontal 0.058 ± 0.169 0.012 ± 0.095 0.351

CR LIparietal 0.027 ± 0.080* −0.069 ± 0.118* 0.012

Wiring Connections (WNC)

1–4Hz 6.31 ± 3.54 5.69 ± 3.11 0.600

4–8Hz 13.00 ± 5.74 10.31 ± 4.42 0.148

8–13Hz 9.38 ± 3.69 7.69 ± 3.99 0.224

13–20Hz 8.38 ± 4.43 8.63 ± 4.37 0.873

20–30Hz 6.38 ± 4.73* 9.88 ± 4.47* 0.040

*p < 0.05, significantly different between elite swimmers and the control group.

Network Wiring Connections Based on
Phase Lag Index
EEG network connectivity such as functional connectivity
generally refers to the statistical relationship of EEG signals
between electrodes (or brain areas) (Fingelkurts et al., 2005). To
avoid the effect of volume conduction and the field diffusion
on multiple-recording channels, we used the phase lag index
(PLI) based on phase synchronization to evaluate the brain EEG
functional connectivity (Stam et al., 2007). The PLI value was
calculated with the open source toolbox HERMES based on
MATLAB (Niso et al., 2013). The range of PLI values is generally
between 0 and 1, where a value of 1 means that the 2 EEG signals
have strict phase locking at a constant non-zero phase lag and a
value of 0 means no coupling (or coupling with a relative phase
that encircles 0 modπ, which is likely to result from volume
conduction) (Zheng et al., 2018). Thus, the larger the PLI value
indicates the stronger the non-zero phase synchronization and
the stronger the connectivity (Stam et al., 2007). We first applied
an approach called network-based statistics (NBS) (Zalesky et al.,
2010) to analysis brain functional connectivity based on PLI and
to find the significant connectivity edge (SCE). In terms of the
energy related to the wiring cost. The weaker or less extensive
the connectivity is, the less active synaptic connections there
are. The less active synaptic connections will cost less energy.
That is, network wiring cost (Cw) is proportional to the wiring
number of connections (WNC) (Achard and Bullmore, 2007;
Zheng et al., 2021). There were up to 28 edges among the 8
electrodes. Some PLI values were very low which were around
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noise level. There should be an optimal baseline and threshold to
reduce the noise interference. Hence, we set different thresholds
e.g., from 1/10, 1/9, 1/8, 1/7, 1/6, 1/5, 1/4, 1/3, 1/2–1 maximum
of PLI value of 32 participants (Max) in order to compare
those relatively stronger functional connections for both ES and
CG in the CR task state. There was a significance between 2
groups for some threshold (1/4 Max, 1/8 Max, and 1/9 Max)
(Figure 2C and Supplementary Figure 10). Here, as an example
case, 1

4 Max was used as the threshold for distinguishing the
talented swimmer group from the control. Absolute threshold
was better than the relative threshold of each subject for the
comparability between ES and CG. Therefore, we set 1/4 of
the maximum PLI value of 32 participants in 2 groups as the
threshold in each frequency band. If the PLI of two channels
was greater than the threshold value, one WNC was calculated.
The WNC of all participants were calculated and analyzed during
the CR task.

Activity Cost Based on Mean Frequency
Brain signaling activity involves not only a wiring cost for
network connectivity but also an activity cost for neuronal
discharge. Studies have shown that a higher mean frequency
(MF) of EEG reflected higher levels of cerebral blood flow and
metabolism (Ingvar, 1971; Hyder et al., 2013), and MF was
confirmed to have a positive correlation with these physiological
variables (Ingvar et al., 1976; Zheng et al., 2021). That is, the
high MF suggests higher frequency of brain electronic activity
that will cost more metabolic energy (Hyder et al., 2013; Yu et al.,
2018). Since theMF can indirectly reflect the energy cost of neural
electrical activity in the brain, we used theMF of the CR task state
as the index for the energy cost of brain activity (Cactivity). MF will
be higher or lower when the condition is changed. In the present
study, we calculated and compared the MF of ES and CG groups
at the same condition.

Calculation of MF: Each subject was selected 50 s signals of
EC state, 50 s signals of EO state, and 70 s signals of CR task
(selection from the beginning recording signals of the CR task)
to be preprocessed. The mean frequency of 25 segments or 35
segments EEG data from 8 channels were calculated in 2 s. It
is known that electromyogram (EMG) artifacts have a higher
amplitude than the EEG signals and can be removed by using
independent component analysis (ICA) technique (Chen et al.,
2014; Frolich and Dowding, 2018). But in our present study,
there were only 8 electrodes and they were not enough for using
ICA to detect the EMG artifacts. According to the characteristics
of EMG, such as distributing relatively higher frequency with
a higher amplitude, we used the ratio in the formula (1) for
the evaluation of the muscular content. The electromyography
(EMG) artifacts were removed according to the ratio of high-
frequency bands power over low-frequency bands power due to
the relatively higher frequency of myoelectric. The calculation
formula of the ratio was as follows:

Ratio =

∑30
i = 13 P(fi)

∑13
i = 1 P(fi)

(1)

Where i represents an integer frequency ranging from 1 to 30Hz,
and P(fi) means the power value at a certain integer frequency.

When the value of Ratio of one segment from one channel of
a subject was >1, this segment was removed because it belongs
very likely to the EMG artifacts (Supplementary Figure 14 and
Supplementary Method 4). According to the above methods,
about 2.81‰ segments of EC, 8.59‰ segments of EO, and
7.03‰ segments of the CR task were removed before calculating
the mean frequency of each channel of every participant in 3
conditions (EO, EC, and the CR task).

Spectrum Power and Activation Rate
Averaged power spectra were computed across segments of
different states in each participant. The power values were
calculated for 5 frequency bands (δ: 1–4Hz; θ: 4–8Hz; α: 8–13Hz;
βlower: 13–20Hz; βupper: 20–30Hz). It has been well-established
that low-frequency signaling activities, such as δ or θ, are related
to sleep or the resting state of the brain, while high-frequency
signaling activities, such as α and β, are related to the cognitive
function (Kumar and Bhuvaneswari, 2012). The power ratio of
the high-frequency band to the low-frequency band can reflect
the degree of brain activation (Cheron et al., 2016). Therefore,
we calculated the power ratio of the upper β frequency band to
the θ frequency band of each channel (upper beta/theta ratio, or
UBTR), to represent the activation rate of eight brain areas (Arns
et al., 2013; Vollebregt et al., 2015). The formula of UBTR was
as follows:

UBTR (%) =
Powerupper beta

Powertheta
× 100 (2)

Note: In our study, there were no electrodes in the temporal or
occipital areas of the brain. When we drew the spectrum power
and mean frequency topologic maps, we added an additional
18 electrodes and set the values to 0 to avoid the influence of
the frontal and parietal signals on the periphery. The added
electrodes were Fp1, Fp2, F5, F6, C5, C6, P5, P6, Po3, Po4, F7,
F8, O1, O2, T7, T8, Po1, and Po2.

Blink Recognition
The electrical potential of eye blinks is required along with the
brain rhythm signals by the electrodes in EEG and shows a
higher intensity in the frontal electrodes and possesses higher
amplitude than the brain rhythms (Sovierzoski et al., 2008; Al-
gawwam and Benaissa, 2018). In present study, blink recognition
was performed based on the EEG data of each participant
after high- and low-pass filtering. The processes of algorithm
identification were: (1) to find all the peaks that may be blinks
in the Fpz channel using the function findpeak in Matlab
(seen Supplementary Method 3); (2) to select 250ms time series
before and after each peak and calculate the amplitude of the
peak to the trough on the left and right sides, respectively, and
then to compare the averaged left and right amplitudes with the
peak threshold. It would be kept when the averaged amplitude
was larger than the peak threshold; (3) to meet the condition
that there were at least in 3 other channels the amplitudes of the
trough were greater than the trough threshold at the same period;
(4) to remove the local maximum peak with the amplitude
difference between 2 consecutive peaks less than one third of the
maximum peak in the Fpz channel. The peak threshold was set to
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FIGURE 2 | Functional connectivity and network wiring cost-efficiency characteristics based on PLI. (A) The CR responding time of ES was significantly shorter than

controls. (B) The CR accuracy of ES was also significantly higher than CG. (C) The relationship between WNC of two groups and different threshold settings. When

the threshold was set as the 1/4Max, 1/8Max, and 1/9Max, the WNC of ES was significantly less than that of CG in the upper beta frequency band. (D) The WNC of

ES was significantly less than controls in the upper beta frequency band when the threshold was set as the 1/4 Max. (E) Both in the ES and CG groups, WNC was

positively correlated with the CR speed (S) in the upper beta frequency band. But in the ES, the intercept was greater [SES = 3.588 + 0.077 × WNC, r(16) = 0.458;

SCG = 2.876 + 0.06 × WNC, r(16) = 0.292]. (F) There were positive linear relations between WNC and CR accuracy (AC) both in the ES and CG group in the upper

beta frequency band [ACES = 93.677 + 0.185 × WNC, r(16) = 0.349; ACCG = 84.668 + 0.316 × WNC, r(16) = 0.157]. (G) In the ES group, there was a positive linear

relation between WNC and swimming training year (T) in the upper beta frequency band [WNC = −0.323 + 0.503 × T, r(16) = 0.312]. (H) In the θ frequency band,

there were 2 SCEs between ES and CG, connecting F3 to Cz and C4 (red lines indicate that the PLI values of ES were significantly higher than those of CG in the SCE

topologic map, yellow lines indicate that the PLI values of ES were higher than CG but no significance, blue lines indicate the PLI values of ES were lower than CG but

no significance). (I) Six SCEs were shown at the upper β frequency band between the 2 groups: Fpz-Fz, Fpz-F3, Fpz-F4, Fz-F3, F4-C3, and F3-C4 (blue lines

represent that the PLI values of ES were significantly lower than those of CG in the topological map of SCEs, green lines represent the PLI values of ES were lower

than CG but no significance, red lines represent the PLI values of ES were higher than CG but no significance). *p < 0.05, compared with the control group.

2/5 of themaximum peak amplitude of the subject and the trough
threshold was set to one third of the lowest trough amplitude
of the subject in the Fpz channel during the complex reaction
task. One blink was recognized after the above 4 conditions were
all met.

According to the above-mentioned blink recognition
algorithm, all the blinks of each subject were identified during

the complex reaction task. The peaks of blinks were aligned
to 0ms. The mean amplitude from 250 to 150ms before the
blink peak was set as the baseline amplitude. Task-evoked blink
potentials of each subjects were plotted after normalized by the
Z-score method.

Blink rate or the frequency at which the eyelids open and close
has been proposed and used to study cognitive control, learning,
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working memory, and decision making (Eckstein et al., 2017).
In the manuscript, the instantaneous blink rate of each subject
was calculated over time from the beginning to 60ms of the
complex reaction task, and was normalized with the average blink
frequency of his/her group in 60 s. In the calculation process,
subjects who blinked<3 times in the first 60 s should be removed.

Previous study noticed that the interblink intervals were
quite variable between subjects (Ponder and Kennedy, 1928).
According to the percentages of different blink intervals to the
total number of blink intervals of each participant, the interblink
interval histogram (IBIH) of each person in the process of CR
tasks was calculated for his/her total CR tasks continuous time
sequence s selected from each subject in the 2 groups. The
total number of blink intervals of all subjects in each group
was calculated with the time bin of 1 s. Most interblink interval
durations of these subjects were distributed in <20 s while a very
few interval durations (>20 s) distributed sparsely with maximal
value reaching 91 s.

Statistical Analysis
Brain functional connectivity based on PLI was analyzed mainly
by an approach called network-based statistics using the NBS
v1.2 toolbox, based on MATLAB (Zalesky et al., 2010). After
5,000 permutation tests, if there was a significant difference (p
< 0.05) between ES and CG groups, it was marked with a line
as a SCE in the topology diagram (Figures 2H,I). Other index
data were analyzed by SPSS 20.0. An independent t-test was used
between the 2 groups in one state such as the speed and accuracy
of the CR task, WNC at different frequency bands or different
threshold, the lateralization index in the resting or task state,
mean frequency in the resting or task state, spectrum power at
different frequency bands etc. A paired t-test was used between 2
states within the same group, e.g., mean frequency of ES between
EC and EO state or between EO and the CR task state; the
significance threshold was set at p < 0.05. Pearson correlation
analysis was used for individual EEG and CR task performance.

RESULTS

Complex Reaction Task Performance
The averaged reaction time and accuracy values of the CR task
were shown in Table 1. The ES responded significantly faster
(Figure 2A) and more accurate (Figure 2B) than the CG. This
result is consistent with reports from other sports (Mori et al.,
2002; Williams et al., 2002; Kida et al., 2005).

Alpha Blocking Rate
Alpha activity is greatly reduced by the increase in light input
from the resting EC state to the EO state or blocked by other
attention-related signals. The alpha-blocking phenomenon is
conceptualized as desynchronized neural population activity
during active stimuli, and alpha blocking rate (αblockingrate)
between the EC and EO states is used to monitor the
stability of the experimental recording process (Method seen
Supplementary Method 1). It is generally believed that a data
recording process is relatively stable if the αblockingrate is <20%
before and after the tasks (Bazanova and Vernon, 2014). In the

current study, the mean αblockingrate of the elite swimmers after
the CR tasks was 6.4% lower than the rate before the tasks.
In the control group, the αblockingrate after the CR task was
reduced about 15% (Table 1 and Supplementary Figure 1). This
relatively higher and stable αblockingrate values in elite athletes
might reflect that they could maintain sustained attention for
relatively longer period than controls.

Network Wiring Connections
Based on network-based statistical analysis, there were 2
strengthened functional connectivity edges in the θ frequency
band (4–8Hz) in the ES compared with the CG during the
CR task (Figure 2G). These edges were distributed in the left
frontal area, connecting the left frontal area (F3) to the central
parietal area (Cz) and to the right side of the parietal area
(C4). In the upper β frequency band (20–30Hz), compared
to the college student controls, master swimmers had 6 less
correlated functional connectivity edges (Figure 2H), which were
mainly distributed in the frontal, temporal and parietal regions
of the brain. The connection strengths of all recording sites for
other frequency bands were not significantly different between
the 2 groups.

In the upper β frequency band, the frontoparietal network
WNC of ES was significantly lower than that of CG (p <

0.05; Figure 2D) and was positively correlated with swimming
training years within the ES group (Figure 2G). As shown in
the Supplementary Figure 2, there were positive linear relations
between training years and CR accuracy or speed. However, in
the other 4 frequency bands, WNC was not different between
ES and CG (Supplementary Figure 3). Within the group either
ES or CG, WNC was also positively correlated with CR speed
(Figure 2E) or accuracy (Figure 2F). However, the 2 intercepts
of linear relations of ES were both greater than controls.

Activity Cost Based on Mean Activity
Frequency
A gradual decrease was shown in the mean frequency of the
frontoparietal area from the EC state to the EO state and then to
the CR task (Figures 3A,D,E and Supplementary Figure 4). This
result was consistent with our group’s previous findings on the
mean frequency of the normal population in the frontoparietal
area (Supplementary Figure 5). However, during the CR task,
there was no difference in the mean frequencies between ES and
CG (p > 0.05; Figure 3B), nor was the change rate of the mean
frequency from the EO state to the CR task (p> 0.05; Figure 3C).

Spectrum Power Analysis and Activation
Rate
Although the absolute power values of ES in the 5 frequency
bands were not significantly different from those of CG during
the CR task (p> 0.05), there was an upward trend in the ES in the
frontoparietal region of the left hemisphere while it was absent in
the CG (Supplementary Figure 6).

Comparing to the EO state, ES showed increased activities in
the prefrontal region at each frequency band during the CR task
state, while CG showedmore spatially distributed across multiple
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FIGURE 3 | Mean frequency topology and characteristics in the 2 groups. (A) From the EC state to the EO state and then to the CR task state, a gradual decrease

was shown in the MF topology both in ES and CG. (B) During the CR task, the MF of ES was slightly higher than that of CG, but there were no significant differences

between the 2 groups (P > 0.05). (C) The change rate of the MF [(MFeo – MFcr )/MFeo × 100] from the EO condition to the CR task did not show significant differences

between ES and CG. (D) The MF of the 2 groups in the Fz channel decreased from the resting state (EC and EO condition) to the CR task state. (E) The change trend

of MF at the Fz channel from the resting state to the CR task state.
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regions (Figures 4A–E and Supplementary Figures 6, 7). In
terms of the absolute value of the power change, at the δ

frequency band (1–4Hz), ES had significantly smaller power
changes in the left frontal area (F3) than CG (Figure 4A); in the
θ frequency band (4–8Hz), there was a significant difference in
the center of the parietal area (Cz), and the power change of the
ES was significantly smaller than that of the CG (Figure 4B); at
the lower β frequency band (13–20Hz), ES had a significantly
smaller change in the right frontal area (F4) (Figure 4D); and
in the upper β frequency band (20–30Hz), an increased power
change was found in the left parietal lobe (C3) of ES (Figure 4E).

From the EO state to the CR task state, the UBTR of ES
decreased significantly less than that of CG in the frontal Fz
channel (Figure 5). There were 5 channels (F3, F4, Cz, C3, and
C4) in which the UBTR changes of the 2 groups interacted.
That is, there was an increasing trend in the UBTR change of
the ES, while there was a decreasing trend in that of the CG.
However, only in the Cz channel was there a significant difference
(Figure 5).

Supplementary Table 2 and Supplementary Figure 8A

showed the frontal lateralization index (LIf) (Method seen
Supplementary Method 2). There were no significant differences
between ES and CG either in the resting state (EC and EO) or in
the CR task state (p < 0.05). However, the parietal lateralization
index (LIp) of ES was significantly different from that of CG in
the CR task state (p < 0.05). During the CR task, the LIp value of
ES was positive and close to zero, while that of CG was negative
and far from 0. This result suggested that top swimming athletes
had more balanced left and right cerebral hemisphere activities
and more strengthened activation in the right hemisphere than
college students (Table 1 and Supplementary Figure 8B).

Blinks and Burst Blinks
The EEG-based blink amplitude and blink frequency of ES were
both lower than those of CG, although the absolute values of
the 2 groups were not significantly different during the CR task
(Figures 6A–C). The interblink interval histogram (IBIH) also
revealed that the blink frequency of ES in the short interval group
was lower than that of CG (Figure 6E). From the beginning of
the tasks to the following 60 s, the task-related blink rate of ES
showed a regular periodic concentrated blink pattern with an
interval of∼15–16 s. However, in the CG, there were continuous
blinks in short periods but no obvious concentration pattern.
Meanwhile, the blink frequency of CG was almost higher at each
time point than that of ES during the first 1min (Figure 6D).
Interestingly, there were some burst blinks (more than or equal to
2 blinks in 1min) in the 2 groups during the CR task. However,
ES had more burst blinks than CG in both the burst blink rate
(Figure 6F) and the proportion of subjects (Figure 6I).

To test whether the performance of the CR task was affected
by the blinks, we computed Pearson correlation coefficients to
evaluate the relationships between the complex reaction accuracy
or speed and blink frequency. As shown in Figure 6G, there was a
negative correlation between log10 blink frequency and complex
reaction accuracy in both groups. However, a smaller slope was
displayed in the ES than in the CG, which indicated that the
task performance of master swimmers was less influenced by

the blinks. Consistent with the reaction accuracy, the complex
reaction speed also exhibited a negative linear relationship with
log blink frequency but was less affected than the reaction
accuracy in terms of the slope difference (Figure 6H).

DISCUSSION

Our findings showed that elite swimmers were significantly better
in performing the eye-hand-foot reaction task while showed
less energy-cost wiring connections than age-matched college
students. Elite athletes also had highly stabilized eye blinking rate.
These results suggest that long-term professional training of arm-
leg coordination may facilitate formation of necessary direct wire
connections whose number is significantly less than controls.
This may be an energy saving for the brain and would enhance
the reaction time and keep the brain focus on the task in hand.

Due to long-term professional skill training, athletes are
expected to have some phenotypic characteristics (Simonek,
2011). Here, our study showed that elite swimmers had
significantly faster reaction speed and more accurate responses
to complex reactions than age-matched college students with
no professional swimming training. It was consistent with
many previous studies (Mori et al., 2002; Williams et al., 2002;
Kida et al., 2005). As the number of choices increases, the
probability of differences between individuals also increases
(Hick, 1952). Complex reaction tasks require not only attention
and exercise execution but also the ability to discriminate
stimulus’s features and to make response selection in a fast
way (Miller and Low, 2001). The performance is determined by
many factors, such as age, gender, physical activity, and training
(Spirduso, 1975; Morehouse and Miller, 1976; Davranche et al.,
2006; Enel and Erog, 2006). A 6-week training program could
significantly reduce the reaction time of the peroneal muscles
of healthy subjects, which might be related to the improvement
of reaction inhibition ability by exercise training (Linford
et al., 2006). When a selection error occurred in the complex
reaction, the individual would spend more time in response
suppression to limit the recurrence of the error (Welford, 1988;
Koehn et al., 2008). Due to the long-term cooperative training
of hands and feet for underwater resistance, the inhibition
and control capabilities of swimmers might be improved.
Therefore, complex reaction performance is regarded as a
behavior characteristic for the selection and cultivation of elite
swimmers (Guang et al., 2013).

In addition, a highly efficient mammalian brain is generally
shaped with optimal wiring connections of cortical units
to support high-profile cognitive functions (Laughlin and
Sejnowski, 2003). Such economical wiring networks are
developed from long-term learning and shaped by energetically
costly spatially distributed spiking and synaptic activities (Alle
et al., 2009; Carter and Bean, 2009; Yu et al., 2012) that could be
captured by EEG recordings on the scalp. We observed that with
almost equal EEG activity levels, the brains of elite swimmers
exhibited more decorrelated network connectivity than the
control group in the frontoparietal region at the specific upper
β frequency band (20–30Hz). Interestingly, within ES group,
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FIGURE 4 | The changes of spectrum power from the resting EO condition to the CR task state. (A) Topology of the power changes in the frontoparietal region at the

δ (1–4Hz) frequency band and the differences in the change in each channel at this frequency band between ES and CG. (B) Topology of the power changes in the

frontoparietal region at the θ (4–8Hz) frequency band and the differences in the change in each channel at this frequency band between the 2 groups. (C) Topology of

the power changes in the frontoparietal region at the α (8–13Hz) frequency band and the differences in the change in each channel at this frequency band between

(Continued)
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FIGURE 4 | the 2 groups. (D) Topology of the power changes in the frontoparietal region at the lower β (13–20Hz) frequency band and the differences in the change

in each channel at this frequency band between the 2 groups. (E) Topology of the power changes in the frontoparietal region at the upper β (20–30Hz) frequency

band and the differences in the change in each channel at this frequency band between the 2 groups.

FIGURE 5 | The trend graph of UBTR changes at 8 channels from the EO condition to the CR task condition in the 2 groups. The UBTR changes of the 2 groups

interacted with 5 channels (F3, F4, Cz, C3, and C4).

the more wiring connections, the longer training years which
positively correlated with CR performance. It indicated that
the least wiring connections didn’t mean the best performance.
There was a balance between them and existing the preferred
wiring number of connections during the given task. Previous
study has shown that wiring number of connections is highly
correlated with the energy cost (Tomasi et al., 2013). The
frontoparietal network is observed to be a “fingerprint” that can
predict cognitive efficiency or intelligence level (Finn et al., 2015).
Thus, functional connectivity with lower intensity and variance
in athlete frontoparietal brain may suggest the underlying
energy-efficient wirings.

In the other low-frequency EEG bands, the wiring connections
and activity cost of elite swimmers were not significantly different
from those of the control group. These results indicated that the
β frequency band played a key role for the master swimmers.
Previous studies have found that the β frequency band is
important in sensorimotor integration (Vukelic et al., 2014),

attention processing (Chung et al., 2017), or sensory functions
such as somatosensory input (Pfurtscheller et al., 2001). The
suppression of the β frequency band was significantly related
to the reduction in reaction time (Pollok et al., 2014) and
response error (Chung et al., 2017). In our research, however,
we found that only when the β frequency band was subdivided
into lower (13–20Hz) and higher (20–30Hz) β frequency
bands did the functional connectivity of elite swimmers appear
to be significantly different from that of the control group.
This result suggested that top swimming athletes might apply
different frequency selective strategies when performing complex
reaction task.

In addition, in the β frequency band, top swimming athletes
were more inclined to focus on the upper β frequency band
with greater power changes and less correlated functional
connectivity. In the control group, both the lower and upper β

frequency bands had wide-ranging power changes with relatively
small amplitudes and strong functional connectivity. The pattern
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FIGURE 6 | Eye blinks. (A) Eye blink diagram from EEG recording data. (B) Diagram of burst blink based on EEG data. (C) The mean task-evoked blink potentials of

ES were lower than those of CG after Z-score normalization. Mean group potential, thick line; individual subjects’ potentials, thin lines. (D) The mean instantaneous

blink frequency of the 2 groups showed different patterns over time from the beginning to 60ms of the CR task. (E) Most interblink interval duration was distributed in

<20 s. The IBIH of ES was lower than that of CG, especially at the short interblink interval (≤5 s). (F) The BBR of ES (*) was lower than that of the controls (♦). (G) Blink

frequency and reaction accuracy relationship. There was a negative correlation between them in both the ES and CG [ES: Accuracy= 95.662–1.566 × log10(f), r(16)

= −0.252; CG: Accuracy = 101.892–9.356 × log10(f), r(16) = −0.756]. (H) Blink frequency and reaction speed accuracy relationship. Negative correlations were

also shown in the 2 groups [ES: Speed = 4.513–0.887 × log10(f), r(16) = −0.492; CG: Speed = 4.723–1.386 × log10(f), r(16) = −0.77]. (I) Burst blinks appeared in

6 elite swimmers (37.5%) and 11 controls (68.75%).

of increasing the power changes of the high-frequency band
and reducing the corresponding functional connectivity might
be one of the reasons why elite swimmers exhibited higher
network wiring cost-efficiency. Moreover, the UBTR changes of
the elite swimmers were significantly different from those of
the control group in the frontal and central parietal areas. It
was mainly manifested in the interactive phenomenon that the
UBTR of elite swimmers increased while that of the control group
decreased in the left and right frontal and central parietal areas.
This further illustrated that the spectrum power changes were
different between the elite swimmers and the control group in the
low- and high-frequency bands. From the resting state to the task
state, top swimming athletes tended to increase spectral power
and less correlated functional connectivity to reduce network
wiring costs and optimize wiring cost-efficiency.

In the present study, we also found that the parietal
lateralization index of the elite swimmers was significantly higher

than that of the control group and was closer to 0 during the CR
task. The lateralization index reflected the power changes of the
left and right hemispheres in the α frequency band (Neubauer
et al., 2020). The lower the power of the α frequency band was,
the more highly the brain was activated (Bazanova and Vernon,
2014). Therefore, elite swimmers seemed to show more balanced
brain activation and higher activation of the right hemisphere.
It was demonstrated that leftwards asymmetries were present in
the motor control regions and that motor response areas, such as
the precentral gyrus, supplementary motor area and several basal
ganglia, were initiated in right-handed subjects (Rogers et al.,
2004; Dadda et al., 2006; Luders et al., 2006; Toxopeus et al., 2007;
Coxon et al., 2010). Our results suggest that the brain activities
in the elite swimmers were more bilateral during the complex
reaction task, indicating an increased symmetry of 2 hemispheres
due to the long-term and regular coordinated movement of arms
and legs.
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Blink rate was proposed to serve as a non-invasive, indirect
measure of dopamine (DA) activity in the central nervous
system and has been used to study cognitive control, learning,
working memory, and decision making (Eckstein et al., 2017).
A previous study observed that higher blink rates predicted
better performance on set-shifting and Stroop tasks but worse
performance on an updating task (Zhang et al., 2015). Other
research revealed that a higher blink rate was related to lower
distractibility on tasks that place high demands on working
memory (Colzato et al., 2009). In our study, a lower task-
related blink rate in elite swimmers showed better performance
on complex reaction task, which was different from the Stroop
tasks but consistent with the research that blinks affect the
performance of visual attention (Cruz et al., 2011). Moreover,
the CR task involves many brain regions for vision, motion,
planning, cognitive computing, attention, and decision making
andmay also be closely correlated with DA functions (Westbrook
and Braver, 2016). An inverted U-shaped relationship between
DA and cognitive control (Goldman-Rakic et al., 2000) indicated
that the best cognitive control ability was related to preferred
DA activity. That is, a blink rate that is too high might
result in worse cognitive control. However, to what extent
the blink rate was the best is still open. In light of varying
testing- and participant-related affective factors (Eckstein et al.,
2017), it is suggested that methods and conditions should be
cautiously selected when using blink amplitude or frequency as
a biomarker. Moreover, Ponder and Kennedy (1928) noticed
that the interblink intervals were quite variable between subjects.
Due to the short recording time in our study, there were no
significantly different interblink interval distribution patterns
between the 2 groups (Supplementary Figure 9). Whether the
pattern of interblink interval distribution is a biomarker for elite
athletes needs to be further cautiously designed and long-term
recorded research.

The main limitations of this study were as follows: (1) There
were only 8 frontoparietal channels for recording EEG signals,
so the brain activities and cost-efficiency of other brain regions
are not accessed; (2) the brain cost-efficiency was based on the
strength of functional connectivity and mean frequency rather
than direct measurement based on blood oxygen or glucose
metabolism, which might lack quantitative accuracy. (3) Master-
level swimmers were very rare and distributed to 5 main items, so
we cannot classify the events in the light of stroke and compared
the competition results within the swimmer athlete group.

CONCLUSION

In summary, elite swimmers are faster and more accurate
in performing the complex reaction task than controls. By
using wiring number of connections between EEG channels to
represent wiring cost and mean frequency to index the activity
cost of brain, we found that elite swimmer’s brain has less
and weaker correlations among frontal and parietal regions in
upper beta frequency band than controls. This finding suggests
that elite swimmers’ brains are more energy efficient in wiring
connections. However, the mean activity rates of elite swimmers’
brains are slightly higher than controls’ (although the difference

is not significantly), suggesting that they are more actively
in response to the task. Meanwhile, athletes showed higher
stability and lower eye-blinking rate comparing to controls.
A set of distinct physiological features, e.g., energy-efficient
wiring connections and stable blinking dynamics, together with
behavior performance results, could potentially be used as
effective measures, to identify athletes with great potential in
achieving competitive performance.
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