
nanomaterials

Review

Bioinspired Extracellular Vesicles: Lessons Learned
From Nature for Biomedicine and Bioengineering

Assaf Zinger 1,2,* , Ava Brozovich 1,2,3 , Anna Pasto 1,2,4 , Manuela Sushnitha 1,2,5,
Jonathan O. Martinez 1,2, Michael Evangelopoulos 1,2 , Christian Boada 1,2, Ennio Tasciotti 1,2,6

and Francesca Taraballi 1,2,*
1 Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX 77030, USA;

ABrozovich@houstonmethodist.org (A.B.); annapasto.phd@gmail.com (A.P.);
msushnitha@houstonmethodist.org (M.S.); jmart1184@gmail.com (J.O.M.);
michael.evangelopoulos@gmail.com (M.E.); christianboada@tamu.edu (C.B.);
tasciottiennio@gmail.com (E.T.)

2 Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
3 Texas A&M College of Medicine, Bryan, TX 77807, USA
4 Department of Inflammation and Immunology, Humanitas Clinical and Research Center, 20089 Rozzano, Italy
5 Department of Bioengineering, Rice University, Houston, TX 77030, USA
6 Biotechnology Program, San Raffaele University, Via di Val Cannuta, 247, 00166 Roma RM, Italy
* Correspondence: ayzinger@houstonmethodist.org (A.Z.); ftaraballi2@houstonmethodist.org (F.T.)

Received: 2 October 2020; Accepted: 23 October 2020; Published: 30 October 2020
����������
�������

Abstract: Efficient communication is essential in all layers of the biological chain. Cells exchange
information using a variety of signaling moieties, such as small molecules, proteins, and nucleic
acids. Cells carefully package these messages into lipid complexes, collectively named extracellular
vesicles (EVs). In this work, we discuss the nature of these cell carriers, categorize them by their
origin, explore their role in the homeostasis of healthy tissues, and examine how they regulate the
pathophysiology of several diseases. This review will also address the limitations of using EVs for
clinical applications and discuss novel methods to engineer nanoparticles to mimic the structure,
function, and features of EVs. Using lessons learned from nature and understanding how cells use
EVs to communicate across distant sites, we can develop a better understanding of how to tailor the
fundamental features of drug delivery carriers to encapsulate various cargos and target specific sites
for biomedicine and bioengineering.

Keywords: cell communication; extracellular vesicles; biomimicry; drug delivery;
biomedicine; bioengineering

1. Introduction

EVs are nano-sized proteo-lipid vesicles released by cells via exocytosis which are then taken up
by recipient cells [1,2]. They play essential roles in normal homeostasis and disease initiation and
progression [3]. Messages conveyed by EVs include signals for apoptosis [4], cell differentiation [5],
survival [6], tissue repair [7], immune responses [8], and tumor growth [9]. EVs are composed of
a complex bilayer membrane made of lipids, sugars, and proteins, permitting them to protect their
cargo from degradation and transfer biological messages to other cells [10]. This cargo can be in
the form of ribonucleic acid (RNA) [11], messenger RNA (mRNA) [12], micro RNA (miRNA) [13],
proteins [14], or lipids [15]. Once EVs reach the target cells, they can deliver their biological message
via receptor-ligand interactions, fusion with cellular membranes, or internalization via endocytosis or
phagocytosis [16]. To date, three primary subsets of EVs have been characterized and distinguished based
on their size (Figure 1). The smallest EVs are called exosomes, 50–100 nm in diameter, and primarily
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generated from multivesicular bodies and secreted by various cell types (e.g., immune, stem cell,
and cancer) [17]. Micro vesicles range between 100–1000 nm and are secreted through blebbing of their
plasma membranes [18]. Apoptotic bodies are micro-sized EVs (1–5 µm) normally secreted during
apoptotic events [19,20]. It should be noted that there are a host of other subpopulations of EVs secreted
by cells, with more being discovered in recent times [21,22]. One such example is exomeres, which were
recently discovered as a nanoparticle with no biological function, but rich in metabolic enzymes and
signature proteins [23]. However, this review will specifically focus on exosomes.

Figure 1. Subsets of EVs based on size. Healthy cells secrete exosomes of 50–100 nm in size and
multivesicular bodies up to 1000 nm in size through blebbing of plasma membranes. Following cell
death, apoptotic bodies of 1–5 µm in size are formed.

Inspired by the natural efficacy of EVs in cell-cell communication, synthetic nano-based approaches
have been developed to mimic and/or amplify the messages delivered by EVs [24–26]. In this paper,
we aim to review how leukocytes, erythrocytes, platelets, stem cells, and cancer cells communicate
using EVs. We will review current research findings on how EVs from various cells have been used to
target a variety of diseases. In addition, after explaining the limitations of current EVs, we will explore
how these well-tuned communication methods can be engineered to further develop more efficient,
standard, and innovative technologies to accelerate the use of EVs in the clinic.
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2. Native EV Communication

There is an assortment of biological messages continuously sent between the various cells of
our body to maintain physiological homeostasis. The content of the messages delivered by EVs is
affected by the parent cell (i.e., sender), environmental cues (e.g., temperature and pH), and biological
parameters (e.g., hormones and enzymes). We organized the following sections to describe how
different cells use EVs to deliver specific biological messages (Figure 2).

Figure 2. EVs deliver specific biological messages according to the cell type from where they
originated. Immune cells, platelets, red blood cells, stem cells, and cancer cells were analyzed in this
paper based on their main protein component and the specific biological message they convey.



Nanomaterials 2020, 10, 2172 4 of 23

2.1. Immune Cells

The immune system plays a critical role in the maintenance of homeostasis. The body’s immune
response to foreign bodies is coordinated by many different cells: macrophages, T-cells, dendritic
cells (DCs), and natural killer (NK) cells. These cells are endowed with different objectives and
work together to defend our body against infectious organisms and other foreign invaders [27].
EVs released by immune cells serve as key mediators in cell-to-cell interactions. The secretion of
these vesicles can be spontaneous or induced according to the cell type from which they originate [28].
For example, while T-cells and resting B-cells release EVs following the activation of cell surface
receptors, DCs and macrophages constitutively secrete EVs [17]. Recent studies have demonstrated that
T-cell based stimuli can also induce DCs to secrete EVs [29]. However, other work has found that the
secretion of EVs by immune cells can be modulated by environmental factors such as receptor-ligand
interactions and mitogenic lectins [30]. Nevertheless, the function of these secreted vesicles primarily
depends on the cells from which they originate. The distinct structural and biochemical features of
each EV type are directly tied to their unique function which can be either immune-activating [8]
or immune-inhibitory [31]. The sections below summarize the features and functions of the various
immune cell-derived EVs separated by the two arms of the immune system: innate and adaptive.

2.1.1. Innate Immune System

Innate immunity is the body’s first line of defense upon pathogen detection. This arm of the
immune system is nonspecific and comprises a general response to kill anything that is not identified
as ‘self’. Primary mediators of this response include macrophages, DCs, and NK cells.

Macrophages are phagocytic cells that continuously circulate throughout the body in search of
pathogens. Upon identification of one, macrophages phagocytose bacteria and viruses, process the
pathogenic components, produce antigens recognized by effector immune cells, and secrete cytokines
as signals to recruit other immune cells to the site of infection. As these cells process the foreign material,
they also secrete EVs containing pathogen-associated molecular patterns (PAMPs) [32]. EVs further
enhance the immune response by increasing cytokine production and mediating communication with
effector T-cells. For example, it has been shown that EVs released by macrophages infected with
Salmonella enterica and Mycobaterium tuberculosis carried PAMPs that induced cytokines production
via activation of Toll-like receptors (TLRs). Another study demonstrated that exosomes from
M. tuberculosis-infected macrophages carry major histocompatibility complex (MHC) class I and
II costimulatory molecules capable of inducing memory in CD4+ and CD8+ T-cells.

In addition to having stimulatory effects on the immune system, macrophage EVs can also possess
inhibitory effects. This behavior aligns with the double polarization profile of macrophages as either
pro-inflammatory M1 or anti-inflammatory M2. In fact, analysis of miRNA content from activated
macrophages has shown that EVs secreted from either M1 or M2 macrophages carry signatures of the
corresponding phenotype. As a result, the behavior of these EVs in the disease context mimics that of
the source cells. For example, M2-derived EVs promote migration of gastric cancer cells via activation
of PI3K-Akt pathway, a behavior that is much like the migratory behavior induced by tumor-associated
macrophages (TAMs) across many cancer types. Furthermore, these EVs possessed a molecular profile
similar to the pro-tumor, immunosuppressive phenotype observed in TAMs, which includes increased
expression of M2 markers (CD163 and CD206) and reduced expression of M1 markers (IRF5 and TNF-a).
Additional examples, from a recently published paper by Biemmi et al. [33], describes a therapeutic
approach to preserve the function of an ischemic heart by targeting circulating inflammatory EVs
during the acute phase of myocardial infarction. This group of scientists tested the paracrine effect
that is mediated by these EVs and how it induces direct cytotoxicity in cardiomyocytes. Moreover,
when a chemical inhibitor of EVs biogenesis was injected after myocardial infraction the left ventricular
ejection fraction was preserved in vivo.
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Therefore, the molecular profile of macrophage-based EVs plays a key role in mediating the
immune response within the disease context, where the content of these vesicles is vital to tipping the
balance towards a pro- or anti-inflammatory response.

DCs are professional antigen-presenting cells (APCs) whose primary function is to capture,
process, and present antigens to lymphocytes [34]. This process is vital to trigger the appropriate
immune response and coordinate the cells to carry out the response. While DCs themselves act as direct
communicators to effector immune cells, they also secrete EVs to improve this communication. In fact,
DC-derived EVs have been shown to contain MHC class I and II molecules, costimulatory, and adhesion
molecules that activate the T-cell response through both direct and indirect mechanisms. While antigen
presentation from the EVs can directly activate T-cells, the EVs themselves can be internalized by
other DCs that go on further to activate lymphocytes. Furthermore, the activation efficiency of these
EVs directly correlates to the status of the DC source. Indeed, EVs derived from mature DCs induce
higher T-cell activation than those isolated from immature DCs. This behavior has been studied
in many different conditions, ranging from tissue regeneration [35] to cancer immunotherapy [36].
For example, DC-derived exosomes have been shown to specifically promote mesenchymal stem
cell (MSC) migration without affecting their differentiation or proliferative potential. Probing the
mechanism of this behavior, researchers discovered these EVs were enriched in chemo attractants
(e.g., osteopontin and MCP-1) and metalloproteinases (e.g., MMP-2 and MMP-9). The induction of this
migratory behavior can be exploited to increase MSC recruitment to injured sites and, thereby, further
stimulate tissue regeneration. In addition, DC-derived exosomes have been heavily explored for their
use in cancer immunotherapy as cell-free vaccines. Tumor peptide-loaded DC-derived exosomes
were shown to completely eradicate tumors through activation of cytotoxic T-lymphocytes (CTLs).
Furthermore, phase I clinical trials using these EVs have corroborated the safety and cytotoxic potential
of this platform in melanoma patients. Using melanoma-associated antigen (MAGE)-loaded DC
exosomes, researchers found that these EVs expressed NK lectin-like receptor ligand, significantly
increased circulating NK cells, and induced IFN-y production. Taken together, these studies not only
highlight the therapeutic potential of DC-derived exosomes, but also the crucial role they play in
mediating communication across many cell types.

The primary role of NK cells in innate immunity is to destroy target cells through the release of
cytotoxic molecules or the induction of apoptosis via activation receptor ligation [37]. EVs secreted by
these cells express typical markers of NK cells, which include CD56, the apoptosis-inducing FAS ligand,
and activating receptor natural killer group 2D (NKG2D). In addition, these EVs also carry cytotoxic
molecules, which include perforin and granzymes. As one may expect, NK cell-derived exosomes
have demonstrated significant cytotoxic activity against a variety of tumor cells, such as leukemia,
melanoma, and breast cancer cells [38,39]. In vitro findings were further corroborated in an in vivo
model of melanoma where tumor-bearing mice were treated with NK-derived EVs. Although the direct
antitumor effect was mediated by the perforin and FAS ligand, intrinsic apoptosis pathways, such as
caspase-3 and PARP, were also found to be activated because of the activity of NK EVs [40]. In addition,
NK-derived EVs were found to downregulate the MAPK pathway, increase p38 tumor suppressor
protein expression, and modulate TNF-a expression. These latter findings show that NK-cell-derived
EVs not only exert cytotoxic effects on target cells, but also possess the ability to modulate the local
tumor environment through inflammatory cytokines and tumor suppressor genes. This notion was
further supported in a study using miR-168 loaded NK-derived exosomes against neuroblastoma [41].
EVs in this study not only exerted a cytotoxic effect against the tumor cells, but they also prevented
TGFß-1 dependent immune evasion by the tumor cells. Although studies about the potential use of
NK-cell-derived exosomes remain limited, experiments that have been performed demonstrate the
potential these EVs possess in communicating and modulating the local immune microenvironment.
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2.1.2. Adaptive Immune System

The adaptive immune response can be viewed as a response that is molded and shaped over
time as cells are exposed to antigens. This acquired immune response results in greater specificity of
the immune response to a particular pathogen. Although components of the innate immune system
mediate the activation of this response, the key effector cells involved are T- and B-cells.

The ability of T-cells to recognize a specific antigen induces a coordinated two-pronged response.
The first involves activation of cytotoxic T-cells to destroy foreign material, while the second involves
the priming of memory T-cells to recognize future exposures to the same antigen. T-cell derived EVs
contain molecules found in other EV types, such as miRNA, perforins, and granzymes, and express
common T-cell markers, including CD3, CD8, and TCR. Stemming from the stimulatory nature of
T-cells, EVs secreted by these immune cells have been shown to promote the proliferation of autologous
resting cells and promote tumor invasion to the lungs. Activated CD8+ T-cells were also found to inhibit
tumor invasion by direct modulation of tumoral MSC via miR-298 [42]. In contrast, T-cell derived
EVs can exhibit immunosuppressive properties. For example, activated T-cell derived EVs expressing
CD95 induce apoptosis of bystander T-cells, which in turn triggers immune suppression and inhibits
T-cell proliferation. These immunosuppressive properties have been proven useful in the context of
graft-versus-host disease (GVHD), where overstimulation of the immune system results in chronic
organ rejection. In fact, researchers were able to prevent GVHD following a kidney transplant by
suppressing the immune response to the foreign organ through the systemic administration of isolated
EVs following the transplant procedure. These studies highlight the ability of T-cell derived exosomes
to act as both immune activators and regulators, much like the T-cells from which they are derived.

Key functions of B-cells include the production of antibodies, the presentation of antigens to
T-cells, and the development of immune memory. The release of EVs from B-cells occurs in response to
CD40 and IL-4 signaling. Isolated EVs show high expression of B-cell markers (i.e., CD19, CD45R),
MHC I, MHC II, and tetraspanin proteins (CD81). Investigation of immune cell response to these B-cell
derived EVs indicated significant increases in the number of NK, T-, and B-cells within the spleen five
days postimmunization. Another study demonstrated that B-cell derived exosomes could not only
activate allergen-specific T-cells, but also induced production of the anti-inflammatory cytokines IL-5
and IL-13 [43]. However, work focusing on B-cell exosomes has remained limited, and further studies
are needed to fully elucidate the mechanisms by which this class of EVs acts and, thereby, unlock the
therapeutic potential they possess.

2.2. Erythrocytes and Platelets

Erythrocytes, (i.e., red blood cells (RBCs)), and platelets are derived from a common progenitor
cell. The primary role of RBCs is to transport oxygen from the lungs to the rest of the body and return
carbon dioxide from the body back to the lungs for excretion. Platelets primarily serve to initiate
the formation of clots in response to injury of blood vessels. In this section, we will focus on the
crosstalk and interactions of EVs excreted by RBCs and platelets and the role that these EVs play in
regulating homeostasis.

RBCs are the most abundant cell that circulates in the blood [44]. Due to their unique biconcave
disk shape with a flat center, they are more flexible and have the ability to squeeze through blood
vessels of varying sizes [45]. In addition, these cells circulate in the peripheral blood for an average of
120 days.

RBCs-derived EVs were discovered to exert a protective role on RBCs when in the presence of
damaging molecules, such as oxidized proteins. This allowed RBCs to remain in circulation rather
than being removed during the clearance of dangerous molecules. In addition, after being infected
with Plasmodium falciparum (the parasite responsible for malaria), it was demonstrated that RBCs could
release EVs, promote parasite survival in the host, and transmit to other mosquitoes. This EV-based
mechanism of communication represents a possible target for the future development of agents capable
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of blocking the transmission of this parasite. By preventing the release of EVs, it is possible to inhibit
the survival of the parasite in the RBCs and prevent transmission to other mosquitos.

Platelets are cells that circulate in the blood and play a key role in maintaining homeostasis and
blood vessel integrity. When homeostasis is disrupted and bleeding occurs, platelets adhere to the
injured blood vessel and initiate the blood coagulation process. Currently, there is a strong interest
in the isolation of platelet-derived EVs and their role as functional mediators of the clotting cascade.
For example, platelet-derived EVs were found to act as angiogenetic boosters after vascular injury [46].
Furthermore, scientists found that platelet-derived EVs are filled with growth factors such as vascular
endothelial growth factor (VEGF), basic fibroblastic growth factor (FGF2), and platelet-derived growth
factor (PDGF), which assist in vascular regeneration. This was further demonstrated in EVs that
triggered angiogenesis following injury due to a stroke [47].

2.3. Stem Cells

Stem cells (SCs) are a small population of cells involved in the homeostasis of cells and tissue.
Generally speaking, SCs can be divided into two major categories: (1) embryonic stem cells (ESCs)
and (2) adult stem cells (ASCs). Both ESCs and ASCs are characterized by unlimited proliferation and
self-renewal capabilities. However, while ESCs present pluripotency capacity and can differentiate
into the three embryonic germ layers (mesoderm, ectoderm, and endoderm), ASCs can give rise only
to the cell subtypes of the specific tissue where they reside. Based on these important differences,
the applications for EVs from ESCs and ASCs vary.

2.3.1. Embryonic Stem Cells

Due to their unlimited proliferation potential and differentiation ability, ESCs have extensively
been explored as a viable tool to repair damaged or diseased tissues. In particular, ESCs have been
applied to transplantation, regenerative medicine, myocardial infarction and ischemia [48], and wound
healing after surgery. However, the current use of ESCs for cell-based therapies is a matter of debate
due to ethical concerns and the high risk of malignant cell transformation (i.e., ectopic tumor formation).
Indeed, as a result of their incomplete differentiation status, ESCs could potentially lead to the formation
of teratomas. On the other hand, EVs released by ESCs are considered an important source of bioactive
molecules endowed with the ability to modulate their physiologic environment. Thus, EVs from
ESCs could represent a novel cell-free solution associated with a reduced risk of immune reaction and
tumor induction.

Several studies have confirmed the role of EVs in mediating the communication between ESCs and
other cell types (e.g., Mueller retinal cells and embryonic fibroblasts) [5,49–51]. After internalization by
target cells, EVs released by ESCs induced the expression of stem cell-specific markers (e.g., Scl, HoxB4,
GATA2, and Nanog), growth factors, and mRNAs. This increased expression leads to phosphorylation
of signal transduction mediators such as MAPK p42/44 [52] that facilitate the reprogramming of
target cells [53,54]. In summary, these results indicate that ESC-derived EVs are able to transfer
SC-associated features (e.g., self-renewal and pluripotency) to differentiated cells, thus inducing their
de-differentiation in order to repair injured tissues. In addition, EVs from ESCs can stimulate the
rapid expansion of other ESCs and increase their self-renewal pluripotency. The unlimited abilities to
proliferate and differentiate offered by ESCs-derived EVs could pave the way for future studies that
aim to exploit the reparative functions of these biological messages.

2.3.2. Adult Stem Cells

Adult stem cells are a rare cell population in the human body that can repair or replace injured
or diseased tissue. Although perceived to have less risk compared to ESCs, ASCs still present
technical complications linked to their isolation, culture-induced senescence, immune-mediated
reaction, and genetic instability.



Nanomaterials 2020, 10, 2172 8 of 23

One of the more studied and applied subsets of ASCs are mesenchymal stem cells (MSCs).
MSCs originate from the mesodermal germ layer, but are commonly found in bone marrow, adipose
tissue, and the umbilical cord, MSCs are endowed with multipotent potential as they can differentiate,
under specific cytokine-mediated stimuli, into osteoblasts, adipocytes, and chondroblasts. In addition,
MSCs play a key role in cancer progression and have shown promise in targeting inflammation.
On this note, the tumor microenvironment secretes cytokines (e.g., SDF-1, EGF, PDGF, TNF-α and IL-8)
that recruit MSCs into the tumor mass. Once in the tumor, MSCs can interact with surrounding cells
by (1) modulating gap junctions; (2) enhance the formation of nanotubes (e.g., protrusions that extend
from the plasma membrane of cells); or (3) indirectly releasing cytokines and EVs [55]. Furthermore,
MSCs-derived EVs exert pro-tumorigenic effects by enhancing angiogenesis, drug resistance, immune
escape, and metastatic progression to other organs [56,57]. This tumorigenic enhancement was
mediated by the lipid composition of EVs enriched in molecules such as diacylglycerol, sphingomyelin,
and ceramide. These molecules are involved in the regulation of proliferation, apoptosis, migration,
and tumorigenesis [58,59]. While the effects of EVs derived from MSCs might be linked to the recipient
cells, as indicated by tumor type and stage [60,61], the cell source from which the EVs originated
also plays an important role. For example, it was demonstrated that EVs isolated from adipose
tissue-derived MSCs stimulated tumor growth and proliferation. Conversely, EVs produced by
MSCs isolated from the bone marrow and umbilical cord inhibited tumor proliferation and induced
apoptosis [62]. This demonstrates the importance of the tissue source for MSC-derived EVs as different
origins can have vastly different downstream effects.

In terms of regenerative medicine, MSC-derived EVs have shown promise for the treatment of
wounds [63], tissue repair via matrix remodeling and inhibition of the epithelial to mesenchymal
transition [64], and bone regeneration. It was discovered that EVs released from MSCs accelerated
re-epithelialization, reduced scar widths, stimulated angiogenesis, and promoted collagen synthesis at
the wound site [65]. In conclusion, all SCs possess three specific properties: (1) the ability to divide
and self-renew, (2) to give rise to specialized cell types, and (3) to be unspecialized. These properties
are also shared with SC-specific EVs, which hold considerable promise for tissue regeneration and
provide insight into how these properties can be hijacked for a therapeutic benefit.

2.4. Cancer Cells

During cancer progression, tumor cells acquire traits that allow them to stimulate their own growth,
evade apoptosis and the immune system, sustain angiogenesis, invade local tissues, and metastasize to
distant organs. Tumor-derived EVs affect several of these processes, conferring to tumor cells aggressive
phenotypes (i.e., increased invasion, promoted metastasis formation, amplified drug resistance),
and influencing the tumor microenvironment [66–69]. Moreover, tumor-derived EVs transfer their
oncogenic messages using lipids, proteins, and biological cargo that are embedded within their
membrane. The interior cargo of tumor-derived EVs alters the characteristics, functions, and phenotype
of the receiving cells. For example, researchers discovered that tumor-derived EVs from melanoma and
pancreatic cancers have the ability to prime target cells in the pre-metastatic niche (e.g., bone, lung, liver)
towards a more pro-metastatic phenotype that favors metastatic development [70,71].

The initial idea of using tumor EVs for drug delivery emerged following the discovery of their
cell-specific tropism. The tropism of tumor cell EVs is due to the expression of specific surface proteins,
such as the tetraspanins, growth factor receptors, and adhesion molecules [72], which are inherited
from donor cancer cells [73,74]. However, the specificity of targeting remains highly debated [75].
Some studies have demonstrated successful specific targeting. For example, EVs from brain tumor
cells with high expression of CD63 tetraspanins demonstrated the ability to successfully cross the
blood–brain barrier, permitting the delivery of doxorubicin to tumors in the brains of zebrafish [76].
In addition, EVs derived from lymphoma cells encapsulating curcumin, an anti-inflammatory agent,
provided effective treatment by decreasing inflammation and regulating tumor propagation in mice
with brain tumors, as well as in mice with endotoxin-induced septic shock [77,78]. However, there is
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concern surrounding the use of tetraspanins due to their role in mediating tumor growth. In addition,
it is worth noting that using tumor samples of human origin could be the source of EVs tropism rather
than the actual homing of EVs to tumors.

Rather than capitalizing on the specificity of native surface proteins on EVs for targeted
delivery, an alternative strategy is to load cells before EV isolation and use the native packaging
mechanisms in donor cells to create drug-loaded EVs without post-secretion manipulation.
Scientists demonstrated this technique by collecting tumor-derived EVs from various tumor cells
(e.g., hepatocellular, lung, melanoma, lymphoma) that were initially incubated with chemotherapeutic
drugs (e.g., doxorubicin, methotrexate, cisplatin, camptothecin), and then irradiated with UV light
to induce apoptosis and stimulate the formation of drug-loaded EVs [79]. These tumor-derived,
pre-loaded EVs were demonstrated to be used as an effective therapy for liver and ovarian cancer
with reduced adverse effects. The findings from this study prompted the initiation of clinical trials to
evaluate the effect of tumor-derived pre-loaded EVs on malignant ascites and pleural effusions [80].
However, despite the excitement surrounding tumor-cell-derived EVs, the use of tumor EVs in the
clinic is less enthusiastic due to the potential risk of exacerbating the patient’s condition due to the role
of EVs in communicating cancer growth, progression, invasion, and survival.

In cancer patients, EVs were found in the spleen and lymph nodes of cancer patients with
lymphoma. This led to the discovery that the spontaneous shedding of EVs from highly metastatic
cancer cells could transfer their metastatic ability to poorly metastatic cancer cells [81], which could
potentially spread cancer to organs that would have otherwise remained cancer-free. Furthermore,
additional studies revealed that EVs secreted from tumors contained distinct integrin expression
patterns that directed their tropism to preferentially fuse with cells to prepare the pre-metastatic
niche [70]. These tumor-derived EVs transferred this oncogenic message via plasma membrane
components originally derived from the highly metastatic cancer cells. Furthermore, reports revealed
that EVs released from glioblastoma tumor cells, enriched in mRNA, miRNA, and angiogenic proteins,
were internalized by nearby normal microvascular endothelial cells in the brain. This resulted
in increased angiogenesis and tumor progression [82]. Although there are potential therapeutic
applications for tumor-derived EVs, several concerns remain about their therapeutic use due to their
ability to communicate with surrounding recipient cells within the tumor microenvironment and
deliver biological and genetic information that aids in the growth and progression of tumors.

Other strategies for cancer immunotherapy include activating or stimulating immune responses
by activating T-cells to a broad range of tumor antigens. As previously discussed, mature DCs can
activate immune responses via T-cells but are limited by the poor antigen uptake and cross-presentation
on MHC class I molecules. Interestingly, ascites recovered from cancer patients were discovered to have
high levels of tumor-derived EVs endowed with tumor antigens, including MHC I molecules [83,84].
These EVs could be used as a source of antigens to transfer tumor antigens to DCs, thus enlarging
the cross-presentation process for effective cancer immunotherapy. Investigators tested the ability to
utilize EVs derived by MHC molecules on DCs and were able to demonstrate that DCs exposed to
tumor-derived EVs were internalized and cross-presented to MHC class I molecules. This subsequently
triggered activation of the MHC class I T-cell clones, increased the number of CD8+ T cells,
and stimulated the release of interferon-gamma. This suggests that DC EVs hold promise for a
potential immunotherapy treatment for cancer. Additional animal experiments in mice showed that
DCs loaded with tumor-derived EVs induced effective tumor rejection and could potentially be used
in conjunction with immune checkpoint inhibitors (i.e., specific molecules that may initiate an immune
response). These results led to the development of clinical trials to investigate the use of tumor EVs for
the treatment of post-resection glioma patients. However, recent findings suggested tumor EVs may
suppress immune responses, and thus more attention needs to be given to the state of the immune
system of donor cells in future experiments [80,85].
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3. Engineered EVs as Drug Delivery Vehicles

In general, drug delivery system developers are seeking ways to optimize nanocarriers’ properties.
More specifically, they are trying to improve circulation time, prevent accumulation in filtering organs,
and overcome native biological barriers (e.g., blood-brain, endo-lysosomal, vascular, etc.) that prevent
specific and directed targeting [86]. While several of the previously mentioned optimization methods
have been explored [87], further improvements are still necessary. EVs, as natural nanocarriers,
have been modified to carry both natural and synthetics small molecules (e.g., curcumin, ponatinib,
and doxorubicin) [88–90], therapeutic proteins (e.g., catalase) [91,92], or genetic cargo (e.g., two different
siRNAs) [93], demonstrating their versatility for drug delivery (Figure 3).

Figure 3. The engineering of EVs allows for a wide array of modifications of therapeutic payloads
and surface moieties. Hydrophobic drugs, genetic material and proteins, hydrophilic drugs, targeting
proteins, imaging probes, and covalent modifications were used as examples in this paper.

The main methods to develop EVs for clinical use include (1) the modification of donor cells
before EVs secretion and (2) surface engineering of natural EVs after secretion by donor cells [94].
Following the first method, the donor cells are often exposed to various stimuli in order to modify
both the payload and membranes’ components of the EVs [95]. For example, DC-derived exosomes
were engineered to express a modified muscle and brain tissue targeting marker, Lamp2b, through
transfection of the donor DCs with engineered plasmids [96]. Successful transfection of the source cells
resulted in the generation of a sustained pool of EVs expressing this specific marker. This methodology
has served as the basis of companies, such as Evox Therapeutics, which are working to engineer native
EVs [97]. Even the culture conditions of the source cells have been shown to improve EV output.
For example, 3D cultures of MSCs yielded over 20-fold more EVs when compared to EVs obtained
from 2D culture [98]. Furthermore, EVs derived by this method were also shown to demonstrate
more biological activity due to the enrichment of key proteins needed for the efficient delivery of
siRNA to neurons in vitro. Instead, the second method exploits different ways to modify EVs’ surface
markers after isolation from the donor cells. This is most commonly done through chemical means,
such as utilizing click chemistry for the conjugation of ligands [99]. This strategy was tested by
Myung Soo et al. and is shown to improve paclitaxel encapsulated exosomes’ targeting lung cancer
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cells by incorporating aminoethylanisamide-polyethylene glycol to their surface. Another example
of this chemical modification is the incorporation of aminoethylanisamide-polyethylene glycol on
macrophage-derived exosomes for the improved targeting of overexpressed sigma receptors on lung
cancer cells [100].

Nano-engineers have also developed different strategies to alter EVs’ payload after cellular
secretion of EVs. This cargo alteration can be done using two different methods: passive and active
EVs loading. Passive loading does not involve energy investment or any other external component
besides the EVs and the cargo that is to be loaded. Hydrophilic and neutrally charged molecules are
able to diffuse through the bilayer membrane based on concentration gradients, while hydrophobic
components can integrate within the hydrophobic membrane due to hydrophobic or electrostatic
interactions. Zhuang et al. have demonstrated this kind of passive encapsulation using curcumin
or JSI124 (cucurbitacin I) into EL-4 exosomes by incubating at 22 ◦C for 5 min [78]. Active loading
involves the input of external energy to disrupt the integrity of the hydrophobic membrane bilayer
of EVs. In this way, the selected cargo can either diffuse into the hydrophilic core or gets trapped
within the EVs membrane. Currently, several approaches such as electroporation, freeze and thaw
cycles, and phosphate gradients have been used to disrupt the membrane bilayer in order to achieve
active encapsulation and permit higher cargo loading efficiencies. Due to the structural similarity of
liposomes and EVs, the methods used for loading liposomes can also be utilized for EVs. For example,
the high shear stress used to actively load collagenase proteins into the core of liposome nanoparticles
using the extrusion method can be transferred to the loading of EVs. Other techniques used include
sonication that interferes with the membranes of EVs by inducing acoustic waves and electroporation
that interferes with the membranes of EVs by inducing electric fields.

4. New Approaches to Engineer EVs

While the engineering of native EVs themselves represents one approach to further modify
these vesicles, another strategy involves combining the biological features of EVs with the tunable
properties of synthetic NPs. For example, the development of synthetic liposomal nanoparticles (NPs)
using either lipids or proteins found in native EVs has been shown to enhance the properties of natural
EVs by mimicking their native features [101,102]. One reported approach describes the fusion of
1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl-sn-glycero-3-phospho-L-serine
(DOPS) (i.e., synthetic lipids) with raw 264.7 (murine macrophage cells) cell-derived EVs in order
to control the new NP’s surface charge, fusogenic properties, and colloidal stability [103]. This new
approach aims to transfer the past knowledge acquired from synthetic NP formulations, such as
stability and scalability, to optimize the process of NPs’ synthesis and ensure their facile translation for
clinical use. The following sections describe how unique and specific biological properties of immune
cells, platelets, red blood cells, stem cells, and cancer cell EVs can be transferred to NP systems to
mimic native EVs [104–106].

4.1. Immune Cells

Novel engineered EVs with leukocyte membrane proteins were developed in order to combine
leukocytes’ biological targeting properties with the nanoparticles’ ability to deliver different types of
cargo. The specific biological properties of leukocytes that can be exploited include evasion from the
hosts’ immune system, the ability to cross biological barriers, and specific targeting of tissues via their
cellular membrane interactions. This allows particles to avoid opsonization from the immune system,
reduce sequestration in filtering organs, communicate with endothelial cells through receptor–ligand
interactions, and transport a payload across an inflamed reconstructed endothelium [85,107–109].
Recent efforts have demonstrated similar outcomes using liposomal-like vesicles fabricated from
leukocyte-derived membranes–“leukosomes”. Leukosomes are made of a liposomal lipid backbone
with membrane proteins derived from leukocytes (Figure 4) [110]. Utilizing leukosomes was found
to achieve an enhanced affinity towards activated endothelium, making this specific type of EVs
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promising as a theranostic tool [105]. Recently, Boada et al. demonstrated that by encapsulating
Rapamycin inside leukosomes, they have managed to both target inflamed endothelia, which reduces
this target drug’s effects, and reduce vascular inflammation by almost 2-fold compared to non-treated
and rapamycin-treated mice. In this, they managed to slow the progression of the murine model
of atherosclerosis [111].

Figure 4. A novel method to actively load proteins into the bilayer of engineered EVs. Solutions are
loaded into two separate syringes: (1) proteins within the aqua phase (A) and (2) lipids and cholesterol
within the organic phase (B). The syringes are injected into a chip (C) and specific ratios of organic to
aqua phases and flow ratio (the speed that the fluids expelled from each syringe mix) are selected to
produce biomimetic EVs (D).

In addition to the use of whole leukocyte populations for novel engineered EVs, researchers have
explored the use of specific immune cell membranes for a variety of applications. Given their key
roles in mediating and executing the immune response in different disease conditions, T-cells and
macrophages have been commonly used immune cell sources for these EVs. For example, CD4+ T-cell
membrane coated polymeric nanoparticles were developed to target HIV viral particles and were
shown to act as decoys, preventing the virus from attacking the intended host targets. In the context
of sepsis, macrophage-coated nanoparticles have been utilized for endotoxin neutralization and the
sequestration of inflammatory genes. These engineered EVs demonstrated their ability to directly
modulate the immune response involved with the disease. In the context of cancer, immune-cell-based
engineered EVs have been used as both drug delivery systems and agents for photothermal therapy.
More specifically, macrophage membrane-derived vesicles were coated onto Magnetite (Fe3O4) NPs.
‘NKsomes’, which consisted of doxorubicin-loaded NK cell membrane coated nanoparticles, exhibiting
superior affinity to tumor cells while maintaining a circulation time of 18h in the blood [112]. In contrast
to the classical drug delivery approach often used to target the tumor with chemotherapy drugs,
macrophage-based nanoparticles have been used as phototherapy agents that locally heat the tumor
upon activation from an external light source. Gold nano shells coated with the membranes of
macrophages were shown to achieve 4-fold longer circulation time than bare NPs alone. Furthermore,
the macrophage membrane protein coating also enhanced the tumor accumulation, due to longer
systemic delivery via the enhanced permeability and retention effect. These examples of immune cell
engineered EVs highlight the versatility these technologies offer in both targeting and treating the
disease by mimicking components of the body’s own defense mechanism.
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4.2. Erythrocytes and Platelets

Long-circulating delivery systems are important because they increase the probability that
engineered EVs accumulate at the desired target site and decrease the need for repeated treatments.
These factors help to achieve the intended therapeutic effects [113]. Due to these favorable features,
as RBCs extrinsically exhibit long circulation times, scientists have exploited the membranes of RBCs
in order to evade the immune system and allow the EVs to reach the target site [104]. Moreover,
scientists have exploited RBCs membrane proteins, size, shape, and morphology to engineer EVs
with superior circulation times [114]. These RBCs EVs have been used for the delivery of RNA
drugs including antisense oligonucleotides, Cas9 mRNA, and guide RNAs with no observable
cytotoxicity [115]. A previous study used membranes from RBCs to cloak poly lactic-co-glycolic
acid (PLGA) NPs. Using this technique, the particles were able to lower immune recognition [104].
Specifically, functionalization of PLGA biomimetic EVs with freshly isolated RBC membranes allowed
the surface of PLGA nanoparticles to closely mimic the protein and surface composition of RBCs.
In addition, further characterization revealed that grafting of the membrane proteins successfully
transferred the ‘marker-of-self’ (i.e., the transmembrane protein CD47) to EVs. The incorporation of
CD47 on the EVs enabled prolonged circulation in the blood (11% retention versus 2% retention at
48 hours) [116].

During vascular injury, platelets adhere to the vascular wall and target sites of injury to
promote hemostasis. This ability to recognize the site of injury is a promising approach that has
been utilized to target injury sites and promote healing. To exploit this property, platelet-like EVs
were based on a removable polystyrene core, which is coated with protein moieties found on
platelets (e.g., von Willebrand factor) [117]. Critical surface ligands that bind to activated platelets
(e.g., fibrinogen-mimetic peptide) were incorporated onto the membrane, creating EVs that mimic
the shape and flexibility of platelets. In addition, platelet-membrane coated particles were found to
significantly reduce internalization by macrophage-like cells, demonstrated a preferential binding to
damaged arteries, and provided a ~65% reduction in bleeding in a mouse model. This allowed EVs to
escape detection by the immune system and target only the vessels that were damaged. Inspired by
these physical parameters, scientists have engineered platelet-like biomimetic EVs for targeting vascular
injuries by mimicking platelet shape, flexibility, and complex surface interactions.

4.3. Stem Cells

Novel engineered EVs with membrane proteins from stem cells were developed in order to regulate
the inflammatory response and to explore their potential use as an anti-tumor therapy. The majority of
attempts to engineer these stem cell EVs have been done in vitro by inducing genetic modifications on
the parent cells (e.g., MSC). These modifications produced stem cell EVs that demonstrated superior
therapeutic efficacy.

MSCs can be engineered in vitro by stimulation with different cytokines (e.g., interferon gamma
and tumor necrosis factor alpha) in order to increase the expression of programmed death-ligand
1 (PDL-1) and MHC class II molecules on secreted EVs. These secreted EVs can then be used for
applications where regulation of the inflammatory response is needed [118]. For example, stem cell
EVs that overexpress TNF-related apoptosis-inducing ligand have been shown to induce apoptosis in
lung, breast, and renal cancers [119]. This shows great promise for utilizing stem cell EVs to trigger
directed apoptosis only in cancer cells. In addition, biomimetic engineered EVs produced from the
membranes of MSC (e.g., “Nano-ghosts”) have also shown promise as a form of gene therapy to target
tumors. This targeting was tested on PC3 (prostate cancer) and MCF7 (breast cancer) positive tumors.

4.4. Cancer Cells

The natural tropism of cancer cell-derived EVs for tumors, the pre-metastatic niche, and their potential
use for immunotherapy inspired researchers to create engineered tumor EVs. As a proof-of-concept,
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researchers demonstrated that engineered EVs created by coating PLGA nanoparticles with membranes
from MDA-MB-435 and B16-F10 cells exhibited a successful in vitro immune response in T-cells and
targeting of cancer cells. For immunotherapy, researchers used engineered EVs from B16-F10 incorporated
with monophosphosphoryl lipid A and showed promising in vitro results with a significant upregulation
of DCs maturation markers that led to the stimulation of T-cells. For drug delivery applications,
engineered cancer EVs took advantage of the inherent homotypic binding observed in cancer cells [120].
Engineered EVs from MDA-MB-435 exhibited a 40-fold increase in uptake in cancer cells. Based on
these experiments, it was demonstrated that engineered cancer EVs could be used to successfully deliver
tumor antigens to DCs and increase the affinity of EVs to target cancer cells for future applications in
vaccine and drug delivery.

The possibility of developing EVs that have the ability to target cancer cells spurred the
development of additional engineered cancer EVs for cancer therapy. Different cancer EVs were
created by following a similar top-down approach to coat nanoparticles with cancer cell membranes.
By taking advantage of the homotypic binding of cancer cells, investigators tested the ability of
4T1 (murine breast cancer cells) to engineer cancer-engineered EVs for in vivo therapy [121,122].
In these studies, investigators confirmed that engineered cancer EVs successfully targeted 4T1 primary
and metastatic tumors and avoided rapid clearance by the mononuclear phagocyte system due to
homotypic binding and the expression of CD47 on cancer cells, a protein critical for suppressing uptake
by macrophage cells [123].

Effective tumor therapy was also achieved using engineered cancer EVs that were loaded with
chemotherapy in order to overcome the drug resistance of tumor repopulating cells [124]. Using this
method, scientists discovered the delivery of paclitaxel increased by 4.3- and 3.7-fold in primary tumors
and distant lung metastasis, respectively when compared to Taxol, an FDA-approved version of paclitaxel.
Treatment in mouse models revealed that engineered cancer EVs had a significant improvement in
growth inhibition of both primary and metastatic tumors compared to Taxol. In addition, by switching
out the polymeric core used to create engineered cancer EVs, investigators demonstrated the ability to
use laser triggered production of heat or reactive oxygen species [122] for cancer therapy. 4T1-coated
gold nanocages and 4T1-coated porphyrinic metal-organic nanoparticles were engineered to enable
hyperthermia-triggered release of doxorubicin and generate reactive oxygen species using photodynamic
therapy, respectively. Using this approach, engineered cancer EVs retained selective targeting to 4T1
tumors and were effective at inhibiting the growth of primary and distal (lung and liver) metastasis.
Furthermore, through blood biochemistry tests and histopathological analysis, the engineered cancer
EVs were confirmed to exhibit good biocompatibility in vivo.

Engineered cancer EVs were also created to elicit antitumor immunity for vaccine development.
These EVs were composed of PLGA nanoparticles loaded with CpG oligodeoxynucleotide 1826,
a potent immunological adjuvant, and coated with cell membranes from murine B16-F10 melanoma
cells. These engineered melanoma cancer cell EVs exhibited potent DCs maturation in vitro and
in vivo that resulted in a significant generation of native T cells. Furthermore, these engineered cancer
EVs demonstrated effectiveness in the prophylactic setting. Vaccination with engineered cancer EVs
showed that 86% of mice had no tumor occurrence 150 days after tumor cell challenge, whereas controls
had a median survival of only 20 days. However, the investigators discovered that engineered cancer
EVs alone were not sufficient for treating tumor cells previously implanted. To achieve adequate
efficacy, it was determined that combination therapy of engineered cancer EVs with a cocktail of
checkpoint inhibitors was required. Using this combination strategy, engineered cancer EVs plus
a checkpoint inhibitor, provided a significant survival advantage, extending the median survival
by 11 days compared to either engineered cancer EVs or the checkpoint inhibitor cocktail alone.
This demonstrated that engineered cancer EVs were able to act synergistically with anticancer therapies,
hyperthermia, photodynamic therapy, and immunotherapies to modulate the tumor microenvironment
and immunity to provide elegant solutions for cancer therapy, imaging, and vaccine development.
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5. Further Consideration for the Translation of EVs

In this review, we highlighted the biological importance of paracrine cell-to-cell communication
and elaborated on how different cells can send specific messages to communicate and regulate
physiological of pathological events. In addition, we described different methods to engineer EVs to
enhance their performance and use them for therapeutic applications.

Although EV-based treatments hold great therapeutic potential, several substantial hurdles remain
to be addressed before utilizing EVs in clinical practice. Standard operating procedures (SOPs) for their
isolation [125], characterization [126], and storage [127] have yet to be established. Moreover, current
SOPs for EVs characterization vary according to the isolation technique used, as well as the origin cells.
Hence, the development of consistent SOPs to characterize the physical features of EVs is crucial for
any future translational application into the clinic.

To date, several standard procedures have been utilized for the isolation and characterization of EVs.
Researchers have divided the isolation techniques for EVs into three main classes: ultracentrifugation,
adsorption to magnetic/non-magnetic beads, and size exclusion chromatography [128]. In addition,
three methods have been predominately used for the high throughput characterization of EVs:
a nanoparticle tracking system, tunable resistive pulse sensing, and high-resolution flow cytometry.
Unfortunately, these three technologies result in data inconsistency. Furthermore, without strong
technical knowledge and awareness of the instrument settings (e.g., detection threshold, camera level,
and dilution factor), false measurements are likely to occur [126].

Adequate storage methods for EVs have also not been established. Nevertheless, storage methods
are urgently needed for the clinical use of EVs as some conditions can alter both the physical and
biological properties of EVs. For example, some studies reported that reducing the temperature
for antibacterial purposes can directly affect the size and the number of EVs, while the addition of
cryoprotectants will result in the partial lysis of EVs [129,130]. The temperature of storage is another
highly debated topic. Some studies claimed that −80 ◦C is a reliable condition because it has been
demonstrated that storage at this temperature conserved EVs, while −20 ◦C resulted in the loss of a
significant percentage of EVs. On the other hand, other researchers showed that EVs should be used as
soon as possible after their extraction to avoid their disruption. Though the debate is still ongoing,
a quick usage following synthesis seems to be the most common procedure with regard to the storage
of isolated EVs [127].

6. Conclusions

There are many open questions and challenges that need to be addressed before any substantial
progress can be made in order to use EVs in clinical practice. Ongoing research has focused on
developing the best EV platform for the target application by mimicking either the EV’s surface or
morphology. To evade the immune system, leukocytes-mimetic have been developed by integrating
leukocytes membrane protein into the EVs’ lipid bilayer. To achieve higher circulation time, RBCs and
platelet EVs have been fabricated by either (a) engineering the EVs’ surface with RBCs and platelet
membrane proteins or (b) by mimicking the unique morphology of either of these cells. MSCs EVs
have been selected to decrease inflammation and tissue regeneration. Notably, these EV surfaces
were not only engineered by integrating MSCs membrane proteins but also their membrane lipids.
Cancer cell EVs have been used in order to specifically target cancer infected cells by integrating
the cancer cells’ membrane proteins to the EVs’ surface. There is no rule of thumb to define EVs
that best mimics the true biological state. Therefore, each engineered EV should be designed for
its future biological task. Fabrication challenges include: (1) the amount of proteins on each EV
membrane; (2) the ratio between the proteins to the EV backbone (i.e., lipids, polymers, etc.) on each
EV; and (3) the number of injected EVs. All these properties should be taken into consideration when
designing EVs. Moreover, scientists must determine how to best define and measure the physiological
properties of EVs. By defining these properties, it would then be possible to determine which EVs are
ready to be translated for efficient therapy for humans. Finally, in order for EVs to truly be used in
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patients, large-scale manufacturing procedures that do not interfere with the therapeutic potential of
EVs must be developed. Without the ability to scale-up the engineering of EVs, it will be prohibitively
expensive to use them in clinical practice.

Overall, while nanomedicine has showcased substantial promise in the delivery of therapeutics,
a new generation of delivery systems is emerging stemming from biomimetic-based approaches.
Using the body’s own tools to communicate, coupled with engineered upgrades (e.g., imaging probes,
genetic cargos, and specific membrane proteins), EVs have the potential to provide significant
advantages over current synthetic drug delivery systems. These systems will help overcome
major challenges faced by native EVs, including scalability, reproducibility, and limited cargo
encapsulation. Although each biomimetic EV will demand additional studies to address stability,
toxicity, biodistribution, pharmacokinetics, and efficacy, these engineered systems have been shown
to mimic native EVs by transferring specific biological markers to synthetic delivery systems or by
mimicking natural EVs in shape and size. Utilizing the synergistic effect of the engineered systems
to convey specific biological messages holds tremendous promise and potential to improve future
therapeutic outcomes.

Future studies should focus on EVs engineering and will require the complex molecular
composition of these structures for specific therapeutic applications. However, such strategies
require the development of novel biotechnological techniques allowing for the precise tuning and
characterization of EVs to specific cell types or tissues. In addition, determining what cargo needs to
be loaded into EVs to optimize specific and direct biological pathways is necessary. To advance the
current engineering of EVs, new techniques are urgently needed that remove unnecessary components
and, at the same time, isolate specific proteins. With these tools in hand, EVs can be manufactured
without compromising their overall function.

Nevertheless, considerable work is currently ongoing to decipher cell–cell communication in an
effort to develop novel therapies for a variety of diseases. The unique biological message encrypted
within the EV’s “cloak” (i.e., surface) could hold the promise of gaining insight into how to better
recognize, interact, communicate, and regulate various cellular functions. By transferring these
properties to engineered EVs, we could achieve superior success by utilizing and capitalizing on the
body’s natural properties.

This work has categorized EVs by the origin of specific cell carriers, described their physiological
role, and summarized the updated literature surrounding this topic. It also discussed the main
challenges and roadblocks that prevent EVs from being used in clinical practice. Finally, this paper
reviews novel methods to synthetically fabricate EVs while still emphasizing the importance of
mimicking the native properties and functions of cells to best exploit their use for biomedicine
and bioengineering.
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