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Abstract
Background and Objectives
As the number of repeats in the expansion increases, polyglutamine diseases tend to show at a
younger age. From this relationship, attempts have been made to predict age at onset by
parametric survival analysis. However, a method for a more accurate prediction has been
desirable. In this study, we examined 2 methods for survival analysis using machine learning and
6 conventional methods for parametric survival analysis of spinocerebellar ataxia (SCA)3 and
dentatorubral-pallidoluysian atrophy (DRPLA).

Methods
We compared the performance of 2 machine learning methods of survival analysis (random
survival forest [RSF] and DeepSurv) and 6 methods of parametric survival analysis (Weibull,
exponential, Gaussian, logistic, loglogistic, and log Gaussian). Training and evaluation were
performed using the leave-one-out cross-validation method, and evaluation criteria included
root mean squared error (RMSE), mean absolute error (MAE), and the integrated Brier score.
The latter was used as the primary end point, and the survival analysis model yielding the best
result was used to predict the asymptomatic probability.

Results
Among the models examined, the RSF and DeepSurv machine learning methods had a higher
prediction accuracy than the parametric methods of survival analysis. For both SCA3 and DRPLA,
RSF had a higher accuracy thanDeepSurv for the assessment of RMSE (SCA3: 7.37, DRPLA: 10.78),
MAE (SCA3: 5.52, DRPLA: 8.17), and the integrated Brier score (SCA3: 0.05, DRPLA: 0.077).
Using RSF, we determined the age-specific probability distribution of age at onset based on CAG
repeat size and current age.

Discussion
In this study, we have demonstrated the superiority of machine learning methods for predicting
age at onset of SCA3 and DRPLA using survival analysis. Such accurate prediction of onset will
be useful for genetic counseling of carriers and for devising methods to verify the effects of
interventions for unaffected individuals.
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Neurodegenerative diseases caused by the expansion of CAG
triplet repeats encoding polyglutamine chains in specific genes are
known as polyglutamine diseases.1 The penetrance of the path-
ologic allele is estimated to be 100%, and the CAG repeat size
shows a strong inverse correlationwith age at onset.2 Based on this
association, the probability of developing the disease at a certain
age can be estimated based on the number of CAG repeats in the
pathologic allele. This prediction method is helpful for genetic
counseling of unaffected carriers in the context of their life plan.
Furthermore, an accurate prediction of onset age in nonaffected
individuals is highly significant for the design of prophylactic
clinical trials.3 Indeed, in Huntington disease and spinocerebellar
ataxia (SCA)3 and SCA6, methods for predicting age at onset
using parametric survival analysis have been demonstrated.2-5

However, development ofmethodswithmore predictive accuracy
than parametric survival analyses has been desirable.

Recently, several methods with a high predictive accuracy have
been developed using machine learning. Machine learning is a
branch of artificial intelligence that extends predictive modeling
through traditional statistical analysis. Complex, nonlinear inter-
acting variables can be acquired by machine learning to minimize
the error gap between predictions and observations. Several
machine learning methods have been used for the diagnosis and
prognostication of cancer and neurologic diseases.6,7 In poly-
glutamine diseases, the machine learning method XGBoost has
also been used for a more accurate prediction of the age at onset
of SCA3.8 However, machine learning was not used in previous
studies designed to predict the age at onset of polyglutamine
diseases using survival analysis.2-5 Random survival forest (RSF)9

and DeepSurv10 are 2 representative methods of survival analysis
that were developed using machine learning. These methods
have shown more accurate predictive results than conventional
semiparametric survival analyses for patients with oral cancer,
those who are critically ill and hospitalized, and those with acute
myocardial infarction.10,11

In this study, we performed survival analysis of SCA3 and
dentatorubral-pallidoluysian atrophy (DRPLA), which are
relatively common polyglutamine diseases in Japan, using RSF
andDeepSurv, as well as 6 conventional methods of parametric
survival analysis, and verified their accuracy. In addition, we
used RSF survival analysis to predict the age at disease onset in
each age group.

Methods
Patients
Among cases diagnosed by genetic testing at theDepartment of
Neurology, Clinical Neuroscience Branch/Department of

Molecular Neuroscience, Resource Branch for Brain Disease
Research, Brain Research Institute, Niigata University, between
1992 and 2020, 292 cases of SCA3 and 203 cases of DRPLA
with an identifiable age at onset were selected.We defined cases
with SCA3 as those with at least 55 CAG repeats on at least 1 of
2 alleles ofATXN3 and cases with DRPLA as those with at least
49 CAG repeats on at least 1 of 2 alleles of ATN1.12,13

Genetic Analysis
Genomic DNA was extracted from venous blood using the
PAXgene Blood DNA kit (QIAGEN, Hilden, Germany).
PCR was performed on the CAG repeat region of the ATXN3
and ATN1 genes as previously reported, and fragment size
was analyzed by fluorescence capillary electrophoresis.14,15

Preanalysis With Boruta
Boruta16 was used for feature selection, using sex, the number
of repeats of expanded alleles, and the number of repeats of
nonexpanded alleles as explanatory variables and age at onset
as an objective variable. For Boruta analysis, 5 cases with
SCA3 for whom the sex or number of repeats was unknown
were excluded from the analysis. Features were classified into
3 groups: important, tentative, and unimportant. The un-
important features were excluded from this analysis. Statistical
software R version 4.1.0 was used for the analysis, with the
Boruta function from the Boruta package, and the parameters
were left at their default settings.

Construction of the Prediction Model
Two machine learning methods (RSF and DeepSurv) and 6
methods of parametric survival analysis (Weibull, exponential,
Gaussian, logistic, loglogistic, and log Gaussian) that had been
previously evaluated3 were used to estimate the age at onset
from CAG repeat length. All models were built using the
statistical software R version 4.1.0. We applied the survreg
function from the survival package to fit the parametric sur-
vival models and the predict function from the survival
package to predict the asymptomatic probability. The rfsrc
function from the randomForestSRC package was applied to
train the RSF model, and the predict function from the ran-
domForestSRC package was applied to predict the asymp-
tomatic probability. The asymptomatic probability obtained
with the predict function is a discrete variable. On the con-
trary, the integrated Brier score that we used to evaluate our
model assumes a continuous variable. To estimate the in-
tegrated Brier score as accurately as possible, we estimated the
asymptomatic probability in units as small as 1/1,000 of a year
based on age and the asymptomatic probability obtained by
the predict function. We defined the 2 adjacent ages predicted
by the predict function as ageA and ageB and defined the
asymptomatic probability at ageA and ageB as proA and proB,

Glossary
DRPLA = dentatorubral-pallidoluysian atrophy;MAE =mean absolute error;RMSE = root mean squared error;RSF = random
survival forest; SCA = spinocerebellar ataxia.
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respectively. Furthermore, we defined the asymptomatic
probability at a certain age, ageC, between ageB and ageA as
proC. We estimated proC = ageC × (proB − proA)/(ageB −
ageA) + proA − ageA × (proB − proA)/(ageB − ageA) to
predict the asymptomatic probability every 1/1,000 of an age.
The DeepSurv function from the survivalmodels package was
used to train the DeepSurv model, and the predict function
from the survivalmodels package was used to predict the
asymptomatic probability. As in RSF, the asymptomatic
probability was estimated for every 1/1,000 of an age. The
parameters of RSF and DeepSurv are listed in eTable 1, links.
lww.com/NXG/A607.

Model Evaluation
For the 6 parametric survival analysis methods, RSF, and
DeepSurv, training and evaluation were performed using the
leave-one-out cross-validation method. Only 1 case was se-
lected from the samples to serve as the test case, and the
remaining cases were used as training cases. The validation
was then repeated so that all cases became test cases one at a
time. The median predicted age at onset was defined as the
age at which the asymptomatic probability was 0.5 for para-
metric survival analysis. In RSF and DeepSurv, the median
predicted age at onset was defined as the average of the
highest age at which the asymptomatic probability was greater
than 0.5 and the lowest age at which the asymptomatic
probability was less than 0.5, among the ages at which the
asymptomatic probability was estimated for every 1/1,000 of
an age. The closeness of this median predicted value of age at
onset to the observed value was evaluated using root mean
squared error (RMSE) and mean absolute error (MAE).

The Brier score measures the mean squared difference be-
tween forecast probability and actual value (1 if it occurs, 0 if
it does not), and the original integrated Brier score is the

Brier score integrated over time and divided by the maxi-
mum time. However, in this analysis, the Brier score cannot
be integrated over time. Therefore, in RSF and DeepSurv,
we calculated the mean squared difference, N, between the
predicted probability and the observed value (1 if the disease
has not yet developed and 0 if it has developed), which we
estimated every 1/1,000 of a year, and used the average of N
in each test case as the variant of the integrated Brier score.
For parametric survival analysis, we calculated the observed
values at the times when the predicted probability was 0.01,
0.02, 0.03 … 0.99, calculated the mean squared difference,
N, between the predicted probability and the observed value,
and used the average of N in each test case as the variant of
the integrated Brier score.

Model Prediction
The integrated Brier score was used as the primary end point,
and the survival analysis model with the best result was used to
predict the asymptomatic probability. All samples were
trained as training cases, and the asymptomatic probability
was predicted for each repeat up to 67–78 repeats for SCA3
and 60–70 repeats for DRPLA. Because, in machine learning,
the value of asymptomatic probability can change from trial to
trial, the asymptomatic probability was predicted 100 times,
and the average of the asymptomatic predicted probabilities
was calculated. The asymptomatic probability at age Y if
asymptomatic at age X was calculated as (asymptomatic
probability at age Y if asymptomatic at age 0)/(asymptomatic
probability at age X if asymptomatic at age 0) from the defi-
nition of conditioning probability.

Model Sharing
We have released an application for Windows 64-bit that can
illustrate the asymptomatic probability at a particular age by en-
tering the current age and number of repeats, based on the results

Table 1 Fitting Results of the 6 Parametric Survival
Models and 2 Machine Learning Models in
Patients With SCA3

RMSE MAE
Integrated
Brier score

Weibull 8.5 6.17 0.163

Exponential 15.3 13.38 0.106

Gaussian 7.51 5.68 0.162

Logistic 7.52 5.66 0.169

Loglogistic 9.32 6.36 0.167

Log Gaussian 9.16 6.33 0.157

Random survival forest 7.37 5.52 0.05

DeepSurv 8.34 6.28 0.058

Abbreviations: DRPLA = dentatorubral-pallidoluysian atrophy; MAE = mean
absoluteerror; RMSE= rootmean squarederror; SCA= spinocerebellar ataxia.
Amachine learning approach for the prediction of age-specific probability of
SCA3 and DRPLA by survival curve analysis.

Table 2 Fitting Results of the 6 Parametric Survival
Models and 2 Machine Learning Models in
Patients With DRPLA

RMSE MAE
Integrated
Brier score

Weibull 13.62 9.65 0.158

Exponential 15.74 12.01 0.12

Gaussian 11.4 9.01 0.168

Logistic 11.41 9.02 0.171

Loglogistic 14.8 9.99 0.156

Log Gaussian 16.02 10.51 0.117

Random survival forest 10.78 8.17 0.077

DeepSurv 11.57 8.76 0.086

Abbreviations: DRPLA = dentatorubral-pallidoluysian atrophy; MAE = mean
absoluteerror; RMSE= rootmean squarederror; SCA= spinocerebellar ataxia.
Amachine learning approach for the prediction of age-specific probability of
SCA3 and DRPLA by survival curve analysis.
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of the RSF analysis (github.com/yuya-hatano/SCA-onset”
github.com/yuya-hatano/SCA-onset). The application was de-
veloped in Python 3.11.0.

Standard Protocol Approvals, Registrations,
and Patient Consents
This study was approved by the Ethics Committee on Genetic
Analysis of Niigata University (approval number: G2021-
0010). All participants provided written informed consent.

Data Availability
Data set used for analysis in this study is not publicly available.
If further information is required, please contact the corre-
sponding author with a reasonable request.

Results
Data Set Details
In the data set used, the number of repeats of the expanded
allele in patients with SCA3was 71.5 ± 4.5, (mean ± SD, range
56–84) and the age at onset was 41.8 ± 13.5 (mean ± SD,

range 10–81) years. There were 142 male cases, 148 female
cases and 2 cases of unknown sex. Patients with DRPLA had
65.1 ± 4.2 (mean ± SD, range 55–79) repeats of the expanded
allele, and the age at onset was 32.6 ± 20.1 (mean ± SD, range
0–76) years. There were 86 male and 117 female patients.

Preanalysis
The feature selection method Boruta16 was used to select fea-
tures for this analysis as a preanalysis. Among the features (sex,
number of repeats of expanded alleles, and number of repeats of
nonexpanded alleles) in cases with SCA3 and DRPLA, only the
number of repeats of expanded alleles was considered important,
while the other 2 features were considered unimportant.
Therefore, for both SCA3 and DRPLA, we performed 6 para-
metric survival analyses and 2 machine learning analyses using
only the number of repeats of the expanded allele as a feature and
age at onset as an objective variable.

Model Evaluation
Six parametric survival analyses (Weibull, exponential,
Gaussian, logistic, loglogistic, and log Gaussian) and 2 ma-
chine learning methods (RSF and DeepSurv) were used

Figure 1 Analysis in Patients With SCA3

Theprobability unaffected at a given age if currently unaffected is shown in the range 67–78CAG repeats. Current age is indicated by color coding, with a given
age on the x-axis and asymptomatic probability on the y-axis. SCA = spinocerebellar ataxia.
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to predict age at onset. The accuracy of RMSE,MAE, and the
integrated Brier score for each analysis is listed in Table 1
(SCA3) and Table 2 (DRPLA). For both diseases, the
machine learning method RSF had the highest accuracy
for the assessment of RMSE, MAE, and the integrated
Brier score.

Prediction of Age at Onset
The probability that an unaffected person with a pathologic
allele at a certain age would remain unaffected in subsequent
years was predicted using the RSF for each of SCA3 and
DRPLA (Figures 1 and 2). The median predicted age at onset
is summarized in Table 3 (SCA3) and Table 4 (DRPLA). As
expected, the number of CAG repeats of the pathologic allele
and age at onset were inversely correlated. Exceptionally, 69
repeats of SCA3 resulted in an older age at onset than 67 and
68 repeats, and even 63 repeats of DRPLA resulted in an older
age at onset than 62 repeats.

Discussion
In this study, we demonstrated the superiority of machine
learning methods for predicting age at onset for SCA3 and

DRPLA using survival analysis. We validated the accuracy of
prediction of age at onset in SCA3 and DRPLA using 8
methods of survival analysis, including 2 machine learning
methods (RSF and DeepSurv), and parametric survival
analysis. The results showed that RSF and DeepSurv had a
higher prediction accuracy than parametric survival analyses
in the leave-one-out cross-validation method, indicating the
superiority of machine learning methods for predicting the
age at onset of SCA3 and DRPLA (Tables 1 and 2). These
results may be attributed to the fact that parametric survival
analysis requires fitting an appropriate probability distribution
to the survival function, whereas RSF and DeepSurv do not
require such an assumption. Because RSF performed slightly
better than DeepSurv in this study (Tables 1 and 2), we used
RSF to predict age at onset.

Predicting the probability of developing a genetic disease at
each subsequent age is useful for genetic counseling of carriers
and for devising methods for verifying the effect of the in-
tervention on unaffected persons. The treatment effect can be
measured by comparing the actual with the assumed onset age
from the chronological age and number of CAG repeats.
In addition, through prospective observation, genetic and

Figure 2 Analysis in Patients With DRPLA

Theprobability unaffected at a given age if currently unaffected is shown in the range 60–70CAG repeats. Current age is indicated by color coding, with a given
age on the x-axis and asymptomatic probability on the y-axis. DRPLA = dentatorubral-pallidoluysian atrophy.
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acquired factors that influence the age at onset can be ex-
amined by scrutinizing cases that had developed at an age
significantly different from that expected. This method can
predict the probability of onset at a given age for each CAG
repeat based on the current age. From the present results (e.g.,
assuming an SCA3 carrier with 69 repeat expansions), if the

carrier is unaffected immediately after birth, the probability of
developing the disease by the age of 55 years is 67%. However,
if the patient has not developed the disease at age 50 years, the
probability of developing the disease by the age of 55 years is
42%. We believe that these results are more clinically relevant
than results from analyses other than survival analysis.

Table 3 Expected Age at Onset Using Random Survival Forest From Different Current Ages According to the CAG Repeat
in Patients With SCA3

Current age

CAG repeat 0 5 10 15 20 25 30 35 40 45 50 55

67 51.6 51.6 51.6 51.6 51.6 51.6 51.6 51.6 51.6 53.5 58.4 60.5

68 49.6 49.6 49.6 49.6 49.6 49.6 49.6 49.6 49.6 49.9 54.5 —

69 52.3 52.3 52.3 52.5 52.5 52.5 52.8 52.8 53 53 56.3 57.8

70 47.7 47.7 47.7 47.7 47.7 47.7 47.7 47.7 49.1 49.6 54.5 —

71 44.5 44.5 44.5 44.5 44.5 44.5 45 47 48 49.5 54.5 —

72 40 40 40 40 40 40 40.2 41.7 44.2 47.8 — —

73 38.7 38.7 38.7 38.7 38.7 38.8 39 39.5 45.5 46.5 — —

74 32.3 32.3 32.3 32.3 32.5 32.8 35.5 39 — — — —

75 31.8 31.8 31.8 31.8 31.8 32.5 34.3 44.5 44.8 — — —

76 24.5 24.5 24.5 24.5 25 30 — — — — — —

77 24 24 24 24.2 24.3 28.8 — — — — — —

78 22.7 22.7 26.5 26.8 27.2 — — — — — — —

Abbreviations: DRPLA = dentatorubral-pallidoluysian atrophy; SCA = spinocerebellar ataxia.
A machine learning approach for the prediction of age-specific probability of SCA3 and DRPLA by survival curve analysis.

Table 4 Expected Age at Onset Using Random Survival Forest From Different Current Ages According to the CAG Repeat
in Patients with DRPLA

Current age

CAG repeat 0 5 10 15 20 25 30 35 40 45 50 55 60 65

60 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 63 66.5 69 69.5

61 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.5 55 55.5 56.5 57 — —

62 43 43 43 43 43 43.5 44 44.5 49.5 52.5 53.7 — — —

63 44.5 44.5 44.5 44.5 44.7 44.7 45 45 48 55 55.5 59 — —

64 36 36 36 37 39 42 42.5 43 44 — — — — —

65 33.5 34 35.5 35.5 36.2 36.5 41 41.8 48 52.5 — — — —

66 26 26 26 26 30 31.5 37.5 40 — — — — — —

67 15.3 15.5 15.8 19 26 — — — — — — — — —

68 15 15 17.7 19.8 30 — — — — — — — — —

69 8.9 9.1 — — — — — — — — — — — —

70 5.6 — — — — — — — — — — — — —

Abbreviations: DRPLA = dentatorubral-pallidoluysian atrophy; SCA = spinocerebellar ataxia.
A machine learning approach for the prediction of age-specific probability of SCA3 and DRPLA by survival curve analysis.
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One limitation of this study was the small number of cases
examined. The fact that some inversions were observed at the
predicted onset age was assumed to be due to bias in the basic
data resulting from the small number of cases. To remedy this
problem, the number of cases will need to be further increased.
Another issue was that the number of CAG repeats in HTT,
ATN1, andATXN2 andDNAmethylation also affect the age at
onset in SCA3,17 but these factors were not considered in this
study. Future development of analytical tools that include these
factors in a larger number of cases is expected.

A previous study mentioned the importance of analysis in a
multiethnic cohort.3 They acknowledge the need for a unified
model across multiethnic cohorts to identify regional differ-
ences and important modifiers in decisions of the age at onset.
Other groups have shown that different ethnic groups have
different models that fit better within parametric analysis
methods.4 Our study was conducted in a Japanese cohort, and
future validation in other ethnic groups would be required.

We have shown that machine learningmethods, including RSF,
can contribute to the prediction of the age at onset of poly-
glutamine diseases. Future validation for other diseases is
expected. Furthermore, RSF can be applied to survival analysis
in various fields and would be expected to improve its accuracy.
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