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Hyaluronan (HA) is a simple but diverse glycosaminoglycan. It plays a major role in 
aging, cellular senescence, cancer, and tissue homeostasis. In which way HA affects 
the surrounding tissues greatly depends on the molecular weight of HA. Whereas 
high molecular weight HA is associated with homeostasis and protective effects, HA 
fragments tend to be linked to the pathologic state. Furthermore, the interaction of HA 
with its binding partners, the hyaladherins, such as CD44, is essential for sustaining 
tissue integrity and is likewise related to cancer. The naked mole rat, a rodent species, 
possesses a special form of very high molecular weight (vHMW) HA, which is asso-
ciated with the extraordinary cancer resistance and longevity of those animals. This 
review addresses HA and its diverse facets: from HA synthesis to degradation, from 
oligomeric HA to vHMW-HA and from its beneficial properties to the involvement in 
pathologies. We further discuss the functions of HA in the naked mole rat and compare 
them to human conditions. Though intensively researched, this simple polymer bears 
some secrets that may hold the key for a better understanding of cellular processes 
and the development of diseases, such as cancer.

Keywords: hyaluronan, naked mole rat, cancer, cancer resistance, early contact inhibition, aging, cellular 
senescence, CD44

PROLOGUe

This is the story of a young researcher whose child became ill with cancer. So far, all therapeutic 
trials have failed and always the cancer relapsed. The months passed and now, we are writing the 
year 2017. The sun was just rising above the horizon as our researcher woke up with a startled 
expression. Although he could not remember his dream of the night before, there were still two 
pictures which he could not get out of his head. What is it between the naked mole rat and its 
extraordinarily long hyaluronan (HMW-HA)? Was this a sign of destiny showing him a way to 
save his child? Pondering this question, he went to his laptop and opened a search. The number of 
returned results deflated him, but yes, there was a connection between the sugar molecule and the 
exceptional rodent. Driven by eager anticipation, a journey through scientific publications, data 
and knowledge began…

HA—SiMPLe BUT DiveRSe

Hyaluronan is a polysaccharide that is characterized by a simple chemical structure but has extraor-
dinary biological properties (1). As a key component of the vertebrate extracellular matrix (ECM), 
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FiGURe 1 | Structural formula of a disaccharide building block of the 
hyaluronan polymer composed of alternating d-glucuronic acid and 
N-acetyl-d-glucosamine units. n indicates the number of repeating units in a 
polymer molecule.

FiGURe 2 | Naked mole rat in captivity (© Tiergarten Schoenbrunn, Austria/
Norbert Potensky).
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the linear biopolymer is composed of alternating d-glucuronic 
acid and N-acetyl-d-glucosamine units, connected via β-1,3- 
and β-1,4-glycosidic bonds (Figure  1) (2–4). Under normal 
physiological conditions, HA consists of 2,500–17,500 U with a 
molecular weight of 1,000–7,000 kDa (5). A single HA polysac-
charide can thus reach a polymer length of 2.5–17.5 µm. The 
repeating sequence is conserved in all vertebrates and except for 
occasional deacetylated glucosamine residues, not modified in 
its chemical structure. At physiological pH values, the carboxyl 
group of each d-glucuronic acid unit is usually dissociated, 
which results in the formation of a negatively charged biomol-
ecule (3, 6, 7).

Hyaluronan belongs to the family of glycosaminoglycans 
(GAGs). However, in contrast to its other family members, such 
as heparin sulfate and chondroitin sulfate, HA is synthesized as 
an unmodified, non-sulfated polysaccharide which is directly 
extruded into the ECM (8). Within the ECM, HA constitutes 
an extracellular scaffold that coordinates the attachment of 
other ECM components, such as proteoglycans (9, 10). Apart 
from the interaction with the heavy chains of the serum protein 
inter-α-inhibitor, which is mediated via a direct ester bond (11), 
the linkage of HA to other HA-binding proteins is achieved in 
a non-covalent manner (10, 12). These proteins, also termed 
hyaladherins, comprise cell surface receptors, as well as ECM 
and blood plasma proteins (13, 14).

Hyaluronan-binding results in a variety of intracellular as well 
as extracellular responses. The interactions of HA with cell sur-
face receptors induce numerous intracellular signaling pathways, 
for example, those regulating proliferation or cell motility (15). 
The often multivalent interactions of HA with ECM proteins sup-
port the generation of huge HA-organized extracellular matrices 
and, thus, help to provide the structural integrity of many tissues 
(16–18).

At a low level, HA is expressed ubiquitously in the human body 
(19). It is proposed that adult humans contain about 12–15 g of 
HA, the majority of which (more than 50%) occurs in the skin 
(20). Furthermore, it is found in connective tissue, synovial fluid, 
intervertebral disks, and the vitreous body of the eye (2).

Hyaluronan synthesis is also strictly regulated in embryonic 
development (21). HA constitutes a main component of fetal tis-
sues, fetal structures, such as the Wharton’s Jelly of the umbilical 
cord, and the amniotic fluid (22). It also plays an important role in 

condensation events and in epithelial to mesenchymal transition 
(18, 23).

Besides, HA shows remarkable physical and biological 
properties. HA is highly hygroscopic, tightly binding 15 water 
molecules with each disaccharide unit (24). Thus, HA has a great 
ability to retain water, for example, 1 g of HA might retain 6  l 
of water (25). Furthermore, HA shows a very high and shear-
dependent viscoelasticity, resulting in the role of HA as an 
extracellular lubricant (26). As a consequence of these remark-
able hydrodynamic properties in terms of water retention and 
viscosity, HA is essential to maintain tissue hydration, tension, 
and integrity (3).

The molecular weight of HA varies and has great impact on 
its physiological functions and activities (27). Above 1,000 kDa 
HA is defined as high molecular weight HA (HMW-HA). 
HMW-HA possesses anti-inflammatory, anti-proliferative, 
and anti-angiogenic properties and is, furthermore, involved 
in wound healing processes (5, 27, 28). In homeostasis, HA is 
found in its HMW form in almost all human tissues. However, 
pathological circumstances, such as inflammation, show evi-
dence for an elevated HA fragmentation resulting in a higher 
level of HA polymers with a lower molecular weight (29). 
Therefore, the effects of HA in the pathological context are often 
associated with the variable mass of the polymer (5).

Interestingly, the available molecular weight range of HA 
in different organisms is not consistent. A unique very high 
molecular weight (vHMW) HA can be found in the naked mole 
rat (30). A comparison of human and naked mole rat HA is 
of interest because recent findings provide evidence for a link 
between the naked mole rat’s cancer resistance and its extremely 
HMW-HA.

THe NAKeD MOLe RAT—AN 
eXTRAORDiNARY RODeNT

The naked mole rat is a hairless, mouse-sized rodent (Figure 2) 
that inhabits subterranean arid regions in northeast Africa, 
mainly Kenya, Ethiopia, and Somalia (31). Naked mole rats 
exhibit an abundance of unusual characteristics, such as eusocial-
ity [reviewed in Ref. (32)], pain insensitivity [reviewed in Ref. 
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FiGURe 3 | Early contact inhibition. The uniquely mutated hyaluronan 
synthase 2 of the naked mole rat produces very high molecular weight HA 
(vHMW-HA) which triggers a signaling cascade via the CD44 receptor 
activating the INK4a/b locus and inducing the intracellular interaction of 
CD44 with merlin. The activated INK4a/b locus encodes for the tumor 
suppressors p15, p16, and p19 that arrest the cell cycle. In addition, naked 
mole rats possess a unique fourth hybrid form, pALT, which stops the cell 
cycle more efficiently. Interactions of CD44 with merlin contribute to the 
cell–cell contact-induced growth arrest.
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(33)], and poikilothermic thermoregulation [reviewed in Ref. 
(34)]. But even more fascinating, naked mole rats are the longest 
living rodents with a lifespan of up to 30 years (35) and show a 
high cancer resistance (30).

Naked mole rats show peculiar features regarding the molec-
ular weight and distribution of HA. Compared to other species, 
naked mole rats exhibit HA enrichment in kidney, brain, heart, 
and skin. These elevated HA levels derive from altered enzyme 
activities (30). While the HA synthases 1 and 3 (HAS1/3) in naked 
mole rats show expression levels similar to mice and humans, an 
increased expression of HA synthase 2 (HAS2) can be observed 
in naked mole rats. In addition, their low levels of Hyal lead to 
a slower degradation of HA (30, 36). Moreover, naked mole rat 
HA has a vHMW, between 6 and 12 MDa (30, 37). The elevated 
amount of HA and its unusually high molecular weight might be 
caused by an amino acid alteration in the active site of HAS2. In 
this site, two asparagines are substituted by two serines, which 
is unique for the naked mole rat since these amino acids are 
highly conserved among all other mammals (30). However, if 
human cells are transfected with cDNA of the mutated naked 
mole rat’s HAS2, these cells also produce vHMW-HA (30). This 
clearly indicates that this small alteration of HAS2 is causing 
the increased size of HA in naked mole rats (30). Since the 
resulting vHMW-HA has been linked to different aspects of the 
naked mole rat’s unique properties, it might be of interest for 
understanding the role of HA in other organisms.

Cancer Resistance of Naked Mole Rats
Hypersensitivity to contact inhibition is one of the unique prop-
erties of naked mole rats: they show the so-called early contact 
inhibition (ECI). Thus, naked mole rat cells arrest cell prolifera-
tion when only few cell–cell contacts are formed and never reach 
the same densities as human or murine cells (38).

Contact inhibition by itself is a powerful anticancer mecha-
nism and causes an arrest of the cell cycle when cells contact 
each other. As a consequence, the formation of multilayers and 
uncontrolled growth is prevented, which is not true for cancer 
cells since they have lost this ability (38). The contact-induced 
growth arrest is mainly mediated by the cyclin-dependent kinase 
inhibitors p27Kip1 (p27) and supported by p16INK4a (p16) (38).

The ECI is linked to the described cancer resistance of naked 
mole rats (39). Liang et al. showed that naked mole rat fibroblasts 
are resistant to experimental oncogenic transformation with 
RasG12V and SV40 large T antigen, unlike other mammalian cells 
(40, 41). ECI is triggered by vHMW-HA and its interaction with 
the CD44 receptor (39). Moreover, the cytoplasmic side of the 
CD44 receptor interacts with merlin (neurofibromin 2), which 
regulates contact inhibition (Figure 3) (30). It has been shown 
that naked mole rat fibroblasts that were cultured with bacterial 
hyaluronidase grew completely confluent and lost the ECI-
phenotype due to the lacking trigger in the form of vHMW-HA 
(30). Similar results were obtained when the CD44 receptor was 
blocked with antibodies (30).

Furthermore, the interaction of vHMW-HA with the CD44 
receptor activates a signaling cascade, which causes the induction 
of the INK4a/b locus (42). The INK4a/b locus plays an impor-
tant role in cancer development and encodes for three different 

mammalian tumor suppressors: the cyclin-dependent kinase 
inhibitors p15INK4b (p15) and p16INK4a (p16) as well as p19ARF 
(p19), a repressor of the MDM2 oncogene. Out of those tumor 
suppressors, the level of p16 is elevated in naked mole rat cells that 
exhibit ECI (38, 42). While the contact inhibition in humans or 
mice is primarily mediated by the p27 cyclin-dependent kinase 
inhibitor; in naked mole rats, this suppressor seems to only serve 
as a backup if the ECI is not functional (38).

In addition to the upregulation of p16, a fourth unique 
product of the INK4a/b locus has been found in naked mole rats. 
This isoform, pALTINK4a/b, is capable of arresting the cell cycle 
more efficiently than the other INK4a/b suppressors and does so 
independently of HA–CD44 interactions (42).

The lack of described neoplasia cases in naked mole rats have 
led to the assumption that this species is essentially cancer-
free, but recently two cases of cancer in naked mole rats were 
reported. Two naked mole rats from different US zoological 
institutions are the first described cases of cancer in naked 
mole rats. In addition, pre-cancerous lesions were also found in 
several other naked mole rats (43). These findings illustrate that 
naked mole rats may develop cancer and raise further questions 
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about cancer resistance mechanisms and their scope. Detailed 
investigation of the causes and documentation of such rare cases 
will benefit the current cancer research and increase recent 
knowledge concerning cancer resistance mechanisms.

Longevity of Naked Mole Rats
The lifespan of mammals is usually linked to their average body 
mass. In general, a doubling of body mass leads to a 13% increase 
in lifespan (44). However, the small naked mole rats are exceeding 
this rule up to ninefold with a maximum lifespan of approximately 
30  years (44). High cancer resistance, eusocial behavior, and a 
protected subterranean habitat contribute to the long lifespan of 
naked mole rats (45).

In addition to the extraordinary lifespan, the aging process 
in itself differs from every other mammal. Aging or senescence 
has been described as the progressive loss of tissue and organ 
function over time (46). Generally, aging is associated with an 
increased mortality risk, declining fertility and a functional 
degradation and occurs in every organism, except for certain 
cold water fish and long-lived trees (44). The term “negligible 
senescence” refers to a lack of age-related changes concerning 
reproductive and physiological functions and was coined by 
Caleb Finch to describe slow aging species (44). Finch defined 
three criteria to determine if an organism exhibits negligible 
senescence: (i) decreasing mortality rate, (ii) consistent physi-
ological functions except for reproduction, and (iii) constant 
reproduction rate over lifetime (47). Mortality rates of naked 
mole rats show a decrease with increasing age as they are most 
likely to die in the nursing period due to colony neglect, lack of 
maternal care, cannibalism, or starvation (31, 44). Physiological 
functions, such as basal metabolic rate, arterial elasticity, and 
bone mineral content, show no changes up to an age of 25 years 
and are, therefore, compliant with the defined terms (44, 47). 
No age-related change in litter size could be observed although 
the survival rate of pups decreases with increasing age. Thus, 
the second criterion of negligible senescence does not fully 
coincide with the defined characteristics. Nevertheless, naked 
mole rats fulfill almost all criteria of negligible senescence (47). 
The overall maintained good health of naked mole rats far into 
their third decade of life is equivalent to an 80-year-old human 
with the health status of a 30-year-old (40).

It has been proposed that aging-related mechanisms are 
similar to those that mediate stress resistance. Thus, the long 
lifespan of the naked mole rat could be correlated with high stress 
resistance (48). Compared to murine cells, naked mole rat cells 
are more resistant to stressors, such as cadmium, methyl meth-
anesulfonate (DNA alkylating agent), paraquat (oxidative stress 
inducing agent), heat, and low glucose media, consistent with 
the initial hypothesis. Interestingly, naked mole rat cells are also 
more sensitive to H2O2, UV light, and rotenone (mitochondrial 
inhibitor) in comparison to murine cells (48).

Lewis et  al. further investigated stress resistance in naked 
mole rat cells by extending experiments with different cytotox-
ins and adjusting culture conditions. Fibroblasts derived from 
naked mole rats showed a higher resistance to different stresses, 
including heat, heavy metals, xenobiotics, and DNA-damaging 
agents, compared to cells derived from mice. The determined 

LD50 (median lethal dose) values varied between 2- and 20-fold 
increase in naked mole rat fibroblasts. These findings support 
the link between stress resistance and longevity. Furthermore, 
naked mole rat cells show a prolonged cell cycle arrest and stop 
proliferation at a low toxin concentration (40).

The resistance to oxidative stress in naked mole rats and the 
possible link to their longevity were studied separately since 
the “oxidative stress theory” is only one approach to explain 
aging (49). Naked mole rats surprisingly show similar levels 
of reactive oxygen species (ROS) as short-lived species such as 
mice and the antioxidant defense is not significantly different 
(44). Compared to mice, naked mole rats show a 70-times lower 
activity of cellular glutathione peroxidase but higher activities of 
several other antioxidant enzymes, such as manganese superox-
ide dismutase. Furthermore, antioxidant activity undergoes no 
age-related changes in naked mole rats, however, such activity 
can be detected in mice. These findings indicate that oxidative 
stress resistance is not the key player in negligible senescence 
and longevity of naked mole rats (48). However, the connection 
between stress resistance, the long-lasting health, and longevity 
cannot be denied and further research is required.

Due to its unique anticancer mechanism, negligible senes-
cence, and unusually long lifespan, the naked mole rat serves as 
an ideal model for studies on aging and cancer.

HA iN AGiNG AND CeLLULAR 
SeNeSCeNCe

The link between HA and aging, as prominent in the naked 
mole rat, can also be found in other species. In contrast to aging, 
sometimes also referred to as senescence, cellular senescence 
describes a cell cycle arrest and is not necessarily linked to the 
aging process. Cellular senescence is involved in tissue repair 
and age-related diseases, but can also act as a potent anticancer 
mechanism by causing a cell cycle arrest in tumor cells (50).

Aging correlates with a decrease of HA content in the human 
body (51). If that also holds true for naked mole rats has to be 
investigated. Normally, the HA level rapidly increases during 
early development, followed by a continuous decrease over life-
time. For instance, the HA content in the basal and spinous layers 
of the epidermis was found to be reduced significantly 4 weeks 
after birth and to be as low as in adult phenotypes 2 months after 
birth in mice (52). Many processes occurring during a lifetime 
contribute to this decline in HA content. For example, chronic 
UVB irradiation declines the amount of HA in the dermis via 
inhibition of HA synthesis (53).

In general, downregulation of the hyaluronan synthases (HAS) 
enzymes, particularly HAS2, seems to be linked with cellular 
senescence and with aging. For instance, microRNA-23a-3p was 
discovered to downregulate expression of HAS2 in human fibro-
blasts, leading to significantly decreased amounts of extracellular 
HA. Since the fibroblasts in this study were taken from young 
and old donors, the increased level of microRNA-23a-3p could be 
associated not only with cellular senescence but also with aging 
(54). If a similar regulatory mechanism based on microRNA also 
applies in naked mole rats, it has not been investigated so far and 
demands further study.
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Furthermore, senescent human mesenchymal stem cells 
(MSCs) express significantly lower amounts of the vascular cell 
adhesion molecule 1 (VCAM-1), which is important for the 
wound healing effect of MSCs. Interestingly, the expression of 
VCAM-1 could be recovered either by adding HA or by crosslink-
ing CD44, thereby mimicking CD44 clustering by HA binding 
(55). Taking together the findings that HAS2 is downregulated in 
senescent MSCs and that compensating that loss with HA leads 
to recovery of VCAM-1, it was concluded that the interaction of 
HA with its receptor CD44 is correlated with the expression of 
VCAM-1 in senescent MSCs (55). Bearing in mind that cellular 
senescence is associated with aging, HA may influence cell adhe-
sion and migration in the elderly.

In addition, the interplay of HA and its binding proteins, the 
hyaladherins, is crucial to cellular senescence. Generally speak-
ing, the interaction of HA and versican is important for forming 
the ECM (56). The loss of interactions between HA and versican 
was found to induce cellular senescence in murine cell lines (57). 
The authors of the study generated knock-in mice, in which the 
HA-binding domain for versican showed a reduced binding affin-
ity for HA. Consequently, unbound HA was fragmented using a 
hyaluronidase. By blocking the extracellular membrane receptor 
CD44 with an antibody, these HA fragments were confirmed to 
bind to CD44 by detecting a decrease in CD44 signaling. Suwan 
et  al. further could show that the phosphorylation of extracel-
lular signal-regulated kinase (ERK) 1/2, a known downstream 
signaling pathway of CD44, was increased significantly by treat-
ment with HA fragments, leading to cellular senescence in those 
knock-in mice, respectively. Accordingly, fragmentation of HA 
has been associated with an increase in cellular senescence (57).

So far it has been shown that downregulation of HAS2 and, 
therefore, a lack of HMW-HA contributes to undesirable cellular 
senescence. On the other side, cellular senescence could eventu-
ally be used to arrest altered cells in their cell cycle, preventing 
further mitosis and thereby further spread of the disease. For 
example, induced cellular senescence was proposed as a thera-
peutic strategy against fibrosis (58). Fibrosis is a complex disease 
with heterogeneous phenotypes and chronic fibroproliferative 
diseases are involved in approximately 45% of all deaths in the 
so-called developed world (59). It correlates with chronic inflam-
mation and intense accumulation of a rigid ECM. Thereby, the 
otherwise flexible binding tissue is replaced by a scar-like stiff 
tissue leading to a loss of mechanical integrity in affected tissues. 
In this way, affected patients can suffer from organ malfunctions 
which can also be lethal (60). Though the pathology of fibrosis 
is not yet fully understood, it can be regarded as a continuous 
tissue repair response that goes hand in hand with fibroblast-to-
myofibroblast transition (60).

In this context, Li et  al. reported that overexpression of 
HAS2 in mesenchymal cells resulted in severe lung fibrosis and 
increased mortality in mice. In addition, in fibroblasts derived 
from idiopathic pulmonary fibrosis patients, the overexpression 
of HAS2 correlated with their ability to invade matrigel (61). By 
depleting HAS2 with siRNA in murine mesenchymal cells, cel-
lular senescence could be induced in vivo in fibrotic fibroblasts in 
mice (58). In contrast to the previously reported beneficial effects 
of HMW-HA, these findings suggest that increasing the amount 

of HMW-HA synthesized by HAS2 acts as an important signal to 
induce pulmonary fibrosis. Moreover, Li et al. argued that down-
regulation of HAS2 could eventually be used to therapeutically 
induce cellular senescence in fibrotic tissues.

If a similar approach of induced cellular senescence can be 
employed as a conceivable approach to target tumor cells could 
not be shown so far.

HA AND CANCeR

For humans, several studies have reported a key role of HA in 
tumorigenesis and various forms of epithelial and connective tis-
sue cancers are associated with high levels of HA (62). On the one 
hand, an increased HA content has been shown for corporal fluids 
such as the urine of patients with bladder carcinomas (63, 64), the 
serum of patients with breast cancer (65), the saliva of patients 
with head and neck cancer (66), and the tumor interstitial fluid 
of colorectal cancers (67). On the other hand, HA levels can also 
be increased within the tumor either in the tumor parenchyma or 
the tumor stroma [reviewed in Ref. (68)]. As HA production by 
stromal cells can be stimulated by tumor cell-mediated signaling 
(69), HA is more frequently enriched in the stroma surrounding 
tumors than in the tumor parenchyma (70). For example, high 
stromal HA levels were found in patients with breast (71, 72) 
and ovarian carcinomas (73, 74) as well as in patients suffering 
from lung (75), brain (76), and prostate cancer (77). Nevertheless, 
malignant cancer cells themselves can also be responsible for an 
increased HA deposition (78, 79). For example, malignancy in 
lung (75), gastric (80), and colorectal cancers (81) is linked to the 
level of HA in the parenchyma. Thus, a significant number of stud-
ies showed that in cancer patients, HA concentrations are usually 
higher in tumors than in the surrounding healthy tissues (82). 
The extent of HA accumulation in both the tumor parenchyma 
and the tumor stroma can be correlated with the aggressiveness of 
cancers as elevated HA levels were known to stimulate processes 
involved in malignant growth such as cell proliferation, invasion, 
and metastasis (83). Therefore, an enhanced HA deposition, 
which is often accompanied by changes in the polymer size of 
HA, can be regarded as a reliable predictor for malignancy (68).

Malignant growth involves significant changes in the proper-
ties of ECM components leading to the establishment of a tumori-
genic microenvironment supporting tumor cell survival, growth, 
invasion, and metastasis (84–86). Due to its important role as an 
ECM structuring molecule, HA is considered as an active partici-
pant in cancer-promoting processes especially those stimulating 
metastasis. Studies have shown that the metastatic potential of 
carcinoma cells is linked to the formation of pericellular HA 
matrices coating these aggressive tumor cells (87). The autocrine 
formation of these pericellular HA coats by invasive cancer cells 
themselves facilitates important steps in the metastatic cascade, 
such as tumor cell adhesion and extravasation (68). Therefore, it 
is proposed that metastatic tumor cells must acquire the ability 
to produce, assemble, and process their own portable HA-rich 
microenvironments in an autonomous manner in order to invade 
the circulation and to metastasize to ectopic compartments (88). 
This model that HA pericellular matrices function as portable 
microenvironments providing supply, nutrition, and protection 
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FiGURe 4 | Hyaluronan (HA) metabolism. HA is produced by the HA 
synthases that catalyze the alternating addition of the uridine diphosphate 
(UDP)-activated monosaccharides (UDP-GlcUA and UDP-GlcNAc) to the 
reducing end of the growing HA chain. While the monosaccharides are 
added at the cytoplasmic site, the HA chain is simultaneously extruded to the 
extracellular space. HA is degraded either by radical scission or by enzymatic 
degradation. The latter one can either happen within the tissue itself or after 
drainage to the lymphatic system at different places within the body.
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for migrating cancer cells has been extensively reviewed and 
elaborated by Turley et al. (88).

The main reasons leading to an elevated HA deposition in 
various malignancies include alterations in the HA metabolism 
(89, 90). Although the mechanisms of HA accumulation can vary, 
changes in HA synthesis and/or degradation are most frequently 
observed in pathological processes. Therefore, it is important 
to understand how physiological HA concentrations in vivo are 
maintained.

RiSe AND FALL—THe SYNTHeSiS OF HA

Hyaluronan is synthesized by hyaluronan synthases (HAS)
(91, 92). There are three known human HA synthases that are 
numbered in the order of their discovery, and all are members 
of the HA synthases class I (93). The class I HA synthases con-
tain a core of four transmembrane helices connected by at least 
one extended loop that carries the consensus sequence of the 
processive glycosyltransferases (94).

The HA synthases combine several functions that ultimately 
lead to the synthesis and translocation of HA to the extracellular 
space. They bind both uridine diphosphate (UDP)-activated 
monosaccharides and catalyze their alternating attachment to 
the reducing end of the growing HA molecule (Figure 4). This 
glycosyltransferase reaction occurs at the inner cell membrane 
and is directly linked to the extrusion of the polymer through the 
membrane spanning channel formed by the HAS or its dimerized 
form (94).

The three human HAS share a structural similarity of 55–70%, 
but they still differ in terms of their ability to synthesize HA 
(21, 95), their subcellular localization, enzymatic activity, and 
regulation (96, 97). When comparing the three HAS isoenzymes, 
HAS3 is the most active one, forming not only high but also 
low molecular weight HA (LMW-HA) (90, 98). HAS1 is able to 
produce high and LMW-HA such as HAS3, but is the least active 
of the three under normal conditions (90, 98, 99), whereas it is 
upregulated in states that are associated with inflammation (96). 
However, HAS2 seems to be even more important as it produces 
the HMW form of HA and is likely to be the HAS enzyme that 
is responsible for stress-induced increases in synthesis as it is 
found, for example, in shock, septicemia, inflammation, heavy 
wounding, and burn patients.

Furthermore, the deletion of the HAS2 gene leads to death 
already at early embryonic stages (98), the synthesis of HAS2 
can be greatly influenced by external stimulants (97) and in 
some tissues, HAS2 is even expressed exclusively (100). Thus, the 
promoter area of HAS2 is most actively studied for responsive 
elements that bind regulatory transcription factors (97).

HAS2—A Highly Regulated enzyme
In general, the formation of the HA chain requires a high amount 
of energy as the formation of one disaccharide unit needs five 
ATP equivalents, two NAD cofactors, and one acetylCoA group 
as well as the compounds for the glucose and the glucosamine 
monosaccharide (93). Therefore, it is necessary for the cell to 
regulate HAS2 very tightly. The importance of HAS2 for the cell is 
emphasized by its various regulation and balancing mechanisms 
throughout transcription and translation of the enzyme as well as 
on a posttranslational level (97, 101, 102).

Regulation on DNA and mRNA Level
The synthesis of HA can already be influenced on the level of the 
expression of HAS2 as shown exemplarily above in the context of 
aging. The expression of HAS2 can be up- and downregulated by 
various transcriptional signals. Some, like the all-trans retinoic 
acid, which is a major developmental signal, act through their 
own nuclear receptor (103), while other signals are mediated 
either by phosphatidylinositol 3 kinase or G-protein coupled 
receptors. In cultured endothelial cells, the HAS2 transcription 
was also induced via nuclear factor κB (NF-κB) through tumor 
necrosis factor alpha and interleukin 1 beta (IL-1β) (104, 105). 
Likewise, an increased concentration of UDP-GlcNAc decreased 
the expression of HAS2 through the accumulation of two sup-
pressive transcription factors (YYP and SP1) as a consequence of 
the elevated sugar levels [(106); reviewed in Ref. (97)].

Hyaluronan synthesis can also be regulated on mRNA level. 
There exists a natural antisense transcript of HAS2 (HAS-AS1). 
The exon 1 of HAS2-AS1 is complemental to the exon 1 of the 
HAS2 mRNA. By forming a duplex with the HAS2 mRNA, 
HAS2-AS1 stabilizes the HAS mRNA leading to an accumulation 
of HAS2 (101).

Posttranslational Modifications
There are several posttranslational modifications that can occur 
at different sites of the HAS2 and either decrease or increase the 
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enzymatic activity (102). The glycosylation of serine 221 with 
an O-linked GlcNAc has been shown to increase the membrane 
stability of the protein and, thus, to prolong its half-life and to 
increase the HA synthesis (107). By contrast, phosphorylation of 
the HA synthases at varying sites might cause different effects (97). 
For example, phosphorylation with ERK increased the activity of 
all three HA synthases (101), while the phosphorylation of HAS2, 
induced by energetic stress, led to a reduced HA synthesis (97).

The direct link of HA synthesis to the metabolic state of the 
cell is adenosine monophosphate kinase (AMPK). AMPK has a 
special role within the cells as a metabolic sensor and regulator 
(108). After the activation of AMPK, the activity of HAS2 is dra-
matically inhibited due to the phosphorylation of the conserved 
threonine 110 in the cytoplasmic loop of HAS2 (108). However, 
AMPK does not interfere with the synthesis of HA synthases as 
the mRNA levels of the HA synthases were not altered by AMPK 
nor were the other HA synthases affected by AMPK (108).

The HAS2 activity can also be modulated by the ubiquitina-
tion at lysine 190 (102, 109) since the enzymatic activity was lost 
after a site-directed mutation of lysine 190 to arginine. These data 
suggest that HAS2 requires monoubiquitination for its activity. 
Furthermore, HAS2 was no longer able to form dimers after 
mutation (97).

Influence of Sugars
While GAGs are usually synthesized within the Golgi, where 
sugar concentrations are maintained at a constant and high level, 
HA is synthesized at the cell membrane and, therefore, susceptible 
to changes in cytoplasmic sugar concentrations (102).

Although UDP-GlcUA has a higher affinity to HAS2 than 
UDP-GlcNAc (93), UDP-GlcNAc was previously not considered 
to be a limiting factor in HA synthesis as it is more abundant in 
the cell. However, as the Km of UDP-GlcNAc is higher for all HAS 
enzymes, it is also possible to control the synthesis rate of HA 
through UDP-GlcNAc, so both sugars do have a direct influence 
on HA synthesis (95, 97).

The abundance of the sugars generated by an overexpression 
of enzymes in the anabolic pathway of the UDP-GlcUA led to 
increased HA accumulation (102), whereas the depletion of the 
precursor sugars either caused by toxins such as 4-methylumbel-
liferone (110–113) or induced by mannose (114) is able to specifi-
cally inhibit HA synthesis (97).

RiSe AND FALL—THe DeGRADATiON  
OF HA

The HA turnover is surprisingly rapid in most tissues (see 
Figure  4). The HA half-life times range from a few hours to 
days in most of the body (115). While the synthesis takes place 
locally in the tissue (115), the degradation happens at different 
places. About 30% of the HA are turned over locally, whereas 
the remaining 70% enters the lymphatic drainage (116). Of 
those 70%, about 90% are removed within the lymphatic nodes 
(116). The HA-binding receptor in the lymphatic vessels and the 
lymph nodes is the lymphatic vessel endothelial hyaluronic acid 
receptor 1 (Lyve-1). It binds HA with high affinity, subsequently 
leading to the uptake of HA into the lymphatic vessels (116, 117). 

The endothelial cells in the liver (118), kidney, and spleen (19, 
116) take up most of the remaining HA. The uptake of HA via 
clathrin-coated pits of the liver endothelial cells is inhibited if the 
hyaluronan receptor for endocytosis (HARE) is blocked (119). 
So far, this is the only case in which a knockout of a HA receptor 
leads to elevated HA levels in mice (116, 120). A final HA turno-
ver route is provided by the excretion of HA from blood via urine. 
However, only 1% of HA is excreted through this glomerular filter 
with a cutoff of about 12 kDa (116, 121).

enzymatic Degradation of HA
Hyaluronan can either be degraded enzymatically or through 
radical scission. In eukaryotes, the HA degrading enzymes, 
also termed hyaluronidases (Hyals), are hydrolases and they are 
functionally active in a large pH range (122). So far, there are six 
Hyals known in humans: Hyal 1–4, HyalP, and PH20, which are 
all β,1-4 endoglucosaminidases (100).

Hyals can be characterized according to their pH-dependent 
activity. The acidic Hyals are active between pH 3 and 4. The 
human liver and serum Hyals (1–4) belong to this group. By 
contrast, the neutral Hyals are active at pH 5–8 containing PH20 
and several venoms, such as snake and bee venom (123).

Hyaluronidase 1 (Hyal 1) is broadly distributed within 
the human body (124, 125). It is located in the lysosome and 
degrades the HA chain in concerted action with exoglycosidases 
to monosaccharides. Mutations of the enzyme are associated with 
lysosomal storage diseases, such as mucopolysaccharidosis type 
IX or hyaluronidase deficiency (100, 126–128).

Hyaluronidase 2 (Hyal 2) is a GPI-anchored receptor that 
operates in an acidic microenvironment at the cell surface (129, 
130). It only hydrolyzes HMW-HA into LMW-HA (~20  kDa) 
(131) which is further hydrolyzed to oligomeric HA (oligo-HA) 
by Hyal 1.

In tumorigenesis, Hyal 1 and Hyal 2 act as a two-edged sword. 
A large amount of contradictory data exists regarding the exact 
role which the two Hyals possess in tumor progression. For exam-
ple, Bouga et al. showed an increased expression of Hyal 1 and 
Hyal 2 in colorectal cancer (132). The overexpression of Hyal 1 
also promoted mammary tumor growth and an increased tumor 
angiogenesis (133). Due to its high expression in the serum of 
epithelial ovarian cancers (134) and the urine of bladder cancer 
(135), Hyal 1 is also considered to function as a biomarker for 
those tumor types. However, a large amount of studies exist that 
contradict the concept of Hyals functioning as tumor promoters. 
For example, the overexpression of Hyal 1 inhibited tumorigen-
esis in rat colon cancer cells (136), while adenovirus-mediated 
expression of Hyal 2 could suppress tumor growth in mice (116, 
137). Consistent with those observations, Frost et  al. reported 
that a decreased Hyal 1 activity enhanced tumorigenesis in 
tobacco-related carcinoma of the head and neck region (138). 
The controversial roles of Hyal 1 and Hyal 2 in tumorigenesis are 
extensively reviewed elsewhere (5, 139–141). However, this selec-
tion of contradictory data already indicates that Hyal 1 and Hyal 2 
might promote as well as suppress tumor growth and progression 
in vivo and that the regulation of Hyal 1 and Hyal 2 activity might 
be part of a tightly balanced regulation system involving synthesis 
and degradation pathways.
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So far, there is no role described for the other four Hyals 
within tumorigenesis. Hyal 3 seems to have a non-enzymatic 
role regulating Hyal 1 (142); PH20 is a testicular enzyme that is 
important during mammalian fertilization events as it enables 
conception (143); Hyal 4 appears to be a chondroitinase without 
activity against HA (124, 144) and the pseudogene PHYAL 1 is 
transcribed but not translated in humans (144), however, it might 
be able to influence mRNA stability for homologous coding genes 
as pseudogenes are generally able to do so (145).

Regarding the mechanism of HA degradation on the tissue 
level, one can say that it involves Hyal 2 which gathers HMW-HA 
to the cellular surface, potentially in combination with cellular 
HA receptors such as CD44 (144, 146). The influence of CD44 in 
this process was underlined by using antibodies that block the 
clustering of CD44, which successfully inhibited the endocyto-
sis and cleavage of HA dependent on the experimentally used 
cell type by at least 50% (116). By Hyal 2 HMW-HA is cleaved 
to 20 kDa fragments that are internalized by receptor-mediated 
endocytosis. Then, the HA fragments are intracellularly deliv-
ered to the endosome and subsequently to the lysosome where 
Hyal 1 in combination with two lysosomal β-exoglycosidases 
(β-glucuronidase and β-N-acetyl-glucosaminidase), finally, 
degrades the 20  kDa fragments. Within this process, there 
might be one step missing, in which oligo-HA is trimmed 
to a size small enough to exit the lysosome either by passive 
diffusion or by receptor-mediated exit (144). This scheme of 
divided responsibilities between Hyal 1 and Hyal 2 is supported 
by gene knockout studies. While Hyal 2 knockout is lethal in 
mice at the embryonic state or does have severe defects, the 
knockout of Hyal 1 can largely be compensated by the lyso-
somal β-exoglycosidases (21). A general cleavage mechanism 
for HA by Hyals was proposed and described earlier in further 
detail (122).

Degradation of HA by Radicals
In addition to the enzyme-mediated cleavage, HA may also be 
degraded by radical scission caused by ROS or free radicals (see 
Figure 4) (130, 147). Interestingly, the radical scission of HA leads 
to chemically modified HA fragments containing chloramides 
and unsaturated end groups (148). These modified end groups 
might have different bioactivities compared to the fragments 
produced by Hyals.

The ROS are accumulated at the site of tissue injury, at sites 
of inflammation, and within the tumor microenvironment. They 
may provide a mechanism for generating HA fragments in vivo 
and may further exaggerate the inflammatory state as HA frag-
ments have shown the significance of HA size in the course of 
disease (100).

SiZe MATTeRS—HA AT DiFFeReNT SiZeS

Obviously, a paradox exists between the high HA levels found in 
the naked mole rat, which are attributed to the animal’s cancer 
resistance, and the high HA levels in human cancerous tissues, 
which are indicative of a bad prognosis. To understand this fun-
damental issue, one must consider the different sizes in which HA 
can occur in the human body and their biological role.

In physiological as well as pathological conditions, the rapid 
HA turnover results in the constant presence of distinct forms 
of HA, each of which is characterized by polymer length and, 
thus, molecular weight. To understand the role of HA size in 
homeostasis and cancer, it is essential to distinguish these various 
molecular weight forms of high molecular weight HA (HMW- 
HA, >1,000  kDa), medium molecular weight HA (MMW-HA, 
250–1,000  kDa), low molecular weight HA (LMW-HA, 
10–250 kDa), and oligomeric HA (oligo-HA, <10 kDa) (5), and 
to compare them to the unique very high molecular weight HA 
(vHMW-HA, >6,000 kDa) of the naked mole rat (30) (Figure 5). 
By no means, these groups are distinctly distributed; in many 
settings, including cancer, the molecular weight of HA shows a 
polydisperse distribution in human tissues (149, 150).

Caveats to HA Size
The number of studies attributing the functional diversity of HA 
to its size and molecular weight is comprehensive. Nevertheless, 
other variables such as conformation, content, and purity of HA 
as well as the content of HA in the ECM can also influence and 
affect the different roles of the GAG. For example, HA chains 
at different length scales can adopt different conformational 
states—extended, condensed, and relaxed—which are depend-
ent upon pH, temperature, and salt concentration (151). Small 
changes in the local environment readily alter the conformation 
of HA and this was shown to affect the role of the GAG in bio-
logical processes such as the interaction with the complement 
system (152–154). Furthermore, the different preferences of short 
and long HA chains to involve in intermolecular interactions to 
form aggregates further expand the variety of molecular shapes 
of HA (155). Conformational change and/or self-association of 
HA shows influence on the viscoelastic (149) as well as bind-
ing properties (156) of HA. There is evidence that binding of 
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HA to different proteins strengthens distinct conformations of 
the GAG resulting in complexes with unique architecture and 
biologic properties. In this context, the covalent modification of 
HA by heavy chains derived from the plasma inter-α-inhibitor 
serves as an example how the function of HA can be regulated 
via direct and indirect interaction of proteins (157). Artificial, 
chemical modification can also affect the function of HA 
in vitro: selectively N-acylated and N-butyrylated HA fragments 
modulated the production of inflammatory cytokines in human 
macrophages (158). The artificial modification of HA with sulfate 
groups influenced the binding affinities to recombinant human 
bone morphogenetic protein-4 (159) and recombinant human 
transforming growth factor-β1 (TGF-β1) (160). In both cases, a 
higher degree of sulfation led to a stronger interaction (159, 160). 
Sulfated HA was demonstrated to inhibit Hyals and to function 
as a molecule with antitumor activity (161).

Another issue to consider when investigating the biological 
activity of HA is the source and way of preparation. Concerns 
have arisen that the pro-inflammatory effects reported for 
LMW-HA and oligo-HA are the result of inadequate purifica-
tion and processing. HA from the umbilical cord was associated 
with DNA and protein contaminants (162), which possess 
pro-inflammatory activity (163). Dong et al. also reported that 
endotoxin contamination in human umbilical cord HA, bovine 
testes, and Streptomyces hyaluronlyticus hyaluronidase prepara-
tions was responsible for cytokine production in dendritic cells or 
macrophages. By contrast, endotoxin-free pharmaceutical grade 
HA and HA fragments failed to induce similar inflammatory 
responses (164). Such results emphasize the high importance of 
excluding contamination in HA preparation.

It is important to bear in mind that the functional diversity of 
HA can partially be attributed to factors, such as conformation, 
content, modification, and purity. However, standing alone, none 
of them can fully explain the ambivalent roles of HA in the ECM. 
Closer assessment reveals that the size of HA directly interlinks 
with the varying biological activities of the GAG and, thus, 
functions as key player and main contributor. For this reason, 
this review specially emphasizes the importance of the distinct 
molecular weight forms of HA which can be found in humans 
and naked mole rats (Figure 5).

High Molecular weight HA
The molecular weight of HA varies and has great impact on the 
physiological functions and activities of HA (27): in homeostasis, 
HA is found in its HMW form in almost all human tissues (5). Due 
to its biophysical properties, HMW-HA serves as lubricant, space-
filler, and shock absorber in joints and connective tissues (5, 29). 
HMW-HA also plays an essential role during embryogenesis (18, 
21). Embryonic stem cells highly express the polymer throughout 
the whole process of epithelial–mesenchymal transition (165). 
The presence of endogenously produced HMW-HA-rich matrices 
is critical in the development of various tissues, such as the brain 
(166), the hematopoietic system (167), and the heart (168).

Furthermore, HMW-HA promotes anti-inflammatory, 
anti-proliferative, and anti-angiogenic effects (5, 27, 28). For 
example, intraperitoneal treatment with HMW-HA com-
pletely inhibited monocyte and neutrophil infiltration in a 

lipopolysaccharide-induced lung injury model (169). HMW-HA 
deposition is also reported to have a favorable outcome in wound 
healing [reviewed in Ref. (170)].

The protective roles of HMW-HA in the human body do not 
only apply to inflammation, embryogenesis, and wound healing 
but are also visible in tumorigenesis. In different tumor models, 
HMW-HA prevented cancer cell migration (171) and regrowth 
(172), as well as the synthesis of pro-inflammatory mediators 
(173). The protective effects of HMW-HA are not solely limited 
to primary tumor progression. A recent study also indicated 
an antimetastatic role for HMW-HA (174). Treatment with 
HMW-HA strengthened the monolayer integrity of cancer lym-
phatic endothelial cells, thus, preventing cancer cell outgrowth 
(174). Due to its anticancer effects observed after exogenous 
application, HMW-HA is regarded as an attractive agent to 
support both adjuvant and neoadjuvant chemotherapy (5, 83).

Opposing to the cancer resistance of the naked mole rat 
due to vHMW-HA and the previously described involvement 
of HMW-HA in cancer inhibition, cancer-promoting effects of 
HMW-HA have also been reported. For instance, HMW-HA 
is capable of promoting angiogenesis and cell migration in the 
hepatocellular carcinoma cell line HepG2iso and in primary 
human umbilical vein endothelial cells via CXCL12-dependent 
signaling through the HA receptor CD44. In contrast to that, 
small HA oligosaccharides inhibit these effects (175). Guo et al. 
showed that not only angiogenesis but also tumor lymphangi-
ogenesis is promoted by HMW-HA. Xenografts with hepato-
cellular carcinoma Hca-F cells were used to observe the effects 
of HA on lymphangiogenesis. As a result, HMW-HA treated 
tumors exhibited intratumoral lymphatic vessels that could not 
be detected in untreated tumors (176).

Moreover, HMW-HA plays a role in several aspects regard-
ing breast cancer. Bourguignon et al. reported that binding of 
HMW-HA to CD44 promotes chemotherapy resistance and 
anti-apoptosis in breast cancer cells. These oncogenic effects 
are caused by an activation of protein kinase C ε (PKCε) and 
a subsequent microRNA-21 production via Nanog signaling 
(177). HA/CD44 signaling is also involved in the invasive 
behavior of breast cancer cells. Binding of HA polymers to CD44 
activates the c-Src kinase that leads to microRNA-10b produc-
tion via Twist phosphorylation. Eventually, these occurrences 
enable invasion of breast tumor cells due to downregulation of 
HOXD10, a tumor suppressor protein, the overexpression of 
RhoC, and activation of ROK (178).

Stromal fibroblasts in the microenvironment of lung tumors 
presented tumor-promoting features, including tumor growth, 
survival, and drug resistance. The p38-HA pathway was identi-
fied as crucial regulator of these tumor-promoting fibroblasts. 
Kras-driven lung cancerogenesis leads to the activation of 
p38MAPK which subsequently supports the activation of 
HAS2. As a complete knock-down of p38MAPK is lethal in the 
embryonic state, a knock-in mouse strain with a substitution 
of Tyr182 with Phe was created (p38ki/ki mice). The substitution 
causes a significant decrease of p38MAPK expression without 
lethal consequences. The expression of HAS2 is downregulated 
in lung fibroblasts from p38ki/ki mice. Co-culture of lung cancer 
cells with lung fibroblasts of p38+/+ or p38ki/ki mice revealed a 
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decreased tumor cell growth when cultivated with p38ki/ki cells. 
Interestingly, the addition of HMW-HA to the cells completely 
reversed the lacking tumor-promoting effects of p38ki/ki cells. 
The same results were obtained by an overexpression of HAS2 in 
p38ki/ki cells due to a HAS2 plasmid. This demonstrates that the 
p38MAPK-dependent activation of HAS2 and the subsequent 
production of HMW-HA are crucial for the tumor-promoting 
features of fibroblasts (179).

The variety of studies reveals that the effects of HMW-HA on 
different aspects of cancer, such as development, invasiveness, 
or drug resistance, are opposing and seem to greatly depend on 
cancer type.

Nevertheless, there are several studies reporting the impor-
tant role of HMW-HA as a tissue protector and homeostasis 
promoter after injury and inflammation (5, 83, 180). However, 
as we have particularly seen for cancer, diseases are associated 
with an increased HA level. Regarding the protective effects of 
HMW-HA, the question arises which roles the other molecular 
weight groups of HA play (see Figure 5).

Pathological circumstances, such as inflammation, show 
evidence for an elevated HA fragmentation resulting in a higher 
level of HA polymers with a lower molecular weight [reviewed 
in Ref. (29)]. Especially in human cancer, the weight distribution 
of HA is shifted toward lower molecular weight forms. These 
shorter bioactive HA fragments can interact with cancer cells 
and influence their behavior differently compared to HMW-HA 
(5, 181–183).

In cancer and other diseases, the harmful effects of the lower 
molecular weight forms of HA—oligo-HA in particular— 
predominate.

Oligo-HA
The equivocal effects of oligo-HA either acting as tumor pro-
moter or tumor suppressor represent a disputed issue within the 
scientific community. One of the main fundamental obstacles to 
clarifying this issue lies in the fact that the effects of oligo-HA on 
transformed cells are much more pleiotropic than on the non-
transformed counterparts affected in other diseases (5).

While HMW-HA is known to support tissue homeostasis, HA 
breakdown products can be regarded as a cellular alarm signal 
(29, 139). There are several pieces of experimental evidence 
for the pro-inflammatory effects of oligo-HA enhancing and 
promoting tumor growth and metastasis: oligo-HA stimulated 
the proliferation of papillary thyroid carcinoma cells in vivo via 
a toll-like receptor (TLR) 4-dependent signaling mechanism 
(182). Further involvement of TLR4 as a mediator of tumor-
promoting oligo-HA signaling was reported for a melanoma 
tumor model. Oligo-HA exposure of human melanoma cells 
led to the activation of the NF-κB pathway resulting in an 
increased expression of matrix metalloproteinase (MMP) 2 and 
the inflammatory cytokine IL-8 (184). Another study reported 
an oligo-HA-induced physical interaction between the main HA 
receptor CD44 with TLR2 and TLR4 causing pro-inflammatory 
cytokine and chemokine production in breast cancer cells 
via NF-κB transcription (181). HMW-HA could not activate 
this pro-inflammatory signaling cascade (181). Likewise, only 
oligo-HA, not HMW-HA, increased the phosphorylation of the 

receptor tyrosine kinase c-Met, also known as hepatocyte growth 
factor (HGF) receptor, in chondrosarcoma cells resulting in an 
enhanced cell proliferation, differentiation, and invasion (185).

Oligo-HA also promotes early steps in metastasis. For exam-
ple, a recent study showed that oligo-HA disrupted tight junctions 
in a cancer lymphatic endothelial cell monolayer and promoted 
cancer lymphatic metastasis by weakening cellular integrity 
(174). It seems likely that oligo-HA exerts similar effects on non-
transformed lymphatic vessel cells since the amount of oligo-HA 
in the tumor interstitial fluid of colorectal cancers could be cor-
related with lymphatic invasion and lymph node metastasis (67).

Furthermore, oligo-HA acts as a potent inducer of angiogenesis 
(186). HA fragments mediate their angiogenic properties either 
by directly activating endothelial cell differentiation (187) or by 
stimulating the secretion of angiogenic growth factors (188). In 
response to oligo-HA, both tumor cells and tumor-associated 
stromal cells, such as fibroblasts and macrophages, can synthesize 
angiogenic factors known to affect endothelial cell proliferation, 
migration, and differentiation (189). The role of the immune 
system in oligo-HA-mediated angiogenesis was recently reviewed 
by Spinelli et al. (190). It is suggested that oligo-HA modulates 
angiogenesis through the activation of Raf-1, ERK1/2, and early 
response genes, including c-fos and c-jun through the receptors 
CD44 and the receptor for HA-mediated motility (RHAMM) 
(139, 191). Interestingly, there are reports that the angiogenic 
potential of oligo-HA depends on the exact size of the oligomer 
(192). In this context, Stern et al. provides an overview of signal 
transduction pathways addressed by HA oligomers with different 
polysaccharide lengths (29). This indicates that HA size is a main 
factor for deciding which cellular responses are addressed and 
to which extent they are stimulated. Nevertheless, oligo-HA-
mediated angiogenesis serves as an example of how malignancies 
can exploit normal physiological functions, originally attributed 
to healing processes, for their own purposes (139). Therefore, 
with the help of oligo-HA, different tumor cells can promote their 
adhesion, angiogenesis, and invasion by manipulating cellular 
pathways.

Oligo-HA—Only the Bad Guy?
In contrast to its tumor-promoting effects, oligo-HA has also 
shown protective effects in cancer. For example, Zeng et  al. 
observed the inhibition of B16F10 melanoma growth in vivo after 
the injection of oligo-HA (193). One of the main mechanisms 
by which oligo-HA was found to mediate its tumor-suppressing 
effects is the activation of apoptosis.

The administration of oligo-HA triggered apoptosis in many 
types of tumors (194, 195), whereas healthy cells were left unaf-
fected (195). Several studies reported that the specific activation 
of apoptosis in tumor cells depends on the interaction of oligo-HA 
with CD44. For example, oligo-HA suppressed tumor progres-
sion in a highly metastatic breast cancer cell line as it disrupted 
the endogenous interaction of HMW-HA with CD44 (183).

However, oligo-HA-mediated signaling does not only influ-
ence tumor cells themselves. In a colorectal carcinoma model, 
oligo-HA triggered the activation of the immune system by 
enhancing the expression of costimulatory molecules on den-
dritic cells (196). Therefore, oligo-HA can exert its anticancer 
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in cancer, HMW-HA mainly protects the human tissue. As reviewed above, 
various studies report this role distribution for HMW-HA and oligo-HA. 
Nevertheless, role reversal seems to be possible. vHMW-HA represents a 
silver bullet unique for naked mole rats as the high cancer resistance of the 
animal was attributed to this molecular weight form. The pyramid shape 
symbolizes the polymer length and, thus, molecular weight of each HA 
group.
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activity not only by inducing apoptosis but also by enhancing the 
body’s immune response (196).

Furthermore, oligo-HA may offer a novel basis for the 
development of anticancer drugs as the exogenous application 
of oligo-HA converted chemoresistant tumor cells into drug-
sensitive cells (195). For example, it was shown that oligo-HA can 
sensitize various tumor cell lines such as lymphoma cells (197), 
ovarian carcinoma cells (198, 199), and myeloid leukemia cells 
(200) to chemotherapy.

There is no doubt that oligo-HA is a very interesting molecular 
weight form of HA. However, by looking at an ever-increasing 
number of functionally and pathologically distinct tumors, further 
research is required to uncover the main underlying issues for the 
shape-shifting properties of this molecule. Therefore, it is most 
likely that the exact role of oligo-HA in a specific tumor setting 
varies depending on the oligomer size, concentration, and modi-
fication, as well as the cancer type and the involved healthy tissue.

HA Size As Sensor element
In conclusion, HMW-HA and oligo-HA can trigger different 
cellular functions and responses (Figure 6). In the homeostatic 

state, HMW-HA represents the most abundant molecular weight 
group of HA, whereas under pathological circumstances, such 
as inflammation and cancer, the size distribution shifts, and 
smaller HA polymers become present at significant levels (29). 
Smaller HA polymers bind HA receptors with the same affinity 
as HMW-HA but with reduced avidity due to fewer multivalent 
interactions (201). However, the length of HA influences the 
number of HA receptors bound by a single HA molecule. Thus, 
the induced HA receptor clustering depends on the molecular 
weight of HA (202, 203). In the case of HA oligosaccharides, this 
becomes visible in the physiological as well as the pathological 
setting. The constant fragmentation of HMW-HA is required 
to coordinate cellular activities, for example, in wound heal-
ing [reviewed in Ref. (170)] as well as in tumor progression. 
As oligo-HA and HMW-HA compete in receptor binding (5), 
the exact HA size distribution in a cellular microenvironment 
determines eventually which kind of cellular responses are 
addressed. Therefore, HA size matters (180) and, moreover, 
can be regarded as a sensitive element reflecting the state of a 
cellular microenvironment. In this context, the biology of HA 
was stated to function as a cellular biosensor system analyzing 
and conveying environmental states (149).

HYALADHeRiNS—MeDiATORS  
OF CeLLULAR ReSPONSe

As shown above, the effects mediated by HA are strongly depend-
ent on its size in tissue homeostasis as well as in pathologies, 
such as cancer. However, in order to translate its size-dependent 
signals into cellular functions, HA needs to interact with the 
HA-binding proteins, the main mediators of HA-induced cel-
lular response.

The HA-binding proteins, also known as hyaladherins, com-
prise specific motifs to bind HA, including the link module and 
the B(X7)B motif (16, 21). Some of those hyaladherins, such as 
versican and aggrecan, serve as a part of the ECM, others act 
as HA receptors directly interfering with the cellular functions 
(16, 21). The main HA receptors are CD44, __RHAMM, __Lyve-
1, and __HARE (101, 204). Whereas HARE is responsible for 
the endocytosis-mediated clearance of GAGs, including HA, 
Lyve-1 is known to regulate the tissue HA level by mediating 
the transport of HA from tissues to the lymphatic system (101, 
204). In contrast to Lyve-1, HARE, and CD44, RHAMM lacks 
a transmembrane domain and is, thus, localized intracellularly 
within the cytosol or the cell nucleus and can be secreted to the 
extracellular space (21, 101). Due to its ability to interact with 
the cytoskeleton as well as with signaling molecules, including 
diverse kinases (15, 101), RHAMM is a key player in regulating 
cell motility and migration and, thus, is especially involved in 
the processes of tissue injury and wound healing (204). Besides, 
RHAMM was also reviewed to regulate mitosis (21) as well as 
the proliferation of fibroblasts (204) and to be expressed on a 
variety of cell types, including endothelial but also tumor cells 
(101, 204).

Although the HA receptors are the most commonly known 
regulators of HA-dependent cellular responses, there are more 
HA-related proteins influencing the cell’s behavior: for instance, 
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the hyaluronidase Hyal 2 is not only capable of binding and 
degrading HA as described above. Hyal 2 was also reported to 
act as a receptor for TGF-β1 by recruiting the tumor suppres-
sors WW domain-containing oxidoreductase (WWOX) and 
Smad4 (205, 206). As a consequence, a Smad4/Hyal 2/WWOX 
signaling complex was shown to be formed and translocated to 
the nucleus where it increased the SMAD-promoter-dependent 
transcriptional activity and—in case of overexpression of the 
signaling complex—also led to apoptosis (205, 206). Further 
treatment of the cells with HA enhanced the formation of the 
signaling complex as well as its translocation (206), emphasiz-
ing an involvement of HA. The same signaling pathway may 
underlie the zinc finger-like protein that regulates apoptosis 
(Zfra)-induced tumor suppression and cancer resistance in mice 
(207) as well as neuronal death caused by traumatic brain injury 
in rats (206, 208). Whereas the Hyal 2/WWOX/Smad4 signal-
ing pathway was shown to be CD44 independent (205), further 
Hyal 2-mediated functions, such as the HA degradation process 
[(146); described in Chapter 7.1] and the CD44–ezrin, radixin, 
moesin (ERM)-mediated cell motility (209), rely on Hyal 2 as a 
co-receptor with CD44 for HA.

Since the HA receptors and Hyal 2 have generally been 
reviewed extensively elsewhere (15, 21, 101, 204, 208), within this 
review, we will focus on the most abundant HA receptor: CD44.

CD44—A Highly Diverse Cell Surface 
Receptor
CD44 is a type I transmembrane protein that consists of an 
N-terminal HA-binding domain, a membrane-proximal stem 
region, a transmembrane, and a cytoplasmic domain (from 
extracellular to intracellular) (210). Due to alternative splicing 
of the CD44 transcript, there exists a variety of CD44 isoforms 
differing mainly in the length of the membrane-proximal stem 
region (210). Whereas the most widely expressed standard 
CD44 (CD44s or CD44h) includes none of the variant exons, 
the variant CD44 isoforms (CD44v), containing some of the 
variant exons, are expressed in a more restricted manner. For 
example, CD44v can be found on epithelial, endothelial, and 
immune cells, but they are also associated with diverse diseases, 
such as rheumatoid arthritis, diabetes, multiple sclerosis, and 
cancer (211–213).

This variety of CD44 isoforms is even more increased by 
the differing posttranslational modifications of the CD44 mol-
ecule that include glycosylation of the extracellular domains, 
palmitoylation of the membrane-proximal intracellular part, 
phosphorylation of the cytoplasmic domain, as well as sulfa-
tion and the attachment to GAGs (211, 214). In particular, the 
posttranslational glycosylation of CD44 was shown to modulate 
the receptor’s HA-binding affinity (215). However, studies 
reported contradicting effects, indicating inhibitory as well as 
stimulatory effects of CD44 glycosylation on the HA-binding 
affinity (214, 216). These opposing effects might be due to the 
presence or absence of N-acetylneuraminic acid, also known as 
sialic acid, in the attached glycan as observed in a molecular 
simulation study investigating the HA-binding properties of the 
CD44 receptor (214). By contrast, the palmitoylation of CD44 is 

responsible for the receptor’s affinity to the so-called lipid rafts, 
specific membrane regions enriched in adhesion and signaling 
molecules (217). As a part of those signaling platforms, CD44 
is able to associate with members of the Src kinase family and 
receptor tyrosine kinases modulating cell motility as well as 
signal transduction (211). Thus, the posttranslational modifica-
tions of CD44 not only regulate the HA-binding affinity but also 
the intracellular signaling and, thus, the cellular response to HA 
binding by CD44.

Although HA is known to be its principal ligand, CD44 was 
also shown to bind ECM proteins, such as collagen or fibronectin, 
as well as diverse growth factors, cytokines, chemokines, MMPs, 
and osteopontin (210, 211). Some of those ligands require specific 
posttranslational modifications or parts of the variant exons in 
order to bind CD44. For example, the fibroblast growth factor 
2 (FGF2) binds to the heparin sulfate site on variant exon 3. 
HGF and vascular endothelial growth factor (VEGF) are bound 
through a site on CD44v6 (218). By binding such factors, CD44 
might function as a gathering site bringing together enzymes and 
substrates as well as ligands and their receptors (210).

Regarding signal transduction, CD44 not only functions as 
a co-receptor for several pathways, such as the ERBB signaling 
[reviewed in Ref. (68, 210)]. The cytoplasmic domain of CD44 
may even directly associate with diverse signaling molecules 
[reviewed in Ref. (68, 210)]. Furthermore, the cytoplasmic 
domain of CD44 provides an ankyrin-binding site as well as a 
motif to bind the ERM proteins. As those ERM proteins may 
also bind to filamentous actin, they serve as linker molecules 
between CD44 and the actin cytoskeleton, so that CD44 may 
impact the ERM-mediated signaling as well as the organization 
of the actin cytoskeleton (210, 218). However, this process seems 
to be tightly regulated by phosphorylation of the ERM proteins 
as well as merlin, a protein related to the ERM proteins but acting 
as their antagonist (210, 219). Whereas phosphorylated ERM 
proteins bind to CD44 and induce cell growth, dephosphorylated 
merlin replaces ERM proteins from their binding site mediating 
cell growth arrest (210, 219). In naked mole rats, this interplay 
between merlin and CD44 is crucial for the ECI as described 
above. Since the dephosphorylation of merlin might be induced 
by high cell density or an accumulation of HMW-HA in the 
extracellular microenvironment (210), the CD44-mediated 
signaling may act as a biosensor for the cell’s microenvironment.

Taken together, the diversity of cellular responses induced 
by CD44 is regulated on several levels: (i) alternative splicing, 
(ii) posttranslational modifications, (iii) ligand binding, and 
(iv) association of CD44 with signaling as well as cytoskeletal 
molecules (Figure 7).

However, the diverse processes resulting from the variety of 
CD44 and its interaction partners [reviewed in Ref. (210–212, 
218)] depend on the cellular microenvironment, the cell type, and 
the growth conditions (211). Thus, the CD44 functions are also 
exploited in diverse pathologies, such as cancer.

CD44—Contributor to Malignancy
In human tumors, not only the expression level of CD44 is 
increased (220), for solid tumors, CD44 was also reported to be 
overexpressed in an activated, high-affinity state in tumor-derived 
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be regulated on several levels: the alternative splicing in the stem region of 
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modifications and binding sites. The posttranslational modifications (indicated 
as orange dots) may regulate the receptor’s binding affinity and localization. 
Besides its principal ligand hyaluronan (HA), CD44 and especially its variant 
isoforms may also bind other ligands, such as fibroblast growth factor 2 
(FGF2), vascular endothelial growth factor (VEGF), and matrix 
metalloproteinases (MMPs). Intracellularly, CD44 bears binding sites for 
ankyrin and the ezrin, radixin, moesin (ERM) proteins in order to interact with 
the cytoskeleton. But CD44 may also associate with a variety of receptors 
and signaling molecules as a co-receptor or via its cytoplasmic domain (data 
not shown in the figure).
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compared to non-tumorigenic cells (211). Moreover, the expres-
sion pattern of the CD44 variants is altered in a broad range of 
human tumors [reviewed in Ref. (220)]. In tissues of human 
colorectal cancer, the expression level of CD44v6 was shown to 
be even correlated with tumor progression since the number of 
CD44v6-positive tumors as well as the number of positive cells 
and the expression level of the CD44 isoform within the tumors 
were increasing with advancing stages of the disease (221). Thus, 
CD44 and its variant isoforms might be associated with tumor-
promoting processes.

Indeed, the expression of CD44 variants has an impact on 
tumor progression. For example, CD44v6 is able to bind ligands, 
such as HGF and VEGF (218), activate their receptors, c-Met 
and VEGFR-2, and recruit the F-actin-bound ERM proteins to 
its cytoplasmic domain as required for the c-Met- and VEGFR-2-
induced intracellular signal transduction [(222–224); reviewed in 
Ref. (225)]. Through those signaling pathways, CD44v6 is related 
to processes, such as cell proliferation, differentiation, and migra-
tion (223) as well as angiogenesis (224), and processes associated 
with metastasis formation.

Furthermore, human tumor tissues of several entities, includ-
ing gliomas, breast, lung, colon, and ovarian carcinomas, have 
shown an increased cleavage of CD44 within the extracellular 
domain (226). This proteolytic cleavage of CD44 is induced by 
extracellular Ca influx, PKC, as well as the Rac and Ras onco-
genes, and mediated by MMPs as well as a disintegrin and metal-
loproteinase (ADAM) proteins. As a consequence, soluble CD44 

is released to the ECM competing with the membrane-bound 
CD44 for HA binding and, thus, regulating cell adhesion to as 
well as cell migration on the pericellular HA coat (218, 227). 
Besides, the extracellular CD44 cleavage might also induce the 
presenilin-dependent γ-secretase-mediated proteolysis of the 
remaining CD44 within its transmembrane region giving rise 
to a separated CD44 intracellular domain that may trigger the 
transcription of the CD44 gene to regenerate the expression of 
CD44 on the cell membrane (218, 227, 228). Thus, by modulating 
the CD44 turnover (227), the function of CD44 in cell adhesion 
and migration is exploited to mediate tumor cell migration.

However, these are only examples for the role of CD44 in can-
cer. As a consequence of its structural diversity and its ability to 
interact with a plethora of extracellular ligands, transmembrane 
proteins as well as cytoplasmic molecules, CD44, and its variants 
are generally involved in a high number of tumor-promoting 
processes [reviewed in Ref. (68, 210, 211, 218)]. Nevertheless, 
considering the naked mole rat, there was one process crucial for 
its cancer resistance: the contact inhibition.

The contact inhibition is a process that usually induces cell 
growth arrest in cells when they reach complete confluence 
and contact each other (38). In naked mole rats, this induction 
of cell growth arrest already takes place at lower cell densities 
than in other organisms due to their so-called ECI that is based 
on an interaction of the naked mole rat’s vHMW-HA with its 
receptor CD44 and a cytoplasmic association of CD44 to mer-
lin (see Figure 3) (30). This HA-induced association between 
CD44 and merlin was also observed during contact inhibition 
in a rat schwannoma cell line among others (219). In this study, 
Morrison et al. even showed that the interaction of CD44 and 
merlin is highly regulated by a contact-induced hypophos-
phorylation of merlin resulting in the replacement of the cell 
growth-mediating ERM proteins by the hypophosphorylated 
merlin at the cytoplasmic domain of CD44 and the induction of 
cell growth arrest (219).

However, cancer cells lose their ability of contact-induced cell 
growth arrest and gain the function to grow in an anchorage-
independent manner (38, 68). This anchorage-independent 
growth of cancer cells was reported to be enhanced by HA 
(68, 229, 230) and mediated by downstream activation of the 
phosphoinositide 3-kinase (PI3K)/Akt survival pathway (68). 
Especially, an overexpression of the HAS2 resulting in an 
overproduction of HA showed an increase in anchorage-
independent growth (229, 230). But by overexpressing soluble 
CD44 or applying HA oligomers this process could be inhibited 
(194, 231). Ghatak et al. further showed that the inhibition of 
anchorage-independent growth by HA oligomer treatment 
coincides with an induction of apoptosis and a downregulation 
of the PI3K/Akt survival pathway (194). Similar effects were 
observed when treating the cancer cells with an antibody against 
CD44 (194). Thus, CD44 seems to be involved in the processes 
of contact inhibition in normal cells as well as the anchorage-
independent growth of cancer cells. Since the latter could be 
inhibited by HA oligomer treatment, it also seems like the size of 
HA matters. However, the exact mechanisms causing the switch 
from contact-sensitive toward anchorage-independent growth 
in cancer cells remains to be elucidated.
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ePiLOGUe

Overwhelmed by the sheer flood of faces the simple sugar chain 
of HA can assume, the researcher looked away from his laptop 
and out of the window. Surely, there were tremendous obstacles 
to be overcome in the future but for the first time in months he 
had an idea how to carry on his research to fight cancer. Thinking 
of this extraordinary rodent and the unexpected, though auspi-
cious, connection to the sugar, all mammals bear within them, he 
smiled, grabbed his coat, and went off to the lab.
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