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Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo-SP, Brazil, 5 Laboratório de
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Abstract

Patients bitten by snakes consistently manifest a bleeding tendency, in which thrombocyto-

penia, consumption coagulopathy, mucous bleeding, and, more rarely, thrombotic microan-

giopathy, are observed. Von Willebrand factor (VWF) is required for primary hemostasis,

and some venom proteins, such as botrocetin (a C-type lectin-like protein) and snake

venom metalloproteinases (SVMP), disturb the normal interaction between platelets and

VWF, possibly contributing to snakebite-induced bleedings. To understand the relationship

among plasma VWF, platelets, botrocetin and SVMP from Bothrops jararaca snake venom

(BjV) in the development of thrombocytopenia, we used (a) Wistar rats injected s.c. with BjV

preincubated with anti-botrocetin antibodies (ABA) and/or Na2-EDTA (a SVMP inhibitor),

and (b) VWF knockout mice (Vwf-/-) injected with BjV. Under all conditions, BjV induced a

rapid and intense thrombocytopenia. In rats, BjV alone reduced the levels of VWF:Ag, VWF:

CB, high molecular weight multimers of VWF, ADAMTS13 activity, and factor VIII. More-

over, VWF:Ag levels in rats that received BjV preincubated with Na2-EDTA and/or ABA

tended to recover faster. In mice, BjV caused thrombocytopenia in both Vwf-/- and C57BL/6

(background control) strains, and VWF:Ag levels tended to decrease in C57BL/6, demon-

strating that thrombocytopenia was independent of the presence of plasma VWF. These

findings showed that botrocetin present in BjV failed to affect the extent or the time course of

thrombocytopenia induced by envenomation, but it contributed to decrease the levels and

function of plasma VWF. Thus, VWF alterations during B. jararaca envenomation are an

ancillary event, and not the main mechanism leading to decreased platelet counts.
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Author summary

Envenomation by snakebites is a major burden to tropical and subtropical areas in the

world. Many snake species produce venoms that, when injected into victims, cause bleed-

ings and other associated symptoms and signs. This work aimed to understand the mech-

anisms that lead to a fall in blood platelet counts after bites by a snake that inhabits in

southeastern Brazil, the lance-headed snake Bothrops jararaca (popularly known as jarar-

aca). We used experimental approaches to understand the involvement of a protein from

jararaca venom, called botrocetin, and a protein present in our blood (von Willebrand fac-

tor) in the fall of platelet counts. We observed that botrocetin alters von Willebrand factor,

but this mechanism in not important for the decrease in platelet counts. We show that jar-

araca snake venom disturb blood platelets in a complex and intricate way, and that other

venom compounds are involved in the decrease of platelet counts during snakebite

envenomation.

Introduction

Among the Neglected Tropical Diseases categorized by the World Health Organization

(WHO), snake envenomation has high incidence and severity, especially in tropical and devel-

oping countries [1]. Bothrops sp snakes inhabit Central and South America and represent the

main agent of snakebites in Brazil. The species Bothrops jararaca is of great epidemiological

importance in southeastern Brazil [2]. Bothrops jararaca snake venom (BjV) is composed by a

plethora of toxins that, acting in concert, disrupt the steady state of various physiological sys-

tems, including hemostasis. Bites by this snake engender local and systemic manifestations,

which may result in clinical complications, e.g. kidney failure, shock, hemorrhage or even

death. At the site of the bite, edema, bleeding from the fang marks, petechiae, ecchymosis, blis-

ters and necrosis are observed. Systemically, patients frequently manifest hemorrhagic disor-

ders, such as gingival bleeding, epistaxis, suffusions, petechiae and hematuria [3,4]. At the

laboratory level, patients present hemostatic alterations–e.g. consumption of blood coagula-

tion factors, particularly of fibrinogen, factor V and VIII, thrombocytopenia, and increased

levels of fibrinogen/fibrin degradation products–and inflammatory changes, as increased lev-

els of C-reactive protein and interleukin 6 [4–9]. In vitro, BjV induces platelet aggregation in

washed platelets, activates blood coagulation and promotes fibrin(ogen)olysis [10–13]. The

association between hypofibrinogenemia and thrombocytopenia contributes to the increased

incidence of bleeding in patients bitten by B. jararaca [14], but the development of systemic

bleeding also depends on the reduction of platelet function and other alterations in blood

coagulation, fibrinolysis, and endothelial cells [15–17].

Thrombocytopenia is consistently observed in envenomation by Viperidae snakes, and it is

already known that the magnitude of thrombocytopenia depends on the severity of B. jararaca
envenomation [4]. Interestingly, platelet counts initiate to recover soon after administration of

antivenom, as early as 6 h [4], and stimulation of production of new platelets, evidenced by an

increase in reticulated platelets during the first 48 h of envenomation [17], also occurs. Taken

together, these findings demonstrate that some venom component is directly involved with

thrombocytopenia development and that neutralization by antibodies interrupts the process of

platelet consumption.

Platelet plug formation is dependent on von Willebrand factor (VWF) function. VWF plays

an essential role in primary hemostasis, bridging the binding of platelets to the subendothe-

lium, as well as to other platelets, thereby promoting the formation of the platelet plug in
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injured vessels. More recently, VWF has also been reported to be involved in other inflamma-

tory and infectious conditions [18]. VWF is a large multimeric glycoprotein (GP) (500 to

>10,000 kDa), formed by subunits (approximately 240 kDa) covalently linked by disulfide

bonds. Within each VWF subunit, structural domains that bind to collagen, platelet mem-

brane receptors (GPIbα and GPIIb/IIIa), and blood coagulation factor VIII are present; in fact,

VWF is the carrier protein of factor VIII in circulation, thus protecting it from clearance

[19,20]. VWF is synthesized by endothelial cells and megakaryocytes, and stored in specialized

granules of endothelial cells and platelets, under heterogeneous multimeric sizes, including in

the form of high molecular weight multimers (HMWM). Constitutive secretion by endothelial

cells is responsible for most of the VWF in circulation, but when endothelial cells and platelets

are stimulated by inflammatory cytokines or noxious stimuli, additional VWF is released in

the bloodstream. Under conditions of elevated shear stress, observed in normal vessels in cir-

culation, globular HMWM-VWF unfolds and is cleaved by ADAMTS13, the metalloprotei-

nase that cleaves VWF specifically at the A2 domain (Tyr1605-Met1606), generating VWF

multimers of different molecular masses [18,21–23]. Thus, ADAMTS13 modulates this charac-

teristic heterogeneity in VWF size, which is essential to control the physiological function of

VWF, inasmuch as large VWF multimers have a greater potential to induce platelet activation

and aggregation than small ones [24]. Thus, for the evaluation of VWF, quantitative and quali-

tative laboratory assays are required [25]. Von Willebrand disease (VWD) is a disorder caused

by quantitative or qualitative defects of VWF, and it can be congenital or acquired. Congenital

VWD is one the most prevalent hemostatic disorder in humans, and is characterized by the

manifestation of bruising (petechiae, hematomas, and suffusions), prolonged bleeding from

minor skin trauma, and prolonged bleeding from mucosal surfaces. Acquired VWD occurs

when acquired conditions–particularly associated with neoplastic, immune, infectious or car-

diovascular disorders–cause functional impairment or reduce plasma levels of VWF, interfer-

ing in hemostasis [26–28].

BjV contains three main toxin families: snake venom metalloproteinases (SVMP, 33.6%),

snake venom serine proteases (SVSP, 22.8%), and C-type lectin/lectin-like proteins (18.2%)

[29]. SVMP play a significant role in the pathogenesis of envenomation, and are considered

primary factors responsible for hemorrhage. They have a wide range of activities, including

activation of blood coagulation prothrombin and factor X, and proteolysis of collagen, base-

ment membrane components, fibrinogen/fibrin, and VWF [13,14,30–33]. The second class of

toxins most abundant in BjV is SVSP, and it is known that they mainly affect blood coagula-

tion factors, fibrinolysis, protein C, kininogen, and blood platelets [34]. C-type lectin-like pro-

teins (CTLP) are a family of non-enzymatic proteins, abundantly present in Bothrops venoms,

which may profoundly alter the function of blood platelets, blood coagulation, endothelial

cells and immune cells. Their basic structures consist of heterodimers, formed from α and β
subunits or chains, whose molecular masses are around 14–16 kDa and 13–15 kDa, respec-

tively, covalently linked by disulfide bridges. They have domains related to carbohydrate rec-

ognition, but they may bind to their target proteins independently of carbohydrates or calcium

[35–39]. CTLP are plastic molecules, and hitherto it is not possible to predict if they act as ago-

nists or antagonists based on their amino acid sequence [37]. Five CTLP have been isolated

and characterized in BjV that alter either blood coagulation (jararaca IX/X-binding protein

and bothrojaracin) or blood platelets (botrocetin, botrocetin-2, and jararaca GPIbα-binding

protein (GPIb-BP)) [40–46].

Interestingly, clinical manifestations of hemostatic disorders in B. jararaca snakebite enven-

omation call to mind clinical manifestations of VWD. Levels of circulating VWF markedly

vary in patients bitten by B. jararaca [14], but a reduction in HMWM-VWF was noticed

under more controlled experimental conditions [47]. In addition, SVMP that cleave VWF
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share structural domains with those of ADAMTS13, including the metalloproteinase domain, fol-

lowed by a disintegrin-like and cysteine-rich domains [48]. For example, jararhagin, a SVMP iso-

lated from B. jararaca, cleaves VWF at three Gly–Leu bonds, at positions 1242–1243, 1674–1675

and 1922–1923 [31]. However, besides enzymes that cleave VWF, three CTLP from BjV–botroce-

tin, botrocetin-2 and jararaca GPIbα-binding protein (GPIb-BP)–have been characterized and

shown to interact simultaneously with VWF and platelets. Botrocetin was isolated in 1978 [49]

from BjV, and its structure and mechanism of action have been well characterized. It is a hetero-

dimer protein that binds to both the A1 domain of VWF and platelet GPIba, without inducing

any conformation change in neither of them, thus acting as a biological brace [50]. Purified

2-chain botrocetin causes the rapid consumption of circulating platelets and plasma VWF when

injected i.v. in high doses in normal rats, pigs and dogs, but is innocuous to induce thrombocyto-

penia in VWD animals, showing that the thrombocytopenia was dependent on basal VWF levels

in circulation [51–53]. Botrocetin-2, which was cloned from B. jararaca venom gland, shows a

high similarity to primary botrocetin in regard to its structure, immunogenicity and platelet

agglutinating activity [41]. On the other hand, GPIb-BP binds to platelet GPIbα, but does not

induce platelet activation, and, in fact, it thwarts VWF to bind GPIbα and inhibits botrocetin and

ristocetin-induced platelet aggregation [43,54]. GPIb-BP has a high similarity to botrocetin, and

was reported to induce thrombocytopenia in mice and guinea pigs [42]. Interestingly, despite the

high amino acid similarity between botrocetin, bothrojaracin, and jararaca IX/X binding protein

found in BjV, polyclonal antibodies anti-native bothrojaracin, a CTLP that inhibits thrombin,

shows low cross-reactivity with native botrocetin and jararaca IX/X binding protein, indicating a

higher degree of selectivity of antibodies [55].

By investigating the mechanisms and toxins involved in the coagulopathy and thrombocytope-

nia in individuals envenomed by B. jararaca snakes, we observed that thrombocytopenia and con-

sumption of coagulation factors are independent events in envenomation, and that

thrombocytopenia is independent of the action of SVMP and/or SVSP [56,57]. Indeed, our results

implied that other venom toxin families might be involved in engendering thrombocytopenia.

Once purified botrocetin induces thrombocytopenia by a mechanism that is dependent on VWF,

we investigated herein, using two experimental models, whether botrocetin and VWF are involved

in BjV-induced thrombocytopenia, as the comprehension of these pathophysiological events may

lead to better treatments of hemostatic disorders of patients bitten by B. jararaca snakes.

Results

BjV-induced decrease in fibrinogen and factor V levels is blocked by Na2-

EDTA

All rats injected with BjV had high levels of circulating venom throughout 24 h, but venenemia

tended to peak at 6 h and to decrease at 24 h. No statistically significant difference was noticed

between BjV preincutated with saline or any treatment used, demonstrating that the entrance

of venom proteins in circulation was not hindered (Fig A in S1 Text).

As expected [56,57], rats injected with BjV showed marked hypofibrinogenemia, which ini-

tiated to recover only at 24 h (Fig 1). The falls in fibrinogen and factor V levels were completely

blocked by Na2-EDTA alone or in combination with ABA, demonstrating that SVMP are

essential for consumption coagulopathy in rats [57].

Thrombocytopenia induced by crude BjV is not caused by botrocetin

Thrombocytopenia is a frequent finding during B. jararaca envenomation [4,16,57,58]. In rats,

the nadir of platelet counts occurred at 6 h, which could be associated with higher levels of BjV
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in bloodstream, while restoration of normal platelet counts initiated to occur at 24 h (Fig 2A).

In concert with these findings, higher values of mean platelet volume (MPV) were observed in

all groups injected with BjV at 6 h, suggesting that young reticulated platelets were being shed

from megakaryocytes, as a compensatory mechanism for platelet consumption [8] (Fig 2B).

Fig 1. Plasma fibrinogen (a) and factor V (b) levels in rats 3, 6 and 24 h after BjV administration. Rats were injected with saline alone (saline control, blue bars),

or BjV previously incubated with saline (BjV+saline), anti-botrocetin antibodies (ABA), BjV+Na2-EDTA, or BjV+ABA+Na2-EDTA. ①—Group statistically

different (p<0.05) from the saline control group at the respective time. ②- Group statistically different (p<0.05) from the BjV+saline group at the respective

time. ③—Group statistically different (p<0.05) from the BjV+ABA group at the respective time. Data are expressed as mean ± s.e.m (n = 6–16 rats/group per

time period).

https://doi.org/10.1371/journal.pntd.0009715.g001

Fig 2. Platelet counts (a) and mean platelet volumes (MPV, b) in rats 3, 6 and 24 h after BjV administration. Rats were injected with saline alone (saline control, blue

bars), or BjV previously incubated with saline (BjV+saline), anti-botrocetin antibodies (ABA), BjV+Na2-EDTA, or BjV+ABA+Na2-EDTA. ①—Group statistically

different (p<0.05) from the saline control group at the respective time. Data are expressed as mean ± s.e.m (n = 6–16 rats/group per time period).

https://doi.org/10.1371/journal.pntd.0009715.g002
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Thrombocytopenia occurred in all rats injected with BjV, and preincubation of BjV with

ABA or Na2-EDTA could not prevent it (Fig 2A). ABA could not even partially mitigate the

fall in platelet counts, evidencing that botrocetin was not the main toxin involved in the

thrombocytopenia caused by BjV. Although botrocetin has platelet agglutinating activity in
vitro, and causes thrombocytopenia when administered i.v. in high doses to rats [10], its inhi-

bition by preincubation of BjV with ABA evidenced that botrocetin was not relevant for trig-

gering thrombocytopenia in rats. Thus, botrocetin exerted a feeble role in evoking

thrombocytopenia during envenomation, and other proteins and mechanisms may be attrib-

uted to it. Moreover, the present findings (Fig 2) confirmed that SVMP had no involvement in

venom-induced thrombocytopenia [7,57].

VWF antigen levels and activity tend to decrease during BjV envenomation

Another facet of botrocetin activity is to promptly induce VWF consumption, particularly

of HWMW-VWF, when injected i.v. [52,53]. To evaluate the role of plasma VWF in the

hemostatic disorder evoked by B. jararaca envenomation and the participation of botroce-

tin therein, we determined VWF antigen levels, VWF multimeric distribution (by discon-

tinuous SDS-agarose electrophoresis) and VWF collagen-binding activity in plasma. By

analyzing the set of graphs depicted in Fig 3, the first general conclusion drawn from the

results is that VWF:Ag, VWF:CB, and HMWM-VWF varies extremely during BjV enven-

omation (BjV+saline group). Such variation had also been noticed in patients bitten by B.

jararaca [14]. However, there was a general tendency to decrease the levels of VWF:Ag,

VWF:CB, and HMWM-VWF, FVIII, CB/Ag ratio and FVIII/VWF ratio in rats from the

BjV+saline group in comparison with the saline group (p <0.049), especially at 6 and 24 h

(Fig 3). Particularly, preincubation of BjV with ABA and/or Na2EDTA tended to prevent

the falls in the levels of VWF:Ag, VWB:CB levels, and HMWM-VWF induced by BjV+-

saline (p = 0.012), indicating that both botrocetin and SVMP were involved in the dynamics

of VWF alterations during BjV envenomation.

Although botrocetin promptly reduced plasma VWF levels and platelet counts when

administered i.v. in high concentrations [10,11], and that B. jararaca SVMP may promote pro-

teolysis of VWF in vitro [12], a sharp drop in VWF levels, comparable to those of fibrinogen or

platelet counts, was not observed in rats from the BjV+saline group. As a mild reduction in

VWF:Ag levels was present at 3 and 6 h in the BjV+saline group, we inferred that VWF:Ag

was being cleaved and/or consumed, but it was also simultaneously being secreted by stimula-

tion of the endothelium or activated platelets. Although a large variation in the values of

HMWM-VWF, determined by discontinuous SDS-agarose electrophoresis, was also observed,

there was a clear decrease in the BjV+saline group, particularly at 6 and 24 h (Fig 3B). This

change was also observed in mice and rats, as we noticed previously [47].

VWF:CB activity identifies the functional ability of VWF to bind subendothelial collagen,

as the larger the size of the multimers, the greater the availability of binding sites for collagen

[59]. In fact, a statistically significant correlation was noticed between HMWM-VWF and

VWF:CB in our results in the groups BjV+saline and the negative control group from 3 to 24 h

(Fig B in S1 Text). Fig 3C shows that despite the high variation in VWF:CB values, there was

also a tendency of the mean values of VWF:CB to decrease in the group BjV+saline in compar-

ison with the saline group (p<0.05 at 24 h). Preincubations of BjV with Na2-EDTA and/or

ABA alleviated the fall in VWF:CB in different extensions depending on the time interval. In

the group BjV+saline, the CB/Ag ratio (Fig 3D) also tended to decrease in comparison with

the control group, and the lowest values were observed at 24 h. Preincubation of BjV with

ABA, alone or combined with Na2-EDTA, minimized the alterations in VWF induced by BjV
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Fig 3. Circulating levels of parameters of VWF and factor VIII function in rats 3, 6 and 24 h after BjV administration. VWF antigen (VWF:Ag, a), high

molecular weight multimers of VWF (HMWM of VSF, b), collagen-binding activity (VWF:CB, c), the VWF:Ag/VWF:CB ratio (d), factor VIII activity (e), and the

factor VVIII/VWF:Ag ratio (FVIII/VWF:Ag ratio, f). Rats were injected with saline alone (saline control, blue bars), or BjV previously incubated with saline (BjV

+saline), anti-botrocetin antibodies (ABA), BjV+Na2-EDTA, or BjV+ABA+Na2-EDTA. ①—Group statistically different (p <0.05) from the saline control group

at the respective time. ②- Group statistically different (p<0.05) from the BjV+saline group at the respective time. ③—Group statistically different (p<0.05)
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alone, suggesting that botrocetin and SVMP not only influenced the pattern of multimeric dis-

tribution, but also the function of VWF to bind to collagen.

The decrease in factor VIII levels in circulation is independent of VWF

alterations

Factor VIII is carried and transported in circulation by VWF [60]. The reduction in factor

VIII levels occurred in all groups that received BjV at 3, 6 and 24 h, and differently from VWF,

the preincubation of BjV with ABA and/or Na2-EDTA did not decrease its consumption (Fig

3E). Rats from the BjV+saline showed a more pronounced reduction in the FVIII/VWF:Ag

ratio at 3 and 6 h compared to the saline control (Fig 3F). These findings suggested that the fall

in factor VIII is independent of the alterations in VWF during B. jararaca envenomation, and

are caused by other mechanisms.

ADAMTS13 levels are diminished during envenomation

Once VWF was proteolyzed in circulation, we also investigated the levels of ADAMTS13, the

enzyme that physiologically cleaves VWF [61], using an activity assay that can recognize rat

ADAMTS13. During B. jararaca envenomation, rats had a reduction in ADAMTS13 activity

levels (Fig 4). Although there was also a mild decrease in ADAMTS13 levels in the BjV+Na2-

EDTA group at 3 h, their mean values were slightly higher than those from the BjV+saline.

However, at 6 h, there was a significant difference between the groups that received BjV prein-

cubated with saline and Na2-EDTA. Thus, the results indicate that ADAMTS13 activity is

mildly decreased during envenomation, and that SVMP contribute to diminish ADAMTS13

levels in plasma.

Altogether, these results showed that botrocetin had no participation in the development of

thrombocytopenia, and that botrocetin and SVMP had a more evident role in the consump-

tion and cleavage of VWF. In order to double check the findings showing that thrombocytope-

nia was independent of VWF consumption and botrocetin participation, we used a mouse

model deficient in VWF (Vwf-/- knockout mice) [62].

The same magnitude of BjV-induced thrombocytopenia is noticed in

C57BL/6 and Vwf-/- mice

Vwf-/- and C57BL/6 (background control) mice received the same dose of BjV, and both

strains had the same levels of venom in circulation over time (p = 0.951, Fig C in S1 Text). The

intensity of local hemorrhage, at the site of BjV injection, was not apparently different from

C57BL/6 mice, but the usual fall noticed in RBC counts, hemoglobin and hematocrit (Fig C in

S1 Text) at 24 h in BjV-envenomed mice [58] was more intense in Vwf-/- mice, showing that

VWF is involved in bleeding prevention during envenomation. C57BL/6 mice showed

increased WBC counts (Fig C in S1 Text) at 24 h, which could be a response to the inflamma-

tory process triggered by envenomation. The same extent of increase in WBC count was not

found in Vwf -/- mice, which may be likely due to the deficiency in pro-inflammatory proteins

in these mice [63,64].

The expected reduction in fibrinogen levels occurred in the BjV+saline group at 3 and 6 h

[58] in both strains (Fig 5A). C57BL/6 mice manifested a characteristic recovery in fibrinogen

levels at 24 h [58], but it was less pronounced in Vwf-/- mice (p<0.05). In fact, Vwf-/- mice have

from the BjV+ABA group at the respective time. ④—Group statistically different (p<0.05) from the BjV+ABA+Na2-EDTA group at the respective time. Data

are expressed as mean ± s.e.m (n = 6–16 rats/group per time period).

https://doi.org/10.1371/journal.pntd.0009715.g003
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been associated with deficiencies in pro-inflammatory proteins [63,64], which could explain

the low recovery of fibrinogen levels [65].

The levels of VWF:Ag in circulation, as expected, could not be detected in Vwf-/- (Fig 5B).

Like rats, plasma VWF levels tended to decrease mildly in C57BL/6 mice injected with BjV,

but no statistically significant difference was noticed (Fig 5B). Due to the expected absence of

circulating VWF in Vwf-/- mice [62], the levels of factor VIII were about 80% lower than those

found in C57BL/6 mice (Fig 5C). As observed in rats, factor VIII activity was also significantly

reduced in C57BL/6 mice injected with BjV, particularly at 6 h (p = 0.001) and 24 h (p = 0.05).

Due to the low levels of factor VIII in Vwf-/- mice, no statistically significant differences could

be noticed between the saline and BjV groups over time.

Regardless of the presence of VWF in circulation, BjV induced the same proportion of

thrombocytopenia in both strains over time (p = 0.072), and platelet counts in the BjV group

was always lower than that of the respective controls (Fig 5D). Even though the extent of

thrombocytopenia was similar in Vwf-/- and C57BL/6 mice, MPV and the platelet distribution

width (Fig 5E and 5F) in Vwf-/- mice did not increase in the same extent as in C57BL/6 mice.

These findings support the reasoning that consumption/cleavage of VWF is not associated

with thrombocytopenia during B. jararaca envenomation, and that botrocetin is not an impor-

tant toxin involved in the development of thrombocytopenia during envenomation. Thus, the

Fig 4. Plasma levels of ADAMTS13 in rats 3, 6 and 24 h after BjV administration. Rats were injected with saline alone (saline control, blue bars), or BjV

previously incubated with saline (BjV+saline), and BjV+Na2-EDTA.①—Group statistically different (p<0.05) from the saline control group at the

respective time. ②- Group statistically different (p<0.05) from the BjV+saline group at the respective time. Data are expressed as mean ± s.e.m (n = 6–16

rats/group per time period).

https://doi.org/10.1371/journal.pntd.0009715.g004
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presence of VWF may be a minor contributing factor, but not a determinant factor, for BjV-

induced thrombocytopenia.

Discussion

Pathophysiological events that occur during snakebite envenomation are complex, and are a

consequence of multiple toxins acting in concert to disturb homeostasis. This investigation

complements previous studies to understand the function and participation of BjV toxins that

act on hemostasis, particularly those that trigger thrombocytopenia.

In previous articles, the catalytic activity of SVMP and SVSP and intravascular thrombin

generation have been shown not to be involved in the development of thrombocytopenia in

models of B. jararaca envenomation [56,57]. Once botrocetin is one the best known CTLP in

BjV, whose in vitro and in vivo mechanisms of action have been scrutinized, our leading

hypothesis was that botrocetin, would be involved in the development of thrombocytopenia.

In fact, aspercetin, a CTLP from Bothrops asper snake venom quite similar to 2-chain botroce-

tin, had been shown to be the main toxin in the development of thrombocytopenia induced by

B. asper administration [66,67]. By incubating anti-aspercetin polyclonal antibodies with B.

asper venom, using an experimental model similar to the one we used herein for rats, Ruca-

vado et al. were able to demonstrate that aspercetin was the main toxin involved in the throm-

bocytopenia induced by B. asper envenomation [66]. However, the same anti-aspercetin

antibody, when preincubated with BjV, could not prevent the development of BjV-induced

thrombocytopenia. Thus, CTLP similar to either botrocetin or aspercetin were not involved in

the development of thrombocytopenia during B. jararaca envenomation. Purified CTLP that

directly bind to GPIb from Bothrops caribbaeus venom [68] and BjV (GPIb-BP, [42]), without

the participation of VWF, have been shown to induce thrombocytopenia when injected in ani-

mals, but experimental evidence must still be obtained showing they are important toxins to

induce thrombocytopenia during B. jararaca envenomation.

Once the experimental model of BjV preincubated with ABA showed that botrocetin was

not involved in the development of thrombocytopenia, to double prove that botrocetin was

not involved therein, mice that are deficient in VWF were also used. Once again, no reduction

in the extent of thrombocytopenia was noticed, demonstrating that botrocetin is not the main

toxin that causes platelet consumption during envenomation in rats and mice. A previous

study also reported that purified botrocetin did not cause thrombocytopenia in models of

VWD, depending thereby on the presence of circulating VWF [52]. Since intense thrombocy-

topenia was noticed even in Vwf-/- mice, all these results stand as a proof that botrocetin is not

the main toxin involved in thrombocytopenia during B. jararaca envenomation.

Although botrocetin showed no relevant role in the development of thrombocytopenia, the

findings shown herein indicate that it alters VWF levels and function. BjV administration elic-

ited low VWF:Ag and VWF:CB levels, a drop in HMWM-VWF, and a fall in FVIII levels in

rats. In C57BL/6 mice, there were normal or reduced VWF:Ag levels, and depletion of

HMWM-VWF [47]. These types of alteration resemble the laboratorial manifestations of

acquired VWD [69] or congenital type 2A VWD. The latter is characterized by normal or

reduced VWF:Ag levels, low VWF-dependent platelet adhesion, CB/Ag ratio lower than� 0.6

and selective deficiency of HMWM-VWF [70]. Therefore, our results demonstrate that during

Fig 5. Fibrinogen (a), VWF:Ag (b), factor VIII activity (c), platelets (d), MPV (e), and platelet distribution width (PDW, f) in Vwf-/- and C57BL/6 mice at 3, 6 and

24 h after injection of saline or BjV. ① Group statistically different (p<0.05) from the saline control group at the respective time. ②- The response of Vwf-/- mice

was statistically different (p<0.05) from that of C57BL/6 mice at the respective time and treatment. Data are expressed as mean ± s.e.m (n = 5–7 mice/group/time

period).

https://doi.org/10.1371/journal.pntd.0009715.g005
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B. jararaca envenomation, rats and mice underwent VWF alterations induced by botrocetin

and SVMP that mimic those observed in patients with type 2A VWD. Conveying these find-

ings to patients bitten by B. jararaca, consumption and proteolysis of VWF by botrocetin and

SVMP, respectively, seem to contribute to the manifestation of bleedings, particularly those

from mucosae (gingival bleeding, hematuria, and epistaxis).

Thus, our findings support the view that HMWM-VWF is both consumed by botrocetin

and also cleaved by SVMP during envenomation. Concomitantly, HMWM-VWF seem to be

released by endothelial cells and platelets, in response the injury evoked by BjV toxins or

inflammatory mediators. Apparently, a complex dynamic process occurs between synthesis,

proteolysis (either by ADAMTS13 or SVMP) and clearance of the VWF from circulation. In

fact, it was clear that even though many individuals had lost HMWM-VWF, they showed an

increase in VWF:Ag levels. This likely meant that (a) in the ELISA used to quantify VWF:Ag

was increasing the absorbance of samples whose VWF has been cleaved, because the coating

antibodies would be binding to newly exposed epitopes in cleaved VWF molecules, amplifying

thereby the final absorbance signal, (b) or that there was a simultaneous stimulation of endo-

thelial cells to release HMWM during envenomation, which would increase VWF:Ag levels.

As these two hypotheses could be occurring simultaneously, we tried to assay VWF propeptide

[71] to test whether HMWM-VWF secretion by endothelial cells or platelets was enhanced

during envenomation, but we failed to find any commercially available kit specific for the

detection of rat or mouse VWF propeptide.

Another interesting result was the mild reduction of ADAMTS13 activity in rats, accompa-

nied by a reduction in VWF levels and cleavage of HMWM-VWF. The latter ones are intrinsi-

cally linked physiologically to augmented ADAMTS13 activity. Our results showed that Na2-

EDTA could block the aforementioned observations, demonstrating that SVMP are linked to

them, i.e, altering ADAMTS13 function and proteolyzing VWF. In addition, ADAMTS13 has

already been shown to be cleaved by thrombin and plasmin [72], two enzymes profusely gen-

erated in circulation during B. jararaca envenomation [5,14], entailing thereby the decreased

ADAMTS13 activity. Interestingly, prior to the discovery of the association between severe

ADAMTS13 deficiency and thrombotic thrombocytopenic purpura (TTP), intravenous

administration of purified botrocetin has been claimed to mimic the laboratorial picture of

acute TTP: thrombocytopenia, formation of platelet microthrombi in lungs and spleen, and

depletion of circulating VWF, particularly of HMWM-VWF [52,53]. Although rarely diag-

nosed, some patients bitten by B. jararaca also manifest thrombotic microangiopathy [73,74],

but their ADAMTS13 levels were normal as well as in others bitten by other snakes [75], indi-

cating that venom toxins are directly involved in the phenomena of activation of coagulation,

endothelial injury, and red blood cell lysis and poikilocytosis. Paradoxically, mice that received

BjV showed a decrease in Adamts13 mRNA synthesis in the liver [65]. Since ADAMTS13 is

not only produced by the hepatic stellate cells in liver, but also by endothelial cells [76], gene

expression of Adamts13 still needs to be studied in other organs, to evaluate whether negative

feedback occurs.

Levels of FVIII and fibrinogen were reduced in envenomed rats and mice, similarly as

observed in humans envenomed by B. jararaca [5,14]. However, taking into consideration the

extent of reduction in FVIII/VWF:Ag ratio, the drop in FVIII levels seems to be more intense

than the fall in VWF:Ag levels, indicating that there was a direct consumption of FVIII, inde-

pendent of VWF cleavage. Moreover, different from the consumption of fibrinogen, inhibition

of SVMP apparently did not prevent FVIII consumption in rats. Factor V levels steadily

dropped in envenomed animals, and was inhibited by SVMP inhibition, showing that meizo-

thrombin or factor Xa, generated by prothrombin or factor X activators found in BjV, might

be involved therein.
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In conclusion, our results show that botrocetin is not the main toxin that induce thrombo-

cytopenia, and that VWF is consumed and cleaved during envenomation by B. jararaca
snakes, similarly to what happens in acquired or type 2A VWD. Concomitantly to the proteol-

ysis of the VWF, endothelial cells and platelets, in response to the direct injury induced by BjV

toxins or inflammatory mediators, seem to secrete new molecules of HMWM-VWF in circula-

tion. Besides the alterations in VWF, FVIII is consumed during envenomation, not only as a

consequence of VWF cleavage. Overall, this study shows the complexity of the pathophysiolog-

ical events induced by BjV, and highlight that there are mechanisms still unknown and/or pro-

teins in BjV involved in the rapid platelet consumption, and that the disturbances in VWF

may contribute to the bleeding manifestations of patients bitten by B. jararaca snakes.

Methods

Ethics statement

Human donors: adult healthy volunteers, who did not report the use of any medication affect-

ing hemostasis during the previous 10 days to blood collection, signed a written consent in

accordance with the Declaration of Helsinki and national regulations. This study was approved

by the National Human Research Ethics Committee (Plataforma Brasil, CAAE

37958514.8.0000.0086, Ministry of Health, Brazil).

Experimental animals: VWF knock-out mice (Vwf-/-) were obtained by breeding heterozy-

gous B6.129S2-Vwftm1Wgr/J [62] mice purchased from The Jackson Laboratory (stock #003795,

JAX, USA). Isogenic controls (C57BL/6) were used as controls. All Vwf-/- mice were genotyped

according to the protocol suggested by The JAX Laboratory. One male rabbit, male Wistar rats

(250–300 g), and male Vwf-/- and C57BL/6 mice (25–28 g) were bred at the Animal Facility,

Instituto Butantan. Animals had free access to water and food, and were bred and maintained

in a standardized environment, in rooms with defined flow of people, materials and supplies.

In addition, they were continuously protected by health status barriers (barrier autoclave,

HEPA air filtration system, differential pressure, etc.). To control ammonia in the environ-

ment, the exhausting system was kept at 15 to 20 air changes/h at room level. The light cycle

was defined as 12-h light: 12-h dark. All procedures involving the use of animals followed

National Guidelines (Conselho Nacional de Controle de Experimentação Animal, CONCEA,

Brazil), were in accordance with ARRIVE (Animals in Research: Reporting In Vivo Experi-

ments) guidelines, and were approved by the Institutional Animal Care and Use Committee in

Instituto Butantan (CEUAIB 5232120618, 5937060618, 8847060516 and 2181021015).

Bothrops jararaca venom
Lyophilized crude venom from a pool of adult specimens of Bothrops jararaca snakes was

obtained from the Laboratory of Herpetology, Instituto Butantan (Sistema Nacional de Gestão

do Patrimônio Genético e do Conhecimento Tradicional Associado, SisGen AF375C2). It was

maintained frozen at -20˚C until the moment of use. Bothrops antivenin (SAB, lot 1305077)

was kindly donated by Instituto Butantan.

Botrocetin and anti-botrocetin antibodies (ABA)

Partially purified 2-chain botrocetin from BjV was kindly donated by Dr. Solange M.T. Ser-

rano, Instituto Butantan. It was further purified to homogeneity and characterized, as

described in the supporting information (Fig D in S1 Text). The sequences obtained from the

purified botrocetin used herein showed higher identity to botrocetin-2, an isoform of botroce-

tin [41]. Polyclonal anti-botrocetin (ABA) antibodies were obtained by immunizing a rabbit
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with the purified protein, and detailed protocols for purification and characterization of ABA

are also described in the supporting information. Purified botrocetin induced platelet aggrega-

tion in human and rat PRP, but not in washed platelets, and the preincubation of ABA with

botrocetin inhibited botrocetin-induced aggregation in human and rat platelets (Fig E and F

in S1 Text).

Envenomation protocols

Two models were used for the in vivo experiments: (1) Rats injected with BjV preincubated

with ABA and/or Na2-EDTA, and (2) Vwf-/- and background control mice (C57BL/6), injected

with BjV. In both models, rats and mice were randomly allocated in experimental groups

(www.randomizer.com), BjV was injected s.c. at the dose of 1.6 mg/kg b.w [56,58], in the dor-

sal region of both species. At 3, 6 and 24 h after venom or vehicle injection, animals were anes-

thetized (4% isoflurane for induction and 2.5% for maintenance, under continuous oxygen

flux at 0.5%, Harvard Apparatus), and blood was collected.

For rats, in the moment of use, crude BjV was diluted in sterile saline. (1) Group BjV+-

saline, i.e., the positive control group: 1 mL of BjV (1 mg/mL in saline) was incubated for 1 h

at 37˚C with saline (52 μL); (2) Group BjV+ABA, i.e., the group whose botrocetin in BjV was

neutralized by antibodies: 0.5 mL of BjV (2 mg/mL) was incubated for 1 h at 37˚C with 0.5 mL

of ABA (1.125 g/dL) and saline (52 μL); (3) Group BjV+Na2-EDTA, i.e., the group whose

SVMP in BjV were inhibited by Na2-EDTA: 1 mL of (1 mg/mL) was incubated for 1 h at 37˚C

with 269 mM Na2-EDTA (52 μL) [57]; (4) Group BjV+ABA+Na2-EDTA, i.e., the group

whose both botrocetin and SVMP in BjV were inhibited: 0.5 mL of BjV (2 mg/mL) was incu-

bated for 1 h at 37˚C with 0.5 mL de ABA (1.125 g/dL) and 269 mM Na2-EDTA (52 μL); and

(5) Saline control group, i.e., the negative control group: rats were injected with saline.

For mice: Vwf-/- and controls were injected with BjV or vehicle (saline).

Blood collection

Blood samples were collected from the abdominal aorta of both species, with the guidance of a

stereo microscope M60 (Leica, USA). After collection, blood samples were immediately trans-

ferred to tubes containing or not anticoagulants, and kept at room temperature during their

processing. SAB was also added to the tubes, in the proportion of 1:100 (v/v), for the in vitro
neutralization of BjV activity on cells and proteins. Different anticoagulants were used: (a) 269

mM Na2-EDTA, in the proportion of 1/100, for complete blood cell counts (CBC); (b) CTAD

[16], in the proportion of 1/7, for evaluation of VWF:Ag, VWF:CB and fibrinogen assay; (c)

3.2% trisodium citrate, in the proportion of 1:10, for factors VIII and V assays; (d) 3.8% triso-

dium citrate with inhibitors [77], in the proportion of 1/10, for electrophoresis of VWF multi-

mers; (e) glass tubes with neither anticoagulant nor SAB were used for obtaining serum

samples and assaying circulating venom levels (venenemia). Poor platelet plasma and serum

were obtained by centrifugation at 2,500 g for 15 min at room temperature, and the samples

were maintained at room temperature during the whole process. Plasma and serum aliquots

were rapidly stored at −80˚C.

Assays

Venenemia was determined by ELISA in serum samples from mice and rats, as described pre-

viously [57]. Plasma fibrinogen was assayed according to Ratnoff and Menzie’s method [78].

CBC were determined in an automated veterinary cell counter (BC-2800 Vet, Mindray,

China).
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VWF assays

VWF antigen (VWF:Ag) was assayed in all plasma samples, including in those of Vwf-/- mice,

as reported earlier [16]. Since rat VWF is not responsive to ristocetin [79,80], the VWF colla-

gen binding (VWF:CB) assay was chosen for evaluating the functional activity of VWF, i.e.,

the interaction between VWF and the subendothelial-matrix, rather than the VWF ristocetin

cofactor (VWF:RCo) assay, which evaluates the interaction between VWF and platelet GPIbα.

Determination of rat VWF:CB followed a previous protocol [81], with modifications. Briefly,

96-well MaxiSorp (Nunc) microplates were sensitized with 100 μL/well of 0.25 mg/mL type III

collagen from human placenta (code C4407, Sigma, USA) in 0.1 M carbonate buffer (pH 9.6)

for 24 h at room temperature in a humid chamber. The microplates were then blocked with

200 μL/well of 3% bovine serum albumin (BSA) in carbonate buffer for 2 h at 37˚C in a humid

chamber. Samples were diluted 1/40 in incubation buffer (1% BSA, 0.05% Tween 20 in PBS

pH 7.4), and aliquots of calibration standards (a plasma pool of control rats twofold serially

diluted, from 1/10 to 1/20480) were then added to wells, and the plate was incubated at 37˚C

for 1 h in a humid chamber. After extensive washing, 100 μL/well of the primary antibody

(rabbit anti-human VWF, code A0082, Dako, Denmark) diluted (1/1000) in incubation buffer

was added, and the microplates were incubated at 37˚C for 1 h in a humid chamber. Then,

after extensive washing, 100 μL/well of the secondary antibody (peroxidase-conjugated goat

anti-rabbit IgG, code A0545, Sigma, USA), diluted 1/1000 in incubation buffer, was added and

microplates were incubated for 1 h at 37˚C in a humid chamber. The reaction was developed

and halted as reported elsewhere [82], and absorbance was read at 492 nm. The dilution of 1/

40 was considered as 100% of VWF:CB activity. In order to verify the quality and reproducibil-

ity of VWF:Ag and VWF:CB determinations, a normal rat sample was considered as a refer-

ence and assayed in all microplates used.

Analysis of VWF multimer distribution was determined essentially as described previously

[47], using as development the goat anti-rabbit IgG conjugated with Alexa Fluor 647 (Invitro-

gen, A21245, USA). For each sample, the optical density of HMWM-VWF was expressed as a

relative percentage of the total optical density of the respective lane, and thus the percentage of

HMWM-VWF could be compared between different samples. In all analyses, a sample of a

normal plasma pool was analyzed and designated as the 100% reference for the HMWM.

Therefore, all test samples were normalized in relation to the reference sample.

Assay of ADAMTS13 activity

The commercial kit Actifluor ADAMTS13 Activity (Sekisui Diagnostics, EUA) was used to

assay ADAMTS13 activity in rat plasma samples, according to the manufacturer’s instructions.

The increase in fluorescence during 1 h was used to calculate ADAMTS13 activity.

Assays of factors VIII and V

Levels of factors VIII and V in rat plasma samples were determined using the respective com-

mercial deficient plasmas (Diagnostica Stago, France). Plasma samples were diluted 1/10 (con-

sidered as 100%) in Tyrode buffer without calcium, and the assay was performed according to

the manufacturer’s instructions. Clotting times were measured on a Start4 coagulometer

(Stago, France).

Ratios

The ratios (a) CB/Ag, i.e., the ratio of VWF:CB to VWF:Ag, and (b) FVIII/VWF:Ag, i.e., the

ratio of the FVIII coagulant activity to VWF:Ag were also calculated. CB/Ag was used to
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analyze the proportion of alteration in the biological function of VWF in comparison to anti-

gen levels. The FVIII/VWF:Ag ratio was obtained by dividing the value of the FVIII coagulant

activity by the respective VWF:Ag value, assisting thereby in the analysis of the proportion of

FVIII bound to VWF.

Statistical analyses

The presence of outliers was initially detected as described elsewhere [83], using a Microsoft

Excel 2013 spreadsheet for calculations. Thereafter, the data were analyzed for normal distri-

bution and homoscedasticity in Stata statistical software (version 10.0), and, whenever neces-

sary, data were transformed to obtain homoscedasticity. Two-way ANOVA, followed by

Sidak’s test, was used to compare data from rats in SPSS (version 22). Data that showed neither

homoscedasticity nor normality, even after transformation, were analyzed using Aligned Rank

Transform [84] in R software (version 4.0.0). For the analysis of correlation between the

HMWM-VWF and VWF:CB, Pearson’s correlation coefficient (r) was used; confidence inter-

vals (95%) for the correlation value was estimated using a percentile bootstrap, using 1000 rep-

licates, in SPSS (version 22). For analyses of mouse data, the strain was also taken into account

in the statistical analyses, and three-way ANOVA, followed by Sidak’s test, was performed in

SPSS (version 22). Values of p<0.05 were considered statistically significant. Data were pre-

sented as mean ± standard error of mean (s.e.m.).

Supporting information

S1 Text. Fig A. Venenemia in rats 3, 6 and 24 h after BjV administration. Rats were injected

with saline alone (saline control), or BjV previously incubated with saline (BjV+saline), anti-

botrocetin antibodies (ABA), BjV+Na2-EDTA, or BjV+ABA+Na2-EDTA. Venom levels in

serum were assayed by ELISA. ① Statistically significant different (p<0.05) from the saline

control on the respective time. Data are expressed as mean ± s.e.m (n = 6–16 rats/group per

time period). Fig B. Scatterplot and linear regression of paired observations between VWF:CB

and HMWF-VWF in rats at 3, 6 and 24 h after s.c. injection of saline (Saline Control) or BjV+-

saline. Pearson’s correlation was used, and results were expressed as correlation coefficient (r),

and the 95% confidence interval are shown between brackets. Fig C. Levels of circulating

venom levels (a), red blood cell counts (RBC, b), hemoglobin (c), hematocrit (d), and white

blood cell counts (WBC, e) in Vwf-/- and C57BL/6 mice at 3, 6 and 24 h after injection of

saline alone or BjV. ① Group statistically different (p<0.05) from the saline control group at

the respective time. ②- The response of Vwf-/- mice was statistically different (p<0.05) from

that of C57BL/6 mice at the respective time and treatment. Data are expressed as mean ± s.e.m

(n = 5–7 mice/group/time period). Fig D. (a) SDS-PAGE of 2-chain botrocetin purified from

BjV, under non-reduction and reduction conditions. Proteins were silver-stained. The image

does not reflect the cropping from different gels. (b) The protein bands observed under reduc-

ing conditions were sliced from the gel and submitted to in-gel trypsin digestion, and mass

spectrometric analysis by LC–MS/MS. Fig E. Western blotting of BjV and 2-chain botrocetin.

BjV (10 μg) and 2-chain botrocetin (1 μg) were electrophoresed in 12% SDS-PAGE, and trans-

ferred onto a nitrocellulose membrane. The membrane was incubated with ABA (dilution 1/

10,000), followed by incubation with 1/5,000 anti-rabbit IgG conjugated with peroxidase

(Sigma A0545) and development. This image does not reflect the cropping from different gels

or blottings. Fig F. Platelet aggregation induced by botrocetin and its inhibition by ABA.

Human or rat PRP (400 μL, 300 × 109/L) was stimulated by 10 μL of botrocetin (final concen-

tration, 2.4 μg/mL) previously incubated with ABA or vehicle (50% glycerol). Tracings are
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representative of three different experiments.
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