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Abstract: Due to their stretchability, conductivity, and good biocompatibility, hydrogels have been
recognized as potential materials for flexible sensors. However, it is still challenging for hydrogels
to meet the conductivity, mechanical strength, and freeze-resistant requirements in practice. In this
study, a chitosan-poly (acrylic acid-co-acrylamide) double network (DN) hydrogel was prepared by
immersing the chitosan-poly (acrylic acid-co-acrylamide) composite hydrogel into Fe2(SO4)3 solution.
Due to the formation of an energy-dissipative chitosan physical network, the DN hydrogel possessed
excellent tensile and compression properties. Moreover, the incorporation of the inorganic salt en-
dowed the DN hydrogel with excellent conductivity and freeze-resistance. The strain sensor prepared
using this DN hydrogel displayed remarkable sensitivity and reliability in detecting stretching and
bending deformations. In addition, this DN hydrogel sensor also worked well at a lower temperature
(−20 ◦C). The highly mechanical, conductive, and freeze-resistant DN hydrogel revealed a promising
application in the field of wearable devices.

Keywords: hydrogel; double network; mechanical property; freeze-resistant; strain sensor

1. Introduction

With the increasing demands of pressure and deformation detection in artificial in-
telligence devices, strain sensors have attracted massive attention in recent years [1–4]. A
strain sensor can detect a subtle tensile and bending deformation by outputting electrical
signals such as current, resistance, and capacitance changes [5–7]. For better application
in human body detection, strain sensors based on soft and biocompatible materials need
to be developed. Unlike ordinary polymers such as plastic and rubber, hydrogels, which
consist of a 3D-polymeric network swelling in water, have the advantages of softness
and biocompatibility. Therefore, the hydrogel can be used in tissue engineering, flexible
electronics, and soft robots [8–11]. In addition, the conductivity, mechanical strength, and
freeze-resistant properties are the essential factors for strain sensors [12–15].

Due to the crystallization of internal water molecules, the hydrogel’s performance
becomes poor in sub-zero temperatures. One effective way to improve the low temperature
performance of hydrogels is incorporating organic solvents, such as glycerol [16], ethylene
glycol [17], and dimethyl sulfoxide (DMSO) [18]. For instance, Rong et al. reported that
the strain sensor made by H2O/ ethylene glycol organohydrogel could work in sub-zero
temperatures, such as −40 ◦C [17]. The incorporation of ethylene glycol was beneficial
for generating hydrogen bonds with water molecules and impeding the formation of ice
crystals. Li et al. developed the DMSO/H2O system, which contained polyvinyl alcohol,
cellulose nanofibers, and AlCl3. The DMSO in the system formed hydrogen bonds with
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water molecules and effectively extended the operating temperature (−50 ◦C or 50 ◦C) [18].
However, some organic fluids, such as DMSO and ethylene glycol, are not as ecofriendly
as water [18,19]. Moreover, ionic liquids also have been used to prepared conductive gels
with a broad range in their operation temperature [20,21]. Notably, the introduction of
inorganic salts is the most economical method for enhancing the freeze-resistant property
of hydrogels. Suo et al. proposed a freeze-resistant alginate-Ca2+/polyacrylamide double
network (DN) hydrogel that could maintain stretchability, toughness, and conductivity at
temperatures far below the freezing point of water [22].

Currently, many strain sensors based on hydrogels have been devised. Most hydrogels
are given electrical conductivity with conductive fillers (carbon materials [23], inorganic
salts [24], metal nanoparticles [25], etc.). Among these fillers, inorganic salts can disperse
in the hydrogels homogenously without phase separation [26]. The water in the hydrogel
dissolves salts, and the network structure provides migration channels for the dissociated
ions. Additionally, the ions can combine with the hydrogel network through hydrogen
bonds or coordination bonds, which can lower the freezing point of the hydrogel. Mean-
while, the dissociated ions can be utilized to build a newly formed network with additives
in hydrogels. The generated network provides the hydrogel with stronger mechanical
properties [27]. Inspired by this, the highly mechanical DN hydrogels were candidates for
flexible strain sensors [28–31].

In this study, we fabricated a DN hydrogel with excellent stretchability, conductivity,
and cryophylactic properties. As shown in Figure 1, this chitosan-poly (acrylic acid-co-
acrylamide) (CS/P (AA-co-AM)) double network hydrogel comprised of chitosan with
an ionically cross-linked network. The DN hydrogel was prepared by soaking CS/P
(AA-co-AM) composites into an Fe2(SO4)3 solution. The prepared DN hydrogel exhibited
outstanding mechanical properties: remarkable stretchability (ε ≈ 400%) and compress-
ibility (ε = 98%), and excellent anti-fatigue performance. The strain transducer made by
this DN hydrogel showed prominent sensing performance for tensile deformation: the
response (defined as R−R0

R0
) was 4.92 at a strain of 500%. Moreover, the low-temperature

property of the prepared transducer was also good: the response was 1.15 (at the tensile of
180%) at −20 ◦C. Generally, the study offers a potential material for monitoring the human
body’s movements.
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Figure 1. The schematic diagram of the preparation of CS/P(AA-co-AM) DN hydrogel.

2. Results and Discussion
2.1. Mechanical Properties of Hydrogels

As shown in Figure 2A, the DN hydrogel withstood rigorous compression and re-
covered quickly without any deformation. In addition, the hydrogel could bear several
stretching behaviors, such as direct stretching, twisting–stretching, and crossing–stretching
(Figure 2B–D). The hydrogel also withstood a load of 1 kg without cracking (Figure 2E).
The tensile strength and toughness of the DN hydrogel were clearly superior to that of com-
posite hydrogel (Figure S1). The prominent mechanical performance of the DN hydrogel
was due to the synergic effect of the internal dual network: one was the poly(hydroxyethyl
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acrylamide) network derived from the photo-initiated crosslinking of AA and AM, while
the other was the ionic network of CS and Fe3+. The SEM images (Figure 2F,G) exhibited
the comparison of micromorphology. The DN hydrogel showed denser microstructure
compared with the composite hydrogel due to the formation of the CS ionic network.
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Figure 2. The mechanical properties of the DN hydrogel. (A) Compression, (B) stretching,
(C) twisting–stretching, and (D) crossing–stretching. (E) Load-bearing ability (loading weight: 1 kg).
SEM images of (F) the composite hydrogel and (G) the DN hydrogel. (H) Compressive and (I) tensile
curves of the composite and DN hydrogels.

The detailed mechanical properties were measured by compression and tensile tests.
At 98% compressive strain, the compression stress of DN hydrogel reached 29.59 MPa,
while the value of the composite hydrogel was 9.23 MPa (Figure 2H). Remarkably, the
DN hydrogel remained intact during the whole compressive process, demonstrating its
superior compressibility. Meanwhile, the DN hydrogel also exhibited an improved tensile
strength of 2.43 MPa, which was six times that of the original composite hydrogel (Figure 2I).
Figure S2A shows that the elastic modulus of the DN hydrogel reached 0.5 MPa, much
larger than that of the composite hydrogel (0.03 MPa). The toughness was calculated by the
area integration of the stress–strain curves (Figure S2B). The toughness of the DN hydrogel
(6.79 MJ/m3) was triple that of the composite hydrogel (2.18 MJ/m3). In addition, the
fracture strain of the DN hydrogel was 537%, as shown in Figure 2I. As reported, when
the physicochemical DN hydrogel was deformed, its physical bonds broke and dissipated
energy to protect the chemical bonds [32,33]. At the first stage of elongation, the dynamic
physical interactions (CO2LFeIII and hydrogen bond) together with the chitosan physical
network were destroyed for dissipating energy. Once the tensile strain exceeded 537%,
both the physical and covalent cross-links were ruptured.

Figure 3A shows the energy-dissipation capacity of the hydrogels measured by a
stretching–restoring test. The area of the loading–unloading curve of the composite hy-
drogel was very small, and the loading curve and unloading curve almost coincided. The
hysteresis loop area of the ion–covalent DN hydrogel was larger, and the dissipation energy
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was 1.96 MJ/m3 by integration (Figure 3B). This was attributed to the fact that the chitosan’s
physical cross-linking network and ionic coordination (CO2LFeIII) provided an effective
energy-dissipation mechanism for the DN hydrogel. The energy-dissipation capacity of
the DN hydrogel with different tensile strains (150–400%) is shown in Figure 3C. It was
found that the hysteresis loop area was aggrandized with the hydrogel’s deformation
increase. The dissipation energy increased from 0.47 MJ/m3 at the tensile strain of 150% to
3.56 MJ/m3 at a 400% tensile strain, while the dissipation coefficient increased from 50% to
70.5% (Figure 3D).
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Figure 4A,B show the DN hydrogel’s compression self-recovery ability. During the
test, six DN hydrogel specimens were compressed at a 50% strain and then left to rest for
different amounts of time (0, 1, 3, 5, 10, and 20 min) before being recompressed. Compared
with the original sample, the dissipated energy of the 0 min specimen remained 59.5%, with
remarkable elastic modulus (77.7%) and maximum stress (94.5%). After resting for 20 min,
the elastic modulus reverted to 95%, with the maximum stress restored to 98.4%, very
close to the initial state. In addition, the tensile self-recovery ability was also tested as the
specimens were stretched to 200% deformation (Figure 4C,D). After 20 min, the dissipated
energy of the stretched sample recovered to 75.4%. Meanwhile, the elastic coefficient and
tensile strength basically recovered, and the recovery efficiency was 91.5% and 98.5%,
respectively. These tests demonstrated the eminent self-restorability of the DN hydrogel
after compression and tensile deformation.

In order to further study the stability and anti-softening properties, DN hydrogel was
encapsulated with 3 M adhesive tape to avoid the loss and evaporation of water during
the testing process. The hydrogel sample was then subjected to a continuous loading
and unloading cycle test 1000 times (ε = 100%). As shown in Figure 5A, the stress and
dissipation ring area tested in the first cycle were larger than those of the subsequent ones,
and the maximum stress was 0.83 MPa. It was found from the stretching curve of the
2nd to 1000th cycles that the mechanical properties of DN hydrogel were relatively stable
and essentially unchanged. As shown in Figure 5B, according to the maximum stress and
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dissipation energy of 1000 tensile cycles, the values of the 2nd to 1000th tensile cycles were
basically the same, which strongly demonstrated the stability of the mechanical properties
of DN hydrogel. As shown in Figure 5C, the 1000th tensile cycle curve was locally amplified
during the 500th to 540th cycles. The maximum tensile strength basically remained at the
same level, indicating that the DN hydrogel had not only ultra-high mechanical strength
but also stability.
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2.2. Modulation on Mechanical Performance of DN Hydrogel

Due to the ionic coordination between CS and sulfate solution, the increase of CS
content directly affected the CS ionically crosslinked degree and changed the rigidity of the
physical network. Thus, the CS content could be used to regulate the mechanical properties
of the DN hydrogel. As shown in Figure 6A,B, when the molar ratio of acrylic acid to
acrylamide was 15%, the concentration of ferric sulfate was 2 M, and the soaking time was
50 min, the hydrogel’s rigidity was increased, elastic modulus enlarged, ductility reduced,
and toughness enlarged as the CS content increased (the detailed data of the mechanical
properties of the DN hydrogels with different CS contents are listed in Table 1). According
to the influence of the chitosan content on the mechanical properties and considering
the tensile strength and ductility of the hydrogel, the final fixed CS content was 7.5%.
In addition, the molar ratio of the soft and tough chemical network can also affect the
mechanical properties of hydrogels. Therefore, by adjusting the molar ratio of acrylic
acid to acrylamide, the mechanical properties of hydrogels could be regulated. As shown
in Figure 6C,D, when the molar ratio of acrylic acid to acrylamide increased, the tensile
strength of DN hydrogel gradually increased, the ductility decreased, and the elastic
modulus increased (the detailed data of the mechanical properties of the DN hydrogels
with different molar ratios of AA to AM are listed in Table 2). Taking into account the
toughness, the hydrogel prepared with 7.5% CS content, and 15% acrylic acid was the
optimal sample.
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Table 1. The detailed mechanical properties of the DN hydrogels with different CS contents.

CS Content Elastic Modulus
(MPa)

Fracture Strength
(MPa)

Fracture Strain
(%)

Toughness
(MJ/m3)

0% 0.09 0.26 702 1.11
2.5% 0.17 0.73 623 2.24
5% 0.36 1.46 576 4.65

7.5% 0.50 2.44 539 6.80
10% 0.78 2.71 460 6.95

Table 2. The detailed mechanical properties of the DN hydrogels with different molar ratios of AA
to AM.

n(AA):n(AM)
Elastic Modulus

(MPa)
Fracture Strength

(MPa)
Fracture Strain

(%)
Toughness

(MJ/m3)

5% 0.29 1.24 629 4.35
10% 0.39 1.64 594 5.29
15% 0.50 2.44 539 6.79
20% 0.73 2.47 474 6.64
25% 0.80 2.63 433 6.26

2.3. Mechanical Flexibility at Low Temperatures

Because the water inside hydrogels tends to crystallize below 0 ◦C, the mechanical
properties of the hydrogel will be damaged. Incorporating salt in the hydrogel is an
effective way to depress the ice point [22,34,35]. Compared with the composite hydrogel,
the DN hydrogel still maintained good mechanical properties: after being stored at −20 ◦C
for 24 h, the DN hydrogel could be stretched and bended, while the composite hydrogel
became stiff and easy to crack (Figure S3). In addition, to study the cryogenic mechanical
properties of the composite and DN hydrogel in more detail, the tensile tests were made at
low temperature. When the temperature went down to −20 ◦C, the breaking elongation
of the composite hydrogel decreased to 28% (Figure S4A). However, even at −20 ◦C, the
DN hydrogel still maintained good mechanical properties, with 250% breaking elongation
(Figure 7A). As the temperature dropped below −20 ◦C, the gel converted into a mixture
of ice crystals and polymer networks, leading to reduced flexibility and ductility, together
with enhanced rigidity [36]. The detailed mechanical properties parameters are illustrated
in Figures 7B–D and S4B–D. As the temperature decreased, the tensile strength and elastic
modulus of the hydrogels were aggrandized, whereas the breaking elongation decreased
rapidly. The Fe3+ and SO2−

4 were expected to prevent water molecules from gathering and
crystallizing, resulting in the outstanding freeze-resistant property.

2.4. Sensing Performance of Hydrogel Flexible Sensor

In addition to the outstanding mechanical properties, the ions in the DN hydrogel
also provided good ionic conductivity, which led the hydrogel to transmit electric signals
through ionic migration. The conductivity of the hydrogel varied with the type of defor-
mation, such as stretching, compression, and twisting. Therefore, the hydrogel can be
used in flexible sensors. As shown in Figure 8A, the hydrogel exhibited a resistant-type
behavior to the tensile deformation; as the resistance increased, the tensile strain continued
to grow. The hydrogel sensor exhibited good sensitivity to a small strain (10–50%) and
large strain (50–400%), as shown in Figure 8B,C. As the previous literature reported, the
gauge factor (GF) of the sensor can be calculated from the curve of the relative resistance
variation ( R−R0

R0
) and strain [37]. In detail, the relationship between R−R0

R0
and strain (ε) can

be turned into a formula: R−R0
R0

= 0.0065ε2 + 1.57ε. Therefore, the corresponding derivative
data (GF) followed a linear trend (GF = 0.013ε + 1.57) as shown in Figure S5. The sensor
also showed a stable response to 60 stretching cycles, which demonstrated the eminent
repeatability (Figure 8D).
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2.5. Human Motion Detection

Additionally, the hydrogel sensor was validated to detect human motions, such as
the flexing of a finger, an arm, and a leg (Figure 9). The bending movement caused the
relative resistance to increase, while the straightening movement restored the sensor to the
initial resistance. Compared with the motions of fingers and arms, the deformation degree
of knee-bending was larger, resulting in a larger resistance change than others. Meanwhile,
the hydrogel sensor responded very well to repeated joint-bending movements, indicating
that the sensor had excellent reliability in human-motion monitoring.
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2.6. Low-Temperature Strain Responsiveness

As demonstrated, the DN hydrogel showed outstanding mechanical properties at
sub-zero temperatures. Furthermore, the cryogenic sensitivity of the hydrogel was also
investigated. An LED bulb connected to a circuit containing a piece of hydrogel was used
to study the conductivity (Figure S6). As shown in Figure 10A, the conductivity of the
hydrogel varied inversely with the temperature. When the temperature decreased, the
migration of ions was impeded due to the limited movement of the polymer chains and the
crystallization of water molecules. Figure 10B shows the response–strain curves of the gel
sensors at 25 ◦C and −20 ◦C. Compared with the response value at normal temperatures,
the response value at −20 ◦C was reduced to a certain extent. However, the gel sensor
could still be utilized at low temperatures, as the response to 150% strain rose to 160%.
Figure 10C illustrates the continuous response to the tensile strain ranging from 10% to
150% at −20 ◦C. The repeated curves at each strain demonstrated the excellent stability of
the hydrogel sensor.
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3. Conclusions

In conclusion, we prepared a DN hydrogel by immersing a CS/P(AA-co-AM) compos-
ite hydrogel into an Fe2(SO4)3 solution. Inorganic salt ions combined with the CS to form
the energy-dissipative ionic network that enhanced the tensile property and conductivity
simultaneously. Since the effective energy-dissipation mechanism was derived from the
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generated CS ionic network, the DN hydrogel exhibited prominent mechanical properties:
tensile strength of 2.43 MPa, elastic modulus of 0.5 MPa, and toughness of 6.79 MJ/m3,
as well as an outstanding self-recovery ability and excellent durability. Additionally, the
introduction of ions provided the DN hydrogel with good freeze resistance and conduc-
tivity. Impressively, the strain sensor assembled from the DN hydrogel exhibited strain
sensitivity and cycling stability. Even at low temperatures, the DN hydrogel still possessed
good strain-sensing performance with slightly reduced sensitivity. The sensor also demon-
strated a superior ability to detect various human body movements in real time. This study
provides a new strategy for constructing functional hydrogel materials for stretchable,
flexible sensors.

4. Materials and Methods
4.1. Materials

Acrylamide (AM, 98%), acrylic acid (AA, 99.5%), and methylene bisacrylamide (MBA,
98%) were bought from Alfa Aesar. Short-chain chitosan (CS, Mw ≈ 10 kDa, degree of
deacetylation > 90%) and iron sulfate hydrate were obtained from Aladdin Industrial Corp.,
China. The pure water was homemade by a water purification machine.

4.2. Fabrication of CS/P (AA-co-AM) DN Hydrogel

As shown in Figure 1, the DN hydrogel was fabricated by following two steps. First,
the short-chain CS (0.75 g, 7.5 wt%), AM (2.13 g), AA (0.31 mL), MBA (0.16 mL), and Irgacure
(54 mg) were added to pure water (10 mL) with continuous stirring. The homogeneous
solution was then transferred into a glass mold and became CS/P (AA-co-AM) hydrogel
under UV light (150 W) irradiation. Second, to get the DN hydrogel, the prepared CS/P
(AA-co-AM) hydrogel was immersed in 2 M Fe2(SO4)3 solution for 30 min. A serial of DN
hydrogels were prepared with different CS contents (0 wt%, 2.5 wt%, 5 wt%, 7.5 wt%, and
10 wt%).

4.3. Fabrication of the Hydrogel-Based Flexible Sensor

The flexible sensor based on the DN hydrogel was assembled using two copper tapes
attached at the DN hydrogel’s edges (Figure 11). The hydrogel-based flexible sensor was
then sealed by a 3 M tape to lock the water in the hydrogel.
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Figure 11. The schematic diagram of the strain sensor assembled using DN hydrogel and Cu electrodes.

4.4. Characterization

The microtopography of the DN hydrogel was observed with a field-emission scan-
ning electron microscope (FESEM, FEI Quanta 250 FEG). The hydrogel’s mechanical prop-
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erties were measured by a universal tensile tester (MTS CMT4104) with hydrogel strips
(25 mm × 3 mm × 1 mm) for an elongation test and hydrogel cylinders (diameter × height:
10 mm × 12 mm) for a compression test. According to the previous literature, the rates of
the elongation test and compression test were 50 mm/min and 5 mm/min, respectively,
while the load cells were 500 N and 10 kN, respectively [27,32]. The mechanical properties
at low temperatures were measured with a universal tensile tester (MTS CMT4104) attached
to a cryogenic box (MTS GDX200).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/gels8070424/s1, Figure S1: Mechanical properties of the com-
posite hydrogel. (A) Compression. (B) Various tensile deformations: (B1) stretching, (B2) twisting–
stretching, (B3 and B4) knotted–stretching, and (B5) crossing–stretching; Figure S2: (A) Elastic
modulus. (B) Toughness of the composite and DN hydrogels calculated from the tensile curves;
Figure S3: Pictures of the composite and DN hydrogels at −20 ◦C; Figure S4: (A) Stress–strain curves
and detailed mechanical properties’ parameters of the composite hydrogel at different temperatures.
(B) Tensile strength, (C) elastic modulus, and (D) elongation; Figure S5: GF variation of the DN
hydrogel with strain; Figure S6: Circuit diagram of the lamp-lighting experiment.
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