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Abstract
Classical HLA (Human Leukocyte Antigen) is the Major Histocompatibility Complex (MHC) in man. HLA genes and dis-
ease association has been studied at least since 1967 and no firm pathogenic mechanisms have been established yet. HLA-G 
immune modulation gene (and also -E and -F) are starting the same arduous way: statistics and allele association are the 
trending subjects with the same few results obtained by HLA classical genes, i.e., no pathogenesis may be discovered after 
many years of a great amount of researchers’ effort. Thus, we believe that it is necessary to follow different research method-
ologies: (1) to approach this problem, based on how evolution has worked maintaining together a cluster of immune-related 
genes (the MHC) in a relatively short chromosome area since amniotes to human at least, i.e., immune regulatory genes 
(MHC-G, -E and -F), adaptive immune classical class I and II genes, non-adaptive immune genes like (C2, C4 and Bf) (2); 
in addition to using new in vitro models which explain pathogenetics of HLA and disease associations. In fact, this evolution 
may be quite reliably studied during about 40 million years by analyzing the evolution of MHC-G, -E, -F, and their receptors 
(KIR—killer-cell immunoglobulin-like receptor, NKG2—natural killer group 2-, or TCR-T-cell receptor—among others) 
in the primate evolutionary lineage, where orthology of these molecules is apparently established, although cladistic studies 
show that MHC-G and MHC-B genes are the ancestral class I genes, and that New World apes MHC-G is paralogous and 
not orthologous to all other apes and man MHC-G genes. In the present review, we outline past and possible future research 
topics: co-evolution of adaptive MHC classical (class I and II), non-adaptive (i.e., complement) and modulation (i.e., non-
classical class I) immune genes may imply that the study of full or part of MHC haplotypes involving several loci/alleles 
instead of single alleles is important for uncovering HLA and disease pathogenesis. It would mainly apply to starting research 
on HLA-G extended haplotypes and disease association and not only using single HLA-G genetic markers.

Keywords MHC · Evolution · HLA-G · HLA-E · HLA-F · Complotypes · Haplotypes · Disease · HLA · Apes · Monkeys

Physiopathology

The non‑classical class I HLA genes: HLA‑G, ‑E, and ‑F

The human Major Histocompatibility Complex is a genomic 
region which comprises at least 224 genes at chromosome 
6p21.3, coding for the so-called HLA complex (counter-
part to MHC in other vertebrates) that has a key role on the 
immune system. Classical class I genes (HLA-A, HLA-B, and 
HLA-C) encode for molecules that present antigen peptides 
to clonotypic T-cell receptor on the surface of CD8 + cells, 
whereas the non-classical class I proteins (HLA-G, HLA-E, 
and HLA-F) (Fig. 1) have been primarily associated with 
the modulation of the immune system cells [1–3]. HLA-G 
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was first considered to be an immune modulatory molecule, 
predominantly expressed at the maternal–fetal interface and 
its function was first assigned to maternal–fetal tolerance [2, 
4–6]. Initial studies were carried out by Dan Geraghty et al. 
[7] and they named HLA-6.0 the new gene they described. 
HLA-6.0 protein was structurally similar to HLA-A, -B, 
and -C class I molecules but with a premature in-frame 
stop codon that hindered translation of an important part 
of the cytoplasmatic region in HLA-6.0 mature molecule. 
The promoter region of HLA-6.0 gene was similar to that 
of MHC-Qa mouse gene, and both genes were equivalent 
with regard to substitutions, deletions and other variations in 
allelic DNA sequences [7]. Warner et al. group [8] proposed 
that MHC-Qa was a functional HLA-G homologue in mouse, 
with a similar gene and protein structure; MHC-Qa also pre-
sents soluble forms like HLA-G5, G6 and G7 isoforms in 
humans (Fig. 1). Recently, it is found that Qa-1b(MHC-Qa 
non-classical class I gene in mouse) seems to be homolo-
gous to HLA-E (see HLA-E “Evolution” section). The com-
plete HLA-G molecule has an extracellular structure very 

similar to that of the classical HLA molecules, though its 
major function is not antigen presentation. It was found 
that HLA-G inhibits the cytotoxic activity of T CD8 + and 
NK cells through direct interaction with leukocyte recep-
tors, such as LILRB1 (LIR1/ILT2), LILRB2 (ILT4), and 
KIR2DL4 (CD158d) [3, 9–14].

HLA-G gene and molecule expression patterns differ in 
many aspects compared to classical HLA class I molecules, 
like: (a) a restricted tissue expression in normal conditions 
[21]; it is being expressed on the maternal–fetal interface in 
the extravillous cytotrophoblast cells [6], cornea, proximal 
nail matrix, thymus, hematopoietic stem cells and pancreas 
mainly [22–27]. HLA classical class I molecules (HLA-A, 
-B, and -C) are widely expressed in all body tissues. Non-
classical class I HLA molecules (HLA-E, -F, and -G) are 
more restricted regarding tissue localization, antigen pres-
entation, and function [3]. Diversity of presented peptides 
compared with that of classical class I MHC molecules is 
much reduced probably because of their limited levels of 
polymorphism [28]. These non-classical class I molecules 

Fig. 1  HLA gene complex is located in the short arm of human chro-
mosome 6 (6p21.3). HLA-G, -E and -F mRNA transcription and 
translation scheme and HLA-G membrane and soluble isoforms are 
shown (see text). Exons (E) of each gene are shown in upper panels 
of the figure. A (*) symbol indicates a stop codon: it may be localized 
in E6 in HLA-E, -F and -G genes. HLA-G also presents stop codons 
in intron 2 or intron 4 depending on alternative splicing process 
which gives rise to different isoforms. Stop codon may be maintained 

in mature mRNA due to a reading-through mechanism in humans 
and primates which is described also in other HLA genes (i.e., HLA-
DRB6). The presence of a selenocysteine insertion sequence (SECIS) 
at the 3 untranslated region leads to a selenocysteine incorporation 
at UGA (stop) codons [15–18]; this may be the cause for stop codon 
maintenance in HLA-G, -E and -F translation. Beta-2 microglobulin 
(β2m) is represented bound to protein molecules in purple color. See 
also references [19, 20]
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may also regulate immunity through TCR-independent inter-
actions (see below); (b) they show several membrane and 
soluble isoforms due to alternative splicing of the complete 
HLA-G mRNA [2, 3]; (c) a short cytoplasmic tail is present 
due to the presence of a premature stop codon at exon 6 
[2, 3]; (d) a relatively low HLA-G protein polymorphism is 
recorded although it is rapidly increasing (Fig. 2) [2, 3, 29]; 

(e) they present a unique 5’URR (5’ upstream regulatory 
region) different from other HLA classical class I genes [30, 
31]; and (f) the 5’ promoter region [2, 32–36] and the 3’UTR 
(3’ untranslated region) show several polymorphisms that 
are specifically linked to diseases susceptibility [37].

Also, it has been shown that HLA-G presents endoge-
nous peptides at the surface of the placenta trophoblast [42], 

Fig. 2  HLA-G protein alleles. Codon and aminoacidic changes 
among different alleles in exon 2, exon 3 and exon 4 are shown. The 
letter “N” at the end of some alleles shown in the table denotes null 
allele. These null alleles bear a stop codon due to single-base dele-
tions or point mutation which give rise to an incomplete HLA-G 
protein translation. HLA-G*01:05N has a single cytosine deletion 
at codon 130 (CTG → TGC) which produces a reading frameshift 
change, causing a premature stop signal at codon 189 (GTG → TGA) 

[38, 39] and consequently a shorter protein with α1 functional 
domain at least [38, 40]. HLA-G*01:21N has a premature stop codon 
due to a punctual mutation in codon 226 (CAG → TAG) of coding 
sequence which leads to a non-complete translated protein [40]. The 
number of HLA-G protein alleles is rapidly growing; see IMGT-HLA 
database to be up to date on new alleles (https:// www. ebi. ac. uk/ ipd/ 
imgt/ hla; accessed September 2021) [41]

https://www.ebi.ac.uk/ipd/imgt/hla
https://www.ebi.ac.uk/ipd/imgt/hla
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absent in other HLA classical class I molecules’ expression 
[43], with the exception of HLA-C [44]. Thus, HLA-G 
interacts at this maternal–fetal interface with activating and 
inhibitory receptors: killer-cell immunoglobulin-like recep-
tor (KIR), leukocyte immunoglobulin-like receptor (LIR), 
and CD94-NKG2 receptor complex families to establish 
maternal tolerance and normal fetal growth [43]. This non-
classical class I HLA molecule recognizes TCR of regula-
tory [45] and cytolytic [46] CD8 T cells [47].

On the other hand, HLA-E polymorphism is represented 
only by two functional molecules that present a set of similar 
peptides derived from class I leader sequences. However, 
HLA-E is a ligand for the innate and adaptive immune sys-
tem effectors; immunological response to peptide-HLA-E 
complexes is determined by the sequence of the bound pep-
tide, which interacts with CD94/NKG2 or T-cell receptor 
[48, 49].

While HLA-E and HLA-G have been well-characterized 
functionally and structurally, the role that HLA-F plays in 
regulating the immune system has long time been unknown. 
However, HLA-F has been shown to protect fetus devel-
opment [50] and has a role at peripheral nervous system: 
HLA-F recognition by the inhibitory KIR3DL2 receptor 
prevents motor neuron death in amyotrophic lateral sclero-
sis physiopathology [51]. Also, HLA-F interacts with the 
activating KIR3DS1 on NK cells and induces an anti-viral 
response against HIV-1 (human immunodeficiency virus-1) 
[52]. HLA-F immunity regulation by KIR3DS1 interaction 
has increased the clinical importance of HLA-F since also 
other diseases exist where KIR3DS1 has a pathogenetic role 
[53]. Thus, HLA-F and disease relationship is important but 
the molecule structural and biochemical properties and the 
precise relationship with its function is mostly unknown. 
“In-silico” studies predicted that HLA-F has the typical 
MHC fold but with only a partially open-ended groove [47, 
54].

Role of MHC‑G, ‑E and ‑F as immune‑regulation 
proteins: pathology

Expression of HLA-G has been studied in autoimmune and 
inflammatory diseases, tumors, chronic viral infections and 
in engrafted tissues [5, 55–58]. This HLA-G expression has 
been associated with better prognosis in chronic inflamma-
tion, autoimmune diseases, and allotransplants, because 
inhibition of immune response occurs; however, this inhibi-
tion may be harmful in chronic viral infections and tumors, 
where an efficient immune response may be hindered [59, 
60]. The role and pathology of MHC-G, -E, and -F in mater-
nal/fetal relationship has been widely reviewed [3] (see 
below), but this must be complemented by HLA-C role, 
which is the only classical class I molecule expressed  at 

the cytotrophoblast and shows both presenting and suppres-
sive functions [44].

HLA‑G

Structure

Thirty-three different functional HLA-G alleles exist [41], 
and five ‘null’ alleles have been found (Fig. 2) [41, 61] of 
which only one, HLA-G*01:05N, has been found in more 
than one population and widespread around the World [38, 
62, 63] (See “HLA-G*01:05N, -G*01:01 and -G*01:04 
alleles World distribution: significance” section below). 
HLA-G proteins, like classical HLA class I molecules, 
are composed of a heavy chain, which is non-covalently 
bound to β2-microglobulin. HLA-G gene also shows simi-
larity to the classical HLA loci, exhibits 7 introns and 8 
exons, and encodes only for the heavy molecule, whereas 
β2-microglobulin is encoded for by a gene on chromosome 
15 [4] (Fig. 2). Homo-dimeric HLA-G soluble isoforms 
have been described, like G2 and G6, and also heterodi-
meric isoforms associated with β2-microglobulin, like G1 
and G5 [3, 64].

Evolution

Parham et al. studies on classical MHC genes structure 
and evolution in apes should be consulted to better under-
stand non-classical class I genes evolution [65, 66]. New 
World monkeys lineage separated about 35 million years 
ago [67, 68] from the lineage that gave rise to Old World 
and anthropoid monkeys. The cotton-top tamarin (Sagui-
nus oedipus, Saoe) that inhabits Central-South America 
is a typical example of this group and has MHC-G-like 
genes instead of MHC-A and MHC-B genes [69]. However, 
MHC-C sequences have been also described in this New 
World monkey [70], which also binds KIR [71]. MHC of 
cotton-top tamarin shares more primary DNA sequence 
homologies with HLA-G than with classical class I HLA 
genes [69, 72, 73]. This is why, MHC-G has been assigned 
as the ancestral MHC class I gene and that MHC class I 
genes of the Saoe could be homologous to HLA-G genes. 
MHC-G is also present in Old World Monkeys, although 
MHC-E primary DNA structure may be closer to that of 
Saoe MHC [3] (see “HLA-E” section). The α1 domain 
of MHC-G molecule is preserved in all species studied 
(Fig. 3) and may be sufficient for MHC-G function in the 
subfamily of Cercopithecinae monkeys (Macaca mulatta, 
Macaca fascicularis, Cercopithecus aethiops) [3]. All the 
MHC-G alleles of this subfamily bear stop codons (like 
some human individuals; see below in “HLA-G*01:05N, 
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-G*01:01 and -G*01:04 alleles World distribution: signifi-
cance” section, HLA-G null alleles frequencies distribu-
tion) in a very restricted area of exon 3 (at codon 164), 
and some alleles may also show stop signals at codons 
133, 118, and 176 [74]. However, pregnancies are normal 
in these Cercopithecinae species and functional MHC-G 
molecules may exist lacking the α2 domain, because one 
of the most important roles of MHC-G is preserving the 
fetus from maternal NK cells attack. Otherwise, reading-
through stop codon mechanisms may exist [75]. MHC-G 
polymorphism is low in the Pongidae family: gorillas and 
chimpanzees [3, 76]. Intron 2 of MHC-G sequences show 
conserved motifs in all primate species: a 23-bp deletion 
starting in position 161, which is MHC-G locus specific. 
Surprisingly, the Saoe MHC-G intron 2 does not bear this 
deletion. Explanations for this finding could be that: (1) 
the MHC-G-like sequences in Saoe described did not give 
rise to the Old World monkey and human MHC-G alleles; 
or (2) the 23-bp deletion most likely occurred after sepa-
ration of the New World monkeys from Old World mon-
key lineages about 35 million years ago [68, 69]. The first 
hypothesis is more plausible, since eluted peptides from 
cotton-top tamarin MHC-G like molecules are not typical 
of MHC-G [77]. MHC-G orthology has been studied by 

simple resemblance phylogenetic comparisons. However, 
lineal time inferences of species separation may be wrong 
and interpretation needs caution: this is because of  the 
frequent birth and death processes of genes and/or parts of 
them observed in the MHC region. Also, MHC-G in New 
World monkeys turns up as paralogous rather than ortholo-
gous to other primate MHC-G genes by cladistic studies on 
Alu and L1 elements insertions at 5’ region [78]. Indeed, 
this cladistic analysis concluded that MHC-B and MHC-G 
genes are ancestral to other MHC class I genes.

On the other hand, it has been found that MHC-G4, G5, 
and G6 isoforms are not present in gorilla, chimpanzee, and 
orangutan [76]. This finding suggests that MHC-G4 and 
the G5 and G6 soluble isoforms may be human-specific, 
and that MHC-G could have evolved independently in each 
group of primate species. With regard to these new findings, 
they make more difficult to assign a universal function for 
primate MHC-G proteins at the placental level or even at 
controlling autoimmunity [76]. Also, it has been found that 
MHC-G polymorphism shows more differences in Cerco-
pithecinae family and in Pongidae species: (1) Cercopith-
ecinae family bears a stop codon at exon 3, which is absent 
in Pongidae family. The latter bears a stop codon in exon 
6, like humans [74]. This variation was generated 33 million 

Fig. 3  Relatedness Neighbor-Joining (NJ) dendrogram constructed 
with MHC-G exons1, 2, 3 and 4  sequences of man (HLA), chim-
panzee (Patr), gorilla (Gogo), orangutan (Popy), rhesus monkey 
(Mamu), crab-eating macaque (Mafa), grivet (Ceae) and New World 
ape cotton-top tamarin (Saoe). It is shown that MHC-G of Saguinus 
oedipus diverges from all the other tested apes MHC-G [74]. Other 

mammals MHC-I sequences included in the analysis have been taken 
from GenBank: pig (Susc MHC-I; accession AF014002), cow (Bota 
MHC-I; accession X80936), mouse  (MumuKb; accession U47328), 
rat (RanoRT1; accession X90376), and rabbit (Orcu MHC-I; acces-
sion K02441). Bootstrap values are shown
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years ago when both Cercopithecinae and Pongidae families 
diverged [79, 80]; (2) exon 7 is not found in MHC-G tran-
scripts in human and Pongidae species, but it is preserved in 
rhesus monkeys (Cercopithecinae family) MHC-G mature 
mRNAs [81]; (3) MHC-G2 “short” unusual splice variants 
have been found in Gorilla (Pongidae) and also in rhesus 
monkeys (Cercopithecinae) [76]. It seems that during the 
last 40 million years, a selective pressure has operated on 
MHC-G protein binding domain (antigen cleft, at exons 2 
and 3) in New World and Old World primates and also in 
humans [15, 16].

In summary, it is striking that: (a) HLA-G*01:05N 
homozygous individuals there exist (non-functional HLA-
G1 membrane-bound isoform) [82]; (b) MHC-G4, G5, and 
G6 isoforms are not necessary for survival in Pongidae fam-
ily [76]; (c) Cercopithecinae family bears a stop codon at 
exon 3 [74]. These observations may lead to the conclusion 
that MHC-G is not a functional protein in Old World mon-
keys or may be substituted by other molecules [3, 64].

Moreover, presence of different HLA-G proteins in dif-
ferent primate species may be evolutionary better explained 
by mutations (i.e., deletions) that occurred at different apes 
speciation times. See reference [68], Fig. 3.

DNA transcription and translation

HLA-G exon 1 encodes for the signal peptide. Exons 2, 3, 
and 4 transcribe for extracellular α1, α2, and α3 domains, 
respectively; and exons 5 and 6 for the transmembrane and 
the heavy chain cytoplasmic domain. HLA-G has a short 
cytoplasmic domain, because there exist a premature stop 
codon in exon 6; thus, exons 7 and 8 are not transcribed in 
the mature mRNA [4, 5].

Surface molecules

Seven HLA-G transcripts produced by alternative mRNA 
splicing exist. Four of them give rise to membrane-bound 
protein isoforms and there are also three soluble isoforms 
[83]. HLA-G1 isoform is a complete HLA class molecule, 
with β2-microglobulin association. HLA-G2 lacks the α2 
domain encoded for by exon 3 (Fig. 1), and HLA-G3 isoform 
has neither α2 nor α3 domains, encoded by for exons 3 and 
4, respectively (Fig. 1). HLA-G4 does not have α3 domain, 
encoded by for exon 4. HLA-G5 and HLA-G6 soluble iso-
forms have the same domains than those of HLA-G1 and 
HLA-G2 isoforms; they are originated by transcripts which 
preserve intron 4, hindering the translation of the transmem-
brane domain (exon 5) (Fig. 1). Intron 4 is translated up to 
a stop codon in its 5’region; this is the cause that HLA-
G5 and HLA-G6 isoforms to have a tail of 21 amino acids 

accounting for their solubility. HLA-G7 isoform has only the 
α1 domain together with two amino acids coded by intron 2, 
which is transcribed [83] (Fig. 1).

Receptors

HLA-G extracellular domains bind to the following leuko-
cyte receptors: CD8, LILRB1 and LILRB2 and the killer-
cell immunoglobulin-like receptor KIR2DL4 (CD158d) 
(see Table 1). LILRB1 and LILRB2 also interact with the 
HLA-G molecule α3 domain and β2-microglobulin, LILRB2 
having a higher affinity than LILRB1 for the molecule [3]. 
LILRB-binding sites are different for each receptor [3]. 
CD8 molecule also interacts with all MHC class I mol-
ecules through α3 domain of classical and non-classical 
MHC-I molecules, like HLA-G and HLA-E. CD8α/α binds 
to HLA-G with higher affinity, and with a lower affinity to 
HLA-E [3]. Moreover, β-2 microglobulin binds HLA-G 
isoform dimers (G1 and G5) and interacts with LILRB1 
and LILRB2 receptors; LILRB1 predominantly binds 
β2-microglobulin-associated isoforms, while LILRB2 pref-
erentially contacts β2-microglobulin-free HLA-G. Ability 
of HLA-G isoforms to associate in homodimers and their 
binding affinity depending on the receptor are important for 
HLA-G function [64, 84, 85].

Cellular interactions

HLA-G recognizes NK, T and B cells bearing the LILRB1 
receptor on their surface [64]. Antigen presenting cells 
recognize both placental leucocytes and HLA-G + cells, 
which express LILRB1, and LILRB2 receptors. Also, 
HLA-G modulates NK cell cytotoxic activity in contact 
with LILRB1, LILRB2, and KIR2DL4 receptor [86–88]. 
Moreover, LILRB2 receptor in antigen presenting cells and 
CD8 receptor in CTL cells are recognized by HLA-G [87].

HLA‑G*01:05N, ‑G*01:01 and ‑G*01:04 alleles World 
distribution: significance

The first confirmed HLA-G null allele was described by 
Arnaiz-Villena et al. in a Spanish population sample [38]. 
This HLA-G null allele protein could exist only with a sin-
gle α1 domain: a single-base deletion induces a shift in the 
reading frame and a consequent premature stop codon. [3, 
29, 39]. A protective effect against gestational infections has 
been associated with this allele but also recurrent spontane-
ous abortions [3, 64]. However, the hypothesis that frequent 
intrauterine infections can maintain high null allele frequencies 
is discarded, since Mayas and Uros populations, with a weaker 
health care services in comparison with European ones, do 
not have this allele. Also, Brazilian and mixed Amerindian 
populations show similar low frequencies [103]. Middle East 
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Caucasians (Iraqis, Iranians, and Indians from North India) 
and some African populations (Ghana, Shona, and African 
Americans) show significantly higher frequencies of this null 
allele (Fig. 4). HLA-G*01:05N allele DNA sequence indicates 
that it was probably originated from the HLA-G*01:01 allele: 
both protein sequences are identical except for a cysteine dele-
tion at codon 129/130 [82]. Moreover, HLA-G* 01:05N allele 
is in linkage disequilibrium with the HLA-A*30:01-B*13:02 
haplotype, which is prevalent in Middle East and some Medi-
terranean populations. This haplotype may have been intro-
duced in Spain by Muslim invaders in the eighth century AD 
or long before, when Saharan migrations took place from 
Saharan Desert to the Mediterranean Basin due to hyperarid 
climatic conditions beginning about 10,000–6,000 years ago 
[38, 104–107]. HLA-G*01:05N “founder effect” could place 
Middle East as the origin of this allele, because it contains the 
highest World reported frequencies [62].

As HLA-G is known to play an important role in mater-
nal–fetal tolerance, it is striking how there exist HLA-
G*01:05N healthy homozygous mothers capable of giving 
birth to normal and healthy fetuses. This finding indicates 
that the HLA-G1 isoform is not crucial for normal preg-
nancy development [82]. This is also supported by genus 
Macaca primates which have a normal development during 
pregnancy and adult life with HLA-G incomplete molecules 
[108, 109]. HLA-G α1 domain could be sufficient for the 
normal functioning of the HLA-G molecule, so negative 
evolutionary pressures would not act to eliminate this gene 
[39] or could be substituted by other HLA class I molecule at 
the placenta level. Also, HLA-G*01:05N allele may improve 
the level of immune response against HIV infection [110] or 
other infections not directly related to pregnancy.

On the other hand, highest frequencies of HLA-G*01:04 
allele are found in South Korean, Iranian, and Japanese pop-
ulations (27.7%, 31.36%, and 45%, respectively) (Fig. 5). 
Amerindian populations show similar HLA-G*01:04 allele 
frequencies among them: 10.2% in Uros from Titikaka Lake 
or 13.1% in Mayans from Guatemala. It is important to point 
out that HLA-G*01:04 allele frequencies higher than 10% 
have not been found in Europe neither higher than 13% in 
South Europe (Spaniards 11%, Portuguese 13%) (Fig. 5). 
Significant HLA-G differences have not been found, but a 
trend to lower frequencies in central Europe in comparison 
with Amerindians is detected (Fig. 6).

Also, higher frequencies of HLA-G*01:01 allele are 
found in USA South Dakota Hutteritie population, Ghani-
ans, and Germans (79.8%, 83.3%, and 87.4%, respectively). 
Similar HLA-G*01:04 frequencies are found throughout all 
Amerindian populations (Fig. 5).

Table 1  HLA-G, -E and -F receptors

a Structure of this interaction has been defined by X-ray crystallogra-
phy [95]
b Structure of this interaction has been defined by X-ray crystallogra-
phy [14]
c Structure of this interaction has been defined by homology with 
crystallographic HLA-A2–CD8 and H-2 Kb–CD8 studies [86, 96, 97]
d Bibliography about structure of this interaction has not been found. 
Only functional assays using monoclonal antibodies have been used 
to discuss this interaction [11, 88, 98]
e Structure of this interaction has been defined by X-ray crystallogra-
phy [99]
f Structure of this interaction has been defined by homology with crys-
tallographic HLA-E–NKG2A studies [99]
g Structure of this interaction has been defined by homology with 
crystallographic HLA-E–NKG2A studies [99]
h Structure of this interaction has been defined by X-ray crystallogra-
phy [100]
i Structure of this interaction has been defined by homology with crys-
tallographic HLA-A2–CD8 and H-2 Kb–CD8 studies [86, 96, 97]
j Bibliography about structure of this interaction has not been found. 
Only affinity studies have been used to discuss this interaction [91]
k Bibliography about structure of this interaction has not been found. 
Only affinity studies have been used to discuss this interaction [91]
l Bibliography about structure of this interaction has not been found. 
Only functional assays using monoclonal antibodies have been used 
to discuss this interaction [92]
m Bibliography about structure of this interaction has not been found. 
Only functional assays using monoclonal antibodies have been used 
to discuss this interaction [92, 101]
n Bibliography about structure of this interaction has not been found. 
Only studies of interactions measured by surface plasmon resonance 
have been used to discuss this interaction [102]
o Structure of this interaction has been defined by X-ray crystallogra-
phy [47]
p Bibliography about structure of this interaction has not been found. 
Only affinity studies have been used to discuss this interaction [102]

Molecule Receptor References

HLA-G LILRB1a [64, 86, 88]
LILRB2b

CD8c

KIR2DL4d

HLA-E CD94/NKG2Ae [87, 89]
CD94/NKG2Cf [90]
CD94/NKG2Eg

TCR h [48, 87]
CD8i [64]
LILRB1j [91]
LILRB2k

HLA-F KIR3DL2l [92, 93]
KIR2DS4m

KIR3DS1n [93]
LILRB1o [47, 91, 94]
LILRB2p [91, 94]
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HLA‑E

Structure

HLA-E is a heterodimer having an α heavy chain and a light 
chain (β-2 microglobulin). Heavy chain size is about 45 kDa 
and it is anchored to the cell membrane. HLA-E gene con-
tains 8 exons. Exon 1 encodes for signal peptide, exons 2 
and 3 encode for the α1 and α2 domains (peptide-binding 
site), exon 4 for the α3 domain, exon 5 for transmembrane 
domain, and exon 6 for cytoplasmic tail [111]. Exons 7 and 
8 are not present in the mature mRNA.

Evolution

Both New World and Old World monkeys MHC-E proteins 
preserve invariant residues at the tridimensional protein-
presentation valve, like in all other MHC class I molecules 
from reptilians to humans. Also, the rate of substitutions 
in peptide-binding site reveals the exixtence of a high evo-
lutionary pressure for stability in this area. MHC-E poly-
morphism in Macaca mulatta and Macaca fascicularis is 
restricted to 13 positions in exon 2 (3 synonymous and 10 
nonsynonymous variations), 22 in exon 3 (10 synonymous 

and 12 nonsynonymous substitutions) and at the beginning 
of exon 4 (2 nonsynonymous variations); in contrast, exon 
4 in humans does not show any variation in its sequence. 
Polymorphism in MHC-E gene of Cercopithecus aethiops is 
confined only to exon 3 with 1 synonymous and 1 nonsyn-
onymous substitutions [112].

Regarding interspecific studies on MHC-E, an exam-
ple of trans-specific MHC-E evolution has been found in 
genus Macaca: Macaca mulatta and Macaca fascicularis 
share the same MHC-E exon 2 and exon 3 sequence in one 
allele [112]: both Mamu-Mhc-E-*0101 and Mafa-Mhc-
E*04 alleles are identical in exonic 2 and 3 sequences, only 
differing at the beginning of exon 4 at position 184 [112]. 
Also, a duplicated MHC-E locus has been found in Macaca 
mulatta, which may be originated by unequal crosses among 
different MHC-E homologue locus [113, 114]. These dupli-
cations have also been reported in other primates class II 
MHC genes but never before in class I loci [115]. On the 
other hand, these Macaca mulatta and Macaca fascicula-
ris MHC-E protein alleles have a Tyrosine in position 36, 
where species of other different genera bear a Phenylalanine 
in this position (Pongo pygmaeus, Cercopithecus aethiops, 
Homo sapiens); this aminoacidic change in Macaca genus 
could have taken place in both species ancestor and confirms 

Fig. 4  World map showing HLA-G*01:05N null allele frequencies in different populations. Populations are within white squares and HLA-
G*01:05N frequencies are within blue squares. Note highest frequencies at Middle East (see text) [63]
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a trans-specific evolution of the MHC complex [112, 116, 
117].

It was thought that MHC-G was primordial to other MHC 
genes in apes, giving rise to other typical MHC antigen pre-
senting alleles, because it is present in New World mon-
keys (Saguinus oedipus), which are more ancient than Old 
World monkeys [16, 68, 118]. However, other data suggest 
that MHC-G molecules in primates could be non-functional 
(deletions in genus Macaca) [74] and other MHC proteins, 
like MHC-E, could do this function instead. It is known that 
MHC-G molecules in genus Macaca are not able to bind and 
present peptides and thus being surface expressed, because 
all individuals bear HLA-G deleted genes, but they may be 
useful for α1 interactions with cognate receptors [39, 74].

With regard to Saguinus oedipus MHC-G allele, it seems 
to be phylogenetically closer to MHC-E alleles of other spe-
cies. These analyses were carried out using primary DNA 
sequences, genetic distances and Neighbor-Joining dendro-
grams that closely related MHC-G from New World primate 
(Saguinus oedipus) with MHC-E primary DNA sequences 
of macaque (Macaca mulatta) and orangutan (Pongo pyg-
maeus); it is also relevant that genus Macaca lack full MHC-
G mRNA transcripts and DNA sequences [3, 74, 112, 118]. 

It has been shown that HLA-E locus is the most ancient HLA 
locus in humans, which may support the presence of MHC-
E-like molecules in Saguinus oedipus, being the putative 
primitive MHC gene in primates [119] (Fig. 6).

It seems that selective pressures have occurred to con-
serve aminoacidic positions in the peptide-binding site of 
primate MHC-E molecules. It has been also found that 
MHC-E alleles have suffered trans-specific evolution, dupli-
cations, unequal crosses, and substitutions in primates, but 
it has remained for approximately 40 million years. Indeed, 
pockets of MHC-E presenting molecules among species, 
i.e., two human alleles, macaques MHC-E and MHC-E-like 
molecule in mouse (Qa-1b), have been studied and they all 
share main aminoacidic anchor portions during million years 
[120]. Also, human and medium-sized apes (macaques) 
MHC-E molecules present identical peptides to CD8 + T 
cells; in man, HLA-E presents leader peptides from class 
Ia molecules to regulate NK cells [121]. Other studies have 
also pointed out that MHC-E locus is the most conserved 
histocompatibility gene in primates, and this ancient evolu-
tionary conservation of MHC-E peptide-binding site struc-
ture suggests a crucial relevance in immunological processes 
[112, 122].

Fig. 5  (1) HLA-G*01:04 frequencies (red squares) are different over 
the World. Higher frequencies are found in Japanese, Iranians, and 
South Koreans; Europeans and Amerindians show lower frequencies. 

(2) HLA-G*01:01 frequencies (green squares) do not clearly differ 
among World populations [63]
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DNA transcription and translation

HLA-E transcripts are found in a great variety of tissues, 
and it is doubtful whether HLA-E molecules reach the 
surface in normal tissues conditions [123, 124]. However, 
scanty productive allelic changes described are mostly at the 
T-cell receptor-binding site [125], and it was put forward 
that HLA-E function may be related to the T-cell repertoire 
shaping in the thymus or otherwise to presenting a limited 
peptide repertoire. HLA-E is expressed in the cytoplasm and 
then on the surface of cytotrophoblast cells but only in the 
last months of the pregnancy and its expression control is 
mediated by INF gamma [126–128].

Surface molecules

A nonamer peptide derived from residues 3–11 of sig-
nal sequences of most classical MHC class I molecules 

is required for HLA-E cell surface expression [28, 49, 
129–132]. This leader peptide is released in the cytosol and 
then transported by TAP into the lumen of the endoplasmic 
reticulum, where it binds to HLA-E groove [49, 131]. There-
fore, HLA-E surface expression allows NK cells to control 
the expression of a wide range of polymorphic MHC class I 
molecules through a single receptor. HLA-E surface expres-
sion inhibits NK-cell-mediated cytotoxicity [133].

Receptors

ILT2 and ILT4 receptors bind to HLA-E [91]. It also has 
been shown to interact with other NK cell receptors like 
NKG2A [87, 132], NKG2C, and NKG2E [90]. Moreover, it 
is known that HLA-E can interact with TCR and CD8 recep-
tors on the surface of CTL cells [48, 64, 87] (see Table 1).

Cellular interactions

It was  detailed above that HLA-E regulates NK cell activ-
ity through interaction with  LILRB1, LILRB2, NKG2A, 
NKG2E, and NKG2C molecules : all of them are expressed 
on the NK cells surface [86, 87, 134, 135]. Also, HLA-E 
interacts with T CD8 + lymphocytes through TCR and CD8 
[87].

HLA‑F

Structure

HLA-F protein is a ~ 40–41 kDa molecule with HLA class I 
domains [136]. Due to an alternative splicing process, HLA-
F mature mRNA does not contain the exon 7 sequence [137, 
138], which leads to a modification in the protein, making 
cytoplasmic tail shorter in comparison to classical HLA 
class I proteins [137, 139] (see Fig. 1).

Evolution

HLA-F orthologous DNA molecules are found in chim-
panzee, bonobo, gorilla, and orangutan. Their amino acid 
sequences and their comparison with other primate MHC-F 
proteins show that MHC-F is a protein with a class I struc-
ture and that the characteristic residues of the peptide-bind-
ing region (PBR) are highly conserved in primate MHC-F. 
Therefore, MHC-F conservation along primate evolution 
suggests an important role in physiology. Thus, MHC-F pro-
tein could function together with MHC-G and MHC-E, in 
the natural killer (NK) cell activity regulation [140]. HLA-F 
orthologues have been compared in Pongidae, Macaca and 
American apes; they present only one pair of active MHC-F 
genes per chromosome whether they have or not duplicated 

Fig. 6  A Neighbor-Joining dendrogram showing that HLA-E may 
be the most ancient MHC molecule in humans. HLA sequences have 
been taken from IMGT/HLA database [41] and Felis catus MHC-I 
(GenBank accession NM_001305029.1) has been taken as outgroup. 
Bootstrap values are shown
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genes. In addition, a New World (American) monkey, the 
marmoset, shows 6 orthologous transcripts. However, in all 
other New World monkeys, Old World ones and humans, 
MHC-F expansion by duplication has been inactivated to 
maintain only two parental MHC-F copies per individual 
irrespective of the number of duplicated copies contained: 
thus MHC-F gene is under purifying selection [141].

All MHC-F studies in chimpanzee, gorilla, orangutan, 
Rhesus macaque, and cotton-top tamarin have pointed out 
a mutation in intron 6 splice site, which drives to the lack 
of exon 7 in the mature MHC-F protein [69, 137–144]. 
This common characteristic among these species indicates 
that this  mutation took place before Old World and New 
World monkeys diverged about 35 million years ago [67, 
68, 140].

MHC-F alleles in human, chimpanzee, bonobo, gorilla, 
and orangutan lack a six-nucleotide sequence that is present 
in rhesus macaque and cotton-top tamarin within exon 2. 
Thus, this six-nucleotide deletion happened in a common 
ancestor of genera Homo, Pan, Gorilla and Pongo after the 
separation of rhesus monkeys and New World monkeys’ 
evolutionary pathways. Phylogenetic trees performed show 
a strong similarity of MHC-F exons 2 and 4 sequences 
among species: all of them cluster together in a separated 
tree branch from other class I molecules [140].

Three-dimensional structure of HLA-F is similar to that 
of the other class I molecules. Also, the little differences 
observed among sequences of primate species indicate that 
there must be a strong selective pressure for invariance, 
except for the Saguinus oedipus (Saoe-F protein), that has a 
degree of difference of about 15%, while in the comparisons 
among other primates is under 6% [140].

HLA‑F transcription and translation

Molecules of HLA-F are intracellularly expressed in many 
body cells and tissues; these are peripheral blood lympho-
cytes (PBL), resting lymphocyte cells (B, T, NK), tonsils, 
spleen, thymus, kidney, brain, bladder, colon, liver, lympho-
blast T-cell leukemia, and tumors. In addition, HLA-F is 
expressed on fetal extravillous trophoblast cells, which are 
in close contact with the maternal tissues [113]. HLA-F is 
expressed both intracellularly and on the surface of cyto-
trophoblast from the second trimester onwards [91, 118, 126, 
145].

HLA‑F surface expression

Expression of HLA-F is found on the surface of activated 
lymphocytes, tumors, HeLa cells, EBV-transformed lympho-
blastoid cells, and in some activated monocyte cell lines 
[89, 139]. HLA-F surface expression occurs after immune 
response activation: HLA-F is found on the surface of 

stimulated T memory cells but not on circulating regulatory 
T cells [146].

HLA‑F receptors

HLA-F tetramers have been shown to bind LILRB1 and 
LILRB2 receptors without any peptide binding [47, 64, 
87–91, 94]. HLA-F open-conformed form has also been 
shown to bind KIR receptors of NK cells, like KIR3DL2 
and KIR2DS4 [92, 93]. These HLA-F interactions are 
believed to stabilize other ligand–receptor interactions 
between trophoblast cells and decidual NK cells during 
pregnancy. Decidual NK cells play an important role in 
pregnancy immune regulation; binding to KIR2DS1 has 
also been shown [93] (see Table 1).

Cellular interactions

It has been shown that HLA-F binds decidual NK 
cells in the trophoblast during pregnancy. It interacts 
with active or inactive NK cell activity in the maternal 
decidua through recognition of KIR3DL2, KIR2DS4 and 
KIR3DS1; these cells are also recognized through LILRB1 
and LILRB2 receptors [87, 147]. Moreover, HLA-F recog-
nizes T, B and NK cells which express LILRB1 receptor 
[64]. HLA-F + decidual leucocytes and antigen presenting 
cells interact also trough LILRB1 and LILRB2 receptors 
[64, 94].

Conclusions

Nature evolution vs statistical models

MHC was discovered in chicken by B. Briles in 1950 [148]. 
The first HLA and disease association was described by 
Amiel in 1967 [149]. Many diseases have been found sta-
tistically associated with HLA and MHC classical class I 
and class II genes. However, today, in 2022, no universally 
accepted pathogenesis mechanisms have been found  to 
explain classical HLA genes and disease association 
[64] despite a flood of research on both statistical and  in 
vitro models trying to find out mechanisms and pathogen-
esis, suggesting pathogenetic proposals which are not yet 
universally accepted [64].

On the other hand, since Dan Geraghty [7] and Edgardo 
Carosella groups [150] uncovered HLA-G structure and 
immune system modulation by this molecule, another flood 
of HLA-G and disease studies has occurred, particularly in 
relation to autoimmunity, cancer, and fetal/maternal patholo-
gies. Again, no mechanisms have been clarified up until now. 
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In the meantime, HLA-E and -F immune suppressive genes 
have also been studied [128, 137]. It is then time to review 
and study on how Nature modulates the evolution of genes 
[151] at least in primates, where orthologous genes are well 
defined. This may give a clue on  function and associated 
pathology of these immune response control molecules, 
MHC-G, -E and -F. In this article, we have tried to shortly 
review some of these aspects.

MHC genes for specific, non‑specific, and regulatory 
immunity: extended HLA haplotypes

Much debate has occurred, because so many MHC differ-
ent immune genes go close together in a short chromo-
some area across species from amniotes to humans during 
many million years [152–154]. This suggests that this set 
of genes may work together to save individual and species 
from external injuries, probably microbes, and associated 
self-recognition pathologies [3, 64, 155, 156]. In this chro-
mosome region lies : a) non-adaptive immunity genes i.e.: 
C2, C4 and Bf complement factors, tumoral-necrotic factors 
(TNF) genes, heat shock proteins (HSP) genes, lymphotoxin 
genes (LTA, LTB) or some zinc finger codifying genes like 
TRIM40; b) adaptive immunity genes like tapasin (TAP) 
genes, lymphocyte antigen 6 (Ly6), HLA classical class I 
(-A, -B, -C), and class II (-DQ, -DR, -DP) genes or MIC 
genes (MICA, MICB); c) regulatory genes like HLA non-
classical (-G, -E, -F) genes in primates, and others [157, 
158]. Keeping together a set of certain alleles set of all 
known immune-related genes may be more advantageous 
for survival (i.e.: MHC haplotypes rather than single genes) 
[159] and this may be the reason why all these genes are 
transmitted conjointly at least from amniotes to humans [3, 
64, 154, 158, 160]. A search as towhy they are transmitted 
and work together is worth to follow at this point of MHC/
disease association nihilism. Coevolution of adaptive (i.e.: 
class I and class II), natural (i.e.: complement), and modu-
latory (i.e.: HLA-G, HLA-E, HLA-F) genes may point out 
that studying MHC haplotype/disease association in full or 
in part may be more fruitful to explain the association of 
HLA and disease than single-locus allele studies [161, 162].

HLA haplotypes and disease association

Thus, the key for understanding HLA association to dis-
ease may be studying no single-locus genes but a cluster of 
neighboring and conjointly transmitted MHC genes (MHC 
haplotypes). It also would apply to HLA-G extended hap-
lotypes and disease studies [64, 155, 156]. This approach 
was already suggested by Roger Dawkins in 1983 [161]: 
they tried to associate ankylosing spondylitis, rheumatoid 
arthritis, myasthenia gravis and systemic lupus erythemato-
sus with complotypes (set of C2, Bf and C4 alleles inherited 

conjointly) and extended HLA haplotypes using different 
number of neighboring loci alleles. They also related sus-
ceptibility to diseases not only with HLA haplotypes but 
also with retroviruses inserted in the region, which affected 
expression of MHC genes and also their polymorphism 
and MHC segment duplication [162]. All or some of these 
factors within a complotype or a more extended haplotype 
should be studied to ascertain HLA and disease associa-
tion. Indeed, this may be technically difficult to study but 
perhaps more fruitful. More or less long extended HLA 
haplotypes have been studied with some success in certain 
diseases; Berger’s Disease in 1984 [163], type I diabetes in 
1992 [164], and some extended HLA haplotypes were also 
defined in 1991 [165]. However, relatively few studies have 
been done up until now; some of them were in microscopic 
polyangiitis [166], celiac disease [167], kidney disease [168, 
169], diabetes [170], and psoriatic arthritis [171]. Technical 
difficulties of this type of study may be in part overcome by 
nowadays more advanced technologies.

Additional remarks

1. MHC-G complete molecule is lacking in some humans 
and all primate individuals belonging to genus Macaca. 
Other MHC molecules may substitute its function or 
parts of the molecule may suffice for functionality.

2. Some apes do not have all of the MHC-G soluble iso-
forms described in man.

3. MHC-E (and not -G) may be the primordial MHC gene 
in apes, which gave rise to other MHC molecules.

4. A conjoint immune evolution and transmission in a 
relatively short DNA stretch of MHC, i.e.: immunosup-
pressive MHC genes (MHC-G, -E, -F), classical present-
ing molecules and non-adaptive ones (i.e.: C2, C4, Bf) 
is maintained for a long time from amniotes to human 
at least, because haplotypes or a specific set of MHC 
genes/alleles may be necessary for self-maintaining 
against pathogens and/or other injuries.
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