
GigaScience, 9, 2020, 1–12

doi: 10.1093/gigascience/giaa046
Research

RESEARCH

Global ocean resistome revealed: Exploring antibiotic
resistance gene abundance and distribution in TARA
Oceans samples
Rafael R. C. Cuadrat 1, Maria Sorokina 2, Bruno G. Andrade3, Tobias Goris4

and Alberto M. R. Dávila 5,6,*

1Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke - DIfE,
Arthur-Scheunert-Allee 114–116, 14558 Nuthetal, Germany; 2Institute for Inorganic and Analytical Chemistry,
Friedrich-Schiller University, Lessingstrasse 8, 07743 Jena, Germany; 3Animal Biotechnology Laboratory,
Embrapa Southeast Livestock, EMBRAPA, Rodovia Washington Luiz, Km 234 s/n◦, 13560-970 São Carlos, SP,
Brazil; 4Department of Molecular Toxicology, Research Group Intestinal Microbiology, German Institute of
Human Nutrition Potsdam-Rehbruecke - DIfE, Arthur-Scheunert-Allee 114–116, 14558 Nuthetal, Germany;
5Computational and Systems Biology Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Av Brasil 4365, 21040-900
Rio de Janeiro, RJ, Brazil and 6Graduate Program in Biodiversity and Health, Oswaldo Cruz Institute, FIOCRUZ,
Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil
∗Correspondence address. Alberto M. R. Dávila, Computational and Systems Biology Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Av Brasil 4365,
21040-900 Rio de Janeiro, RJ, Brazil. E-mail: alberto.davila@fiocruz.br http://orcid.org/0000-0002-6918-7673

Abstract

Background: The rise of antibiotic resistance (AR) in clinical settings is of great concern. Therefore, the understanding of AR
mechanisms, evolution, and global distribution is a priority for patient survival. Despite all efforts in the elucidation of AR
mechanisms in clinical strains, little is known about its prevalence and evolution in environmental microorganisms. We
used 293 metagenomic samples from the TARA Oceans project to detect and quantify environmental antibiotic resistance
genes (ARGs) using machine learning tools. Results: After manual curation of ARGs, their abundance and distribution in
the global ocean are presented. Additionally, the potential of horizontal ARG transfer by plasmids and their correlation with
environmental and geographical parameters is shown. A total of 99,205 environmental open reading frames (ORFs) were
classified as 1 of 560 different ARGs conferring resistance to 26 antibiotic classes. We found 24,567 ORFs in putative plasmid
sequences, suggesting the importance of mobile genetic elements in the dynamics of environmental ARG transmission.
Moreover, 4,804 contigs with >=2 putative ARGs were found, including 2 plasmid-like contigs with 5 different ARGs,
highlighting the potential presence of multi-resistant microorganisms in the natural ocean environment. Finally, we
identified ARGs conferring resistance to some of the most relevant clinical antibiotics, revealing the presence of 15 ARGs
similar to mobilized colistin resistance genes (mcr) with high abundance on polar biomes. Of these, 5 are assigned to
Psychrobacter, a genus including opportunistic human pathogens. Conclusions: This study uncovers the diversity and
abundance of ARGs in the global ocean metagenome. Our results are available on Zenodo in MySQL database dump format,
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and all the code used for the analyses, including a Jupyter notebook js avaliable on Github. We also developed a dashboard
web application (http://www.resistomedb.com) for data visualization.
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Introduction

Antibiotic-resistant bacteria are a global public health issue
and an economic burden to the entire world, especially in de-
veloping countries. Projections have shown that, if the emer-
gence of multi-resistant bacteria continues at the same rate,
they will cause 10 million deaths per year, which would out-
number cancer-related deaths [1, 2]. Despite its impact on hu-
man health, antibiotic resistance (AR) is a natural phenomenon
and one of the most common bacterial defense mechanisms. For
example, the resistance to β-lactam antibiotics, conferred by β-
lactamase activity, is estimated to have emerged >1 billion years
ago [3, 4]. Some authors argue that β-lactamase genes are part of
inter- and intra-community communication and used in the de-
fense repertoires of organisms sharing the same biological niche
[5, 6].

The collection of antibiotic resistance genes (ARGs) in a given
environment or organism is known as the resistome, and such
genes have been detected in different natural environments,
such as oceans [7], lakes [8], rivers [9], remote pristine Antarc-
tic soils [10], and impacted Arctic tundra wetlands [11]. Studies
also showed that anthropogenic activity (e.g., overuse of antibi-
otics and their subsequent release via wastewater into the en-
vironment) could lead to the spread of clinically relevant ARGs
across natural environments [12, 13]. Therefore, the investiga-
tion of the natural context of ARGs, their geographic distribu-
tion, dynamics, and, in particular, their presence on horizontally
transferable mobile genetic elements, such as plasmids, trans-
posons, and phages, is crucial to assess their potential to emerge
and spread [14–16]. Owing to modern advances in DNA sequenc-
ing and bioinformatics, it is now possible to study the presence
and prevalence of ARGs in different environments. However,
most of the published studies targeted only 1 or a few classes of
ARGs and were limited to specific environments and geographic
locations. The oceans cover ∼70% of Earth’s surface, harbour-
ing a significant diversity of planktonic microorganisms, form-
ing a complex ecological network that is still understudied [17,
18]. To tackle this problem, the number of ocean metagenomic
projects stored in public databases has been growing. Again, the
lack of related metadata have made it challenging to conduct
high-throughput gene screenings and correlations with environ-
mental factors. Fortunately, the TARA Oceans project [19] mea-
sured several marine environmental conditions across the globe
and stored them as structured metadata. This rich and unique
dataset, together with the metagenome sequences [19], will al-
low the use of machine and deep learning approaches to search
for gene and species distributions and their correlation to envi-
ronmental parameters. In this study, we applied deepARG [20],
a deep learning approach for ARG identification, to screen co-
assembled TARA Oceans contigs [21]. After the manual curation
of ARGs, we classified the results of the deepARG screening tax-
onomically. Furthermore, ARG abundance was quantified, and
ordinary least squares (OLS) regression with association analy-
ses between the quantification of ARGs and environmental pa-
rameters was used. We also explored the presence of ARGs lo-
cated on putative plasmids to investigate the potential of these
oceanic environments to act as a reservoir of potentially mobile
ARGs.

Methods
Metagenomic data

A total of 12 co-assembled metagenomes from different oceanic
regions explored by the TARA Oceans expedition, with contigs
larger than 1 kb, were obtained from the dataset published in
2017 by Delmont et al. [22]. Raw reads of 243 samples (378 se-
quencing runs; accession numbers PRJEB1787, PRJEB6606, and
PRJEB4419) were obtained from the European Bioinformatics In-
stitute (EBI) European Nucleotide Archive (ENA) database [23].

Sample identifiers and metadata were obtained from the
TARA Oceans companion website tables [24]. Samples were col-
lected at different sites and depths and successively filtered us-
ing a single or a combination of membranes with pore sizes of
0.1, 0.2, 0.45, 0.8, 1.6, and 3 μm to retain different size fractions
(i.e., viruses, giant viruses, and prokaryotes) [24]. We created a
variable called “fraction,” where the upper and lower filtration
membrane size were used together to define groups. However,
owing to methodological limitations (described in the Results
and Methods sections), viruses and giant viruses (giruses) en-
riched samples were excluded from quantitative analysis.

Environmental ARG prediction

Open reading frame (ORF) prediction was performed on the
12 co-assembled metagenomes using MetaGeneMark v3.26 [25]
with default parameters (sequences larger than 60 nucleotides).
The screening for ARGs was performed with DeepARG [20] on
the predicted ORFs using gene models. The deepARG tool was
developed, taking into account a dissimilarity matrix using all
ARG categories of 3 curated and merged databases (Antibiotic
Resistance Genes Database [ARDB], Comprehensive Antibiotic
Resistance Database [CARD], and UniProt) [20]. This approach is
an alternative to the “best hits” of sequence searches against
existing databases, which produces a high rate of false-negative
results [20]. An ORF was classified as ARG if the estimated prob-
ability was ≥0.8. Contigs containing ≥1 putative ARG were anal-
ysed with PlasFlow 1.1 [26] using a probability threshold of 0.7
to check for a potential plasmidial location of ARGs. We also in-
vestigated the number and distribution of contigs with 2 or more
putative ARGs to check for multiple resistance and/or whole ARG
operons from environmental samples. Putative ARGs (and their
respective contig) were submitted to Kaiju v1.6.2 [27] for taxo-
nomic classification, with the option “run mode” set as “greedy.”
Later, we conducted a manual curation of each ARG to check for
misannotations and inconsistencies. BLASTp searches [28] were
performed against the non-redundant (NR) protein database,
with default parameters. Results with an e-value lower than
e−5 were considered. Conserved domains (CDDs) and annota-
tions in the source databases (ARDB [29], CARD [30], and UniProt
[31]) were manually inspected. These results were used to clas-
sify misannotated/misclassified ARGs into different categories:
(i) misannotated genes or gene families with low support for
ARG prediction, i.e., all source database sequences exhibiting
non-ARGs as top 5 BLASTp (against NR database) hits with an
e-value cut-off of e−5. Included are especially cases with an un-
ambiguously erroneous original annotation (examples are de-
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scribed in the Results). All of these misannotated ARGs were
removed from our database and the downstream analyses; (ii)
housekeeping genes that confer resistance only when specif-
ically mutated; (iii) housekeeping genes conferring resistance
when overexpressed; (iv) regulatory sequences responsible for
ARG activation or overexpression of housekeeping genes lead-
ing to a resistance phenotype. The ARG family descriptions of
the source databases (mainly those of the CARD database) were
used (in addition to literature information) to classify ARGs into
this scenario; (v) sequences with both similarities to ARGs and
non-ARGs, belonging to the same superfamily and/or sharing
domains. BLASTp and CDD analysis were used to classify ARGs
into this scenario in cases where the TARA sequences show non-
ARGs and no specific CDD domain for that ARG among the top
10 BLASTp hits.

ARG quantification and statistical tests on
metagenomic samples

Environmental ARGs identified were used as a reference for raw
read mapping by BBMAP v37.90 (default parameters) [32] after
manual curation. The coverage, in terms of read count per gene,
and the abundance, in terms of fragments per kilobase per mil-
lion mapped reads (FPKM), of each ARG was then calculated
for each sample by BBMAP. The average genome size (AGS) and
genome equivalents (GEs) were estimated by the software Mi-
crobeCensus v1.0.7 (default parameters) [33] to calculate reads
per kilobase per genome equivalents (RPKG) as described [33].
The RPKG of an ARG in a metagenome was calculated by (i)
counting the number of reads mapped to the ARG, (ii) dividing (i)
by the length of the ARG in kilobase pairs, and (iii) dividing the
result of (ii) by the number of sequenced genome equivalents:

RPKG = Mapped reads/Gene Length (kb)
Genome equivalents

,

where

GE = Library size (bp)
AGS (bp)

and library size is the total number of sequenced base pairs.
RPKG values for all ORFs classified as the same ARG were

summed for each sample. Environmental features, such as sam-
ple depth, biogeographic biomes, ocean and sea regions, and
fractions, were used for sample grouping and statistical tests.
Pairwise Tukey HSD and multivariate linear regression using
OLS models were conducted in Python 3.6 using the library
“statsmodels.” The OLS was performed considering the follow-
ing formula:

ARGRPKG ∼ fraction + Latitude + Longitude + depth

+temp c + NO2NO3 + PO4 + SI + Mean Oxygen

+Mean Salinity + OG Shannon,

where ARGRPKG (the dependent variable) is the sum of RPKM
of all ARGs in a given class, and all the dependent variables are
the selected environmental features. A 2-way ANOVA analysis
was conducted on the coefficients obtained from the OLS regres-
sion to infer the significance of a feature. A Python Jupyter note-

book with the code and the results for all the exploratory and
statistical analyses is provided on GitHub [34].

Phylogenetic analysis of environmental ARGs

Phylogenetic analyses were performed on environmental nu-
cleotide sequences identified as clinically relevant ARGs, such
as mobilized colistin resistance (MCR)-related sequences, for
which reference sequences were retrieved from public databases
(e.g., NCBI and deepARGdb). Multiple protein sequence align-
ments and phylogenetic trees were generated using the stan-
dard pipeline of Phylogeny.fr [35]. In short, sequences were
aligned using MUSCLE (default parameters) [36], conserved
blocks extracted with gblocks (default parameters) [37], and phy-
logenetic trees generated with phyML [38], using Whelan and
Goldman (WAG) matrix substitution model and approximate
likelihood-ratio test (ALRT) statistical test.

Database design and implementation

A manually curated MySQL database was created with the envi-
ronmental ARGs described and all the subsequent analysis re-
sults. Data downloaded and processed as described above were
parsed with Java 8 and stored in the database with Hibernate.
The database model is also managed by Hibernate in Java. The
code is available on GitHub [39]. The resulting database contains
5 main data tables: “orf”, “arg”, “sample”, “organism”, and “xref”,
containing cross-references between the different data sources.
The additional 5 connection tables map in an SQL engine-free
way the correspondences between the items from different ta-
bles. We provide the SQL dump and the database schema at Zen-
odo [40].

Dash web application for data exploration and
visualization

We developed a Python dashboard web application where the
user can explore the results through interactive graphics (plot-
ted with the plotly library). The application includes a geograph-
ical scatterplot, where it is possible to visualize the abundance
of each ARG (or antibiotic class) selected by the user across all
the samples in a world map; a boxplot, where environmental
features can be chosen to group the samples and compare their
abundances; a barplot with taxonomic classification of the se-
lected ARG (different taxonomic levels for the visualization can
be chosen); and a scatterplot with marginal distribution plots
and trend line (OLS), where the X-axis represents the selected
ARG, and the Y-axis, the environmental variables selected by the
user (e.g., oxygen concentration, salinity, temperature, depth).
In addition, a table containing information for each ORF is dis-
played. The additional information includes ORF ID, contig ID,
antibiotic class, deepARG probability value, plasmid classifica-
tion by PlasFlow, taxonomic classification by Kaiju (on the deep-
est level), the abundance of additional ARG ORFs in the same
contig, and the total of ARG ORFs in the contig. A link to down-
load the multi-fasta file of the selected ARG is also provided. The
application can be accessed at [41]. The code and data for the
dash app can be accessed at [42].

Pipeline and code availability

The code of the complete pipeline (Fig. 1) is in Bash and Python
and is available at the project repository on GitHub [43].



4 Global ocean resistome revealed: Exploring antibiotic resistance genes in TARA Oceans samples

Tara Oceans 
Con�gs (fasta)

MetaGeneMark

DeepARG

PlasFlow

MicrobeCensusBBMAP

RPKG-calcula�on

Sta�s�cs/visualiza�on Tara Oceans 
sample metadata

Kaiju

Phylogeny

Dashboard 
App

Manual 
cura�on

MySQL 
database

Tara Oceans 
reads (fastq)

Figure 1: Flow chart used for ARG classification. The single steps and data used
in the pipeline applied for the analyses presented in this work.

Results and Discussion
Environmental ARG prediction and manual curation

A total of 41,249,791 ORFs were predicted from 15,600,278 assem-
bled contigs by MetaGeneMark. These ORFs were used as input
for ARG screening with the deepARG software [20], resulting in
the classification of 116,425 TARA ORFs (0.28%) as putative ARGs,
related to 594 clinically relevant ARGs that confer resistance to
28 antibiotic classes (classes defined in the deepARGdb). The
number of contigs, ORFs, and putative ARGs from each oceanic
region is available in Supplementary Table 1. It was necessary to
conduct an extensive manual curation on the results owing to
misannotations and misclassifications of ARGs in the databases
used by deepARG. This curated dataset represents an important
resource for further studies, including evolutionary and compar-
ative studies.

A total of 34 ARGs were identified as misannotated or with
low-quality annotation in the source database, leaving 560 ARGs
for further analyses. A prominent example of a misannotated
ARG is the msrB gene: while the msrB classified as ARG encodes
an ABC-F subfamily protein leading to erythromycin and strep-
togramin B resistance, the corresponding fasta sequence in the
CARD database [30] belongs to the msrB gene encoding methio-
nine sulfoxide reductases B, not conferring AR. Another mis-
annotated ARG is the patA gene, an ABC transporter of Strep-
tococcus pneumoniae, conferring resistance to fluoroquinolones,
whose sequence is a putrescine aminotransferase (patA) in the
CARD database. A total of 99,205 ORFs identified as putative
ARGs in categories (ii), (iii), (iv), and (v) (see Methods parts) were
kept in the MySQL database for further studies, while they were
not used in the quantification and statistical analyses. Category
(ii) includes the identification of 10 families of housekeeping
genes and the corresponding mutations that could infer resis-
tance. Category (iii) included 9 ARGs whose overexpression can

Table 1: Distribution of multiple ARGs in chromosome and plasmids
(classified by PlasFlow)

No. of ARGs In chromosome In plasmid

2 3,503 689
3 365 37
4 116 13
5 35 2
6 22 0
7 10 0
8 6 0
9 2 0
10 2 0
11 2 0

lead to resistance. For category (iv), we identified 41 regulatory
sequences that have been identified as responsible for ARG ex-
pression or overexpression of housekeeping genes, causing the
resistance phenotype. Category (v) included 187 putative ARGs
that cannot be distinguished from non-ARGs by similarity alone
(mostly due to commonly shared domains, e.g., ATPases). After
the removal of those genes, a total of 13,163 ORFs (from the ini-
tial 116,425) classified as 313 ARGs were retained for quantifica-
tion and further analysis (Supplementary Table 2).

The most frequent ARG (in number of ORFs) identified in the
co-assembly dataset was Qac (multidrug efflux pumps named
after their conferring resistance to quaternary ammonium com-
pounds) with >2,500 overall occurrences, followed by TETB(60)
(Fig. 2). The latter is an ABC transporter that confers resistance to
tetracycline and tigecycline identified in a human saliva metage-
nomic library [44]. The ORFs conferring resistance to tetracycline
combined are the most widespread, with several Tet and TetA
classes accounting for ∼4,000 occurrences. Also, the most fre-
quent ARG that confers resistance to β-lactams was identified
as K678 12262, with ∼1,000 occurrences.

Environmental ARGs in chromosomes and plasmids

We found a total of 24,567 putative ARGs (24.76% of the ORFs
considered for the downstream analysis) present in contigs clas-
sified as plasmids by PlasFlow, which indicates the potential
of horizontal genetic transfer (HGT). The occurrence of HGT of
ARGs has already been described in clinical environments [45],
wastewater treatment plants (activated sludge) [14, 46], and in
fertilized soil [47], but little is known about ARG HGT in aquatic
environments, especially in open ocean regions. As discussed in
the section on mcr genes, it should be noted here that PlasFlow
analyses bear a small chance (∼4%) of false-positive results as
described [26], which especially could be the case with chromo-
somally integrated plasmids or very short contig sequence sizes.

Multiple resistance presence in environmental contigs

The presence of 2 or more ARGs in a single contig was analysed
to identify possible multi-resistant organisms. For this analysis,
we only removed the ARGs from category (i) (misannotated se-
quences) because the presence of putative ARGs in the same
contig and/or plasmid can give us additional functional evi-
dence. We identified 4,063 contigs with multiple putative ARGs
in contigs classified as chromosomes (up to 11 ARGs in the same
contig), and 741 in contigs classified as a plasmid (up to 5 ARGs
in the same contig), suggesting the presence of multi-resistant
microorganisms in these environments (Table 1). We cannot ex-
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Figure 2: The 20 most frequent ARGs after manual curation (in number of ORFs on co-assembled contigs). The corresponding antibiotic resistance classes is depicted
in the upper right.

clude the possibility of multiple ARGs in both ends of plasmidial
contigs being, in fact, artefacts, such as pieces of the same ARG
in a circular contig. From the 4,192 contigs with 2 ARGs, 74
showed the same annotation for both ARGs (33 classified as plas-
mid). In Fig. S1, we show the distribution of the ARGs in the 2
putative plasmids containing 5 ARGs each.

Taxonomic classification of environmental ARGs

We classified 97,244 ARGs (98.02%) up to ≥1 taxonomic level us-
ing Kaiju [27]. Alphaproteobacteria (37,360 sequences) was iden-
tified as the largest taxonomic unit, followed by Gammapro-
teobacteria (19,355 sequences). A total of 124 ARGs were classi-
fied as of viral origin. The most frequent taxonomic viral groups
identified were Prymnesiovirus (21 ARGs) and Chrysochromulina
ericina virus (19 ARGs). However, all 124 viral ARGs were classified
into category (v), and further investigations should be performed
to confirm these findings. The presence of ARGs in phages and
their potential HGT has been described in a Mediterranean river
[48], pig faecal samples [15], fresh-cut vegetables, and agricul-
tural soil [16].

In the contig containing 11 ARGs (TARA ANW-k99 1343221),
9 were classified as HGW-Alphaproteobacteria-3 or HGW-
Alphaproteobacteria-12, and as generic Alphaproteobacteria.
The 2 residual ARGs were classified as belonging to Parvibaculum
lavamentivorans, an alphaproteobacterial species first isolated
from activated sludge in Germany [49]. A previous study showed
the presence of ARGs in a strain of Parvibaculum from marine
samples by functional metagenomics [7], which might indicate
a broader ARG distribution among this clade. All ARGs from the

other contig containing 11 ARGs (TARA ANE-k99 4428305) were
classified as Micavibrio sp., an obligate predatory bacterium ex-
hibiting “vampire-like” behavior on gram-negative pathogens
[50]. First isolated from wastewater samples, this genus has been
considered as a potential new therapeutic approach against
multi-resistant bacteria [51], including mcr-1 positive strains [51],
because no species from the genus Micavibrio was found to be
pathogenic for humans [50]. However, if Micavibrio species are
confirmed to contain 1 or multiple ARGs, this would raise con-
cerns about any clinical therapeutic approaches with these bac-
teria. One of the putative plasmids containing 5 ARGs (contig
TARA PSE-k99 4996023, Supplementary Fig. S1) showed a tax-
onomic agreement between the classification of all its ARGs,
which were assigned to the species Tistrella mobilis. Strains of
this species were isolated from Thailand wastewater [52] and the
Red Sea [53]. The other contig containing 5 ARGs of plasmidial
origin was classified as Halomonas desiderata, a denitrifying bac-
terium first isolated from a municipal sewage treatment plant
[54]. Two of the putative 5 ARGs in this contig were classified as
DfrE and DfrA3, which confer resistance to trimethoprim. Pre-
vious work showed that another bacterial species of the same
genus (Halomonas marisflavi type strain) is resistant to trimetho-
prim in vitro [55]. However, in the same study, H. desiderata did
not show resistance to any of the antibiotics tested.

ARG abundance and statistical tests on metagenomic
samples

In previous sections, we aimed to find and characterize ARGs
in metagenomic contigs obtained from co-assembled samples
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(by oceanic regions). In this section, we aim to quantify ARGs in
individual samples, to understand their geographical distribu-
tion and the environmental features driving their abundance.
The AGS of samples of fractions enriched for virus and girus
showed biased and aberrant results for AGS (up to 395.4 Mb).
These results are because AGS values (calculated by Microbe-
Census [33]) are inversely proportional to the number of reads
mapping to housekeeping gene markers, and such genes have
low abundance in virus-enriched samples. On the basis of this
information, we kept only the 293 non–virus enriched sample
runs for downstream quantitative analyses.

For example, comparing biogeographical biomes, the
quinolone and bacitracin ARG classes were significantly more
abundant in the coastal biome than in the westerlies biome
(adjusted Tukey HSD P-values 0.0476 and 0.0027, respectively).
Furthermore, fosmidomycin ARGs were significantly (adjusted
Tukey HSD P-value 0.0011) more abundant in the coastal biome
than in the trades biome (Fig. 3, Supplementary Table 3).
Quinolone ARGs were previously reported as highly abundant
in Chinese coastal areas [56]. These results might indicate
that quinolone, bacitracin, and fosmidomycin ARGs are under
anthropogenic pressure in coastal environments, and future
studies should be carried out to investigate this assumption in
greater detail.

The pristine polar biome showed significantly higher RPKG
values for polymyxin ARGs than any other biome. The antibi-
otics polymyxin B and E (also known as colistin) are the last re-
sorts against gram-negative bacterial infections when modern
antibiotics are ineffective, especially in cases of multiple drug-
resistant Pseudomonas aeruginosa or carbapenemase-producing
Enterobacteriaceae [57, 58]. We discuss mobilized colistin resis-
tance genes (mcr) in greater detail below.

When comparing the abundances of ARG classes in marine
provinces, we found a significant difference (P-value < 0.05) of
bleomycin class in 2 Indian provinces when compared to most
of the other provinces (Fig. 4). Bleomycin resistance genes were
previously reported to be in association with New Delhi metallo-
β-lactamase (ndm-1) genes [59, 60]. In this study, ndm-like genes
(classified by deepARG as ndm-17 variant) were also found in
greater abundance in Indian South Subtropical Gyre province.
The first variant of ndm was identified in a Klebsiella pneumo-
niae strain isolated from a Swedish patient who travelled to New
Delhi, India [61]. Shortly after, it was spread globally in a few
years and was also detected in other Enterobacteriaceae, which
was a reason to classify NDMs as a potential worldwide public
health problem [62].

In addition to the geographical location, we investigated the
influence of other environmental parameters on the abundance
of ARG classes. In our OLS models, the variables with signifi-
cant P-values (<0.05 ANOVA test) for the largest number of an-
tibiotic classes were “fraction” (14 classes), “sampling depth,”
and “Shannon-Wiener index” (11 classes each). The fraction
is a categorical variable, and the smallest size fraction (0.22–
0.45 μm) was used as a reference for computing the coeffi-
cients in the model. This fraction is enriched for free-living, non-
aggregating bacteria, which are smaller than other size frac-
tions. For most classes (11 of 14), ≥1 category of fraction showed
positive coefficients. For 3 of them, all fractions showed sig-
nificantly more ARGs than the smallest fraction (tetracycline,
aminoglycoside, and fosmidomycin). This result may indicate
that free-living bacteria, in general, have a lower abundance of
ARGs than particle-associated bacteria. These results corrobo-
rate a previous study, in which the antagonistic activity among
pelagic marine bacteria (i.e., production of antibiotics) was

more common in particle-associated bacteria than free-living
bacteria [63].

For sampling depth, 5 of 11 classes were negatively corre-
lated, indicating an increased abundance of ARGs in the deep
water. For the Shannon-Wiener index, the only negative corre-
lation was tetracycline, indicating an increased abundance of
ARGs in samples with lower species richness.

The regression model for tetracycline presented the highest
adjusted R2 (0.666) of all classes, with fraction, temperature, and
sampling depth the most significant variables. For polymyxin,
the adjusted R2 was the second highest (0.559), with tempera-
ture, Shannon index, and sampling depth the most significant
variables.

In general, among the nutrients, nitrite+nitrate concentra-
tion (NO2NO3) was significant for the largest number of classes (7
classes), followed by inorganic phosphate (PO4)3− (6 classes). Sil-
icon (Si) was only significant for the classes fosmidomycin and
tetracycline.

The role of inorganic nutrient concentration in ARG abun-
dance is poorly understood and sometimes controversial. Some
studies suggest that a high concentration of nutrients is neg-
atively associated with ARGs because competitive interactions
in nutrient-rich environments are less important [64]. However,
the abundances of ARGs are increased in wastewater treatment
plants [65] and agricultural soil receiving dairy manure [66], both
environments rich in nutrients. Further studies should be con-
ducted to better understand the role played by different nutri-
ents in the abundance of ARGs of different classes in both pris-
tine oligotrophic and impacted environments. Supplementary
Table 4 reports all significant results of an ANOVA test on the
coefficients of OLS for each class, and Supplementary Table 5
shows all the OLS results. A Q-Q plot of the OLS residuals is
shown in Supplementary Fig. 2.

Mobilized colistin resistance genes (mcr) and other
polymyxin resistance genes

Most mechanisms that confer resistance to colistin act against
modifications of the lipid A moiety of lipopolysaccharide, with
the addition of L-ara4N and/or phosphoethanolamine (PEA) to
lipid A as the main mechanisms [67]. We found evidence for the
occurrence of putative mobilized colistin resistance genes re-
lated to the recently discovered mcr-1 [68], which relies on the
PEA addition to lipid A. The Mcr-1 enzyme was described as 41%
and 40% identical to the PEA transferases LptA and EptC, re-
spectively, and sequence comparisons suggest that the active-
site residues are conserved. However, until the discovery of the
plasmid-borne mcr-1 in Escherichia coli from pig [68], colistin resis-
tance has always been linked to chromosomally encoded genes
with low or no possibility of horizontal transfer. Further stud-
ies showed a high prevalence of the mcr-1 gene (e.g., 20% in
animal-specific bacterial strains and 1% in human-specific bac-
terial strains in China), and the plasmid has been detected in
several countries covering Europe, Asia, South America, North
America, and Africa [69–76]. Further mcr variants have been de-
scribed as mcr-1 to 9 as of December 2019 [77, 78]. In the present
data, we detected 15 proteins classified as Mcr-1 by deepARG,
most abundant in the Atlantic Southwest Shelves Province, fol-
lowed by its adjacent region, Antarctic Province (Fig. 5). However,
the version of deepARG that we used did not classify these se-
quences into the more recently described Mcr-2 to 9. Therefore,
we performed a phylogenetic analysis (Fig. 6), which included se-
quences of different Mcrs (Mcr-1 to 5) and LptA (encoded by the
gene eptA, used here as outgroup). The results suggested that 5
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Figure 3: Significantly different mean abundances of ARG classes from oceanic biomes. Tukey HSD comparing the log-transformed RPKG of ARG classes for 4 biomes

of TARA Oceans study. Shown are the means and 95% confidence intervals of RPKG for (A) quinolone ARGs, (B) bacitracin ARGs, (C) fosmidomycin ARGs, and (D)
polymyxin ARGs. Blue indicates the reference for the test (coastal biome, chosen on the basis of its ecological relevance), and red, biome significantly different from
the reference (P-value < 0.05).

Figure 4: Bleomycin ARG abundance in marine provinces. Tukey HSD comparing the mean RPKG of ARGs from the class bleomycin. Blue indicates the reference for
the test, and red, biome significantly different from the reference (P-value < 0.05). Error bars indicate 95% confidence intervals. The reference was chosen randomly.

ORFs (from the genus Psychrobacter, family Moraxellaceae [79])
are close to the Mcr-1/2 clade with a support value of 1 (Fig. 6).
Members of the genus Psychrobacter were isolated from a wide
range of habitats, including food, clinical samples, skin, gills,
and intestines of fish, seawater, and Antarctic sea ice [80–84]. Im-
portantly, ≥2 isolates from this genus were already reported to
be resistant to colistin (Psychrobacter vallis sp. nov. and Psychrobac-
ter aquaticus sp. nov), both isolated from Antarctica [81]. Coin-
cidently, the regions with greater RPKG mean values for Mcr-1
abundance in our study were Southwest Atlantic and Antarc-

tic Province. Our results support that Psychrobacter might be an
ecological reservoir for the transfer of PEA transferases to other
pathogens, and further studies should be conducted to better
elucidate the dynamics and evolution of ARGs in this genus.
Also, some species of this genus were reported to cause op-
portunistic infections in humans, including ≥1 case reported
to be associated with marine environment exposure [85]. In
this context, it is therefore essential to increase monitoring by,
e.g., including screenings specific for mcr-related genes in these
genera.
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Figure 5: Mcr-1 distribution in TARA Oceans marine provinces. The boxplot shows the sum of RPKG values for all Mcr-1 ORFs.

The residual Mcr sequences, mostly belonging to the
Thioglobus genus, were phylogenetically farther away from Mcr-
1/2 and might constitute new, distinct Mcr variants (Fig. 6). Im-
portant to note is that the phylogenetically close relationship to
Mcr sequences does not prove the function as a colistin-resistant
gene, which awaits further experiments to confirm this role.

Only 2 mcr sequences were classified as present on plas-
mids via PlasFlow, which can be explained by the small size
of many mcr-containing contigs (with 8 of them smaller than
3 kb). Additionally, a false-negative result from PlasFlow could
be the result of a re-integration of plasmidial sequences into the
chromosome—or that these mcr genes may constitute an an-
cestor of the plasmidial E. coli mcr sequences, as suggested for
mcr-1 encoded by Moraxella species [79]. The 2 ARGs classified
as located on a plasmid are detected in contigs with a size of
2 and 38 kb. The former, classified as belonging to a Thioglobus
species, is challenging to validate as a plasmidial sequence ow-
ing to its small size. The latter is classified as a sequence of a

Poseidonibacter species, a marine group of bacteria recently re-
classified from the Arcobacter genus, the latter containing sev-
eral pathogenic species [86]. A toxin-antitoxin system is encoded
2 ORFs upstream of the mcr gene, which might be an indication
for a plasmidial location. However, no further genes that are usu-
ally located on Arcobacter spp. plasmids [87] were found on this
contig, hampering its correct classification as a plasmidial mcr.
That said, various mobile element genes located on this contig
(Fig. 7) strengthen the assumption that this contig is related to
a mobile genetic region. An unusual synteny of mcr, pap2, and a
downstream encoded dagK was observed (Fig. 7), of which dagK
only appears in mcr-3 genetic environments [88]. Related genes
(amino acid sequence identity of ∼70%) with a conserved gene
synteny are found in several Arcobacter species (Fig. 7). A few
Arcobacter species with a similar mcr gene were susceptible to
colistin treatment [89], arguing against a colistin resistance con-
ferred by this gene product. Further research is necessary to con-
firm or refute colistin resistance in marine Poseidonibacter.
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Figure 6: Phylogenetic tree of MCR sequences. The phylogenetic tree was inferred using the standard pipeline from phylogeny.fr (phyML with the “WAG” model and
statistical test approximate likelihood-ratio [ALRT] for support values). Sequences for the outgroup eptA and clinical Mcr-1 to Mcr-5 were obtained from NCBI and used
in addition to the sequences obtained from our results from TARA Oceans co-assemblies. The names of the TARA Oceans sequences displayed in the tree are defined
with the ID of sequence, co-assembly ID, taxon name from Kaiju, and yes/no for plasmid classification from PlasFlow. The blue rectangles mark TARA sequences. The

blue clade depicts the MCR-1/2 clade, the grey clade Mcr-5, the green clade MCR-3/4, and the red clade eptA. The red circles indicate sequences located on contigs
classified as plasmids by PlasFlow. Numbers indicate ALRT support values.

Toxin/An�toxin 
system

DAG 
kinase

PAP2 mcr

Synteny conserved in Arcobacter suis, A. venerupis, A. 
ellisii, A. sp. L, A. defluvii, A. cryaerophilus, A. cloacae, 
A. aquimarinus, Pseudoarcobacter caeni, Arcoacter sp. 
SM1702, Arcobacter aquimarinus

Fic family mobile 
mystery protein

Integrase/Recombinase
XerC family

1000 bp

RecombinaseEpimeraseTransporterTransposase

Figure 7: Genomic context of the mcr gene of contig TARA PSE k99 4834589. This contig was classified to be plasmidial by PlasFlow. Depicted are the first 13 ORFs from

28 of the whole contig, showing mcr (red) and surrounding genes and including the mobile element–related genes (green). DAG: diacylglycerol; PAP2: phosphatase PAP2
family protein; mcr: mobilized colistin resistance protein. Blue indicates other/metabolic genes; yellow, DNA-related genes; light blue, Mcr-accessory genes; and grey,
hypothetical protein. Annotations from MetaGeneMark were manually refined using the conserved domains database and BLASTp against the SwissProt database.
The taxonomy of Arcobacter species is stated as of December 2019 in the GenaBnk taxonomy database.

The presence of mcr-related genes in both Antarctic and ad-
jacent regions can also raise concerns about gene flow due to ice
melting, a problem already discussed previously for other ARGs
[90].

Conclusions

This study uncovers the diversity and abundance of ARGs in
the global ocean metagenome, conferring putative resistance to
26 classes of antibiotics. The extensive analysis leads to a de-
tailed taxonomic classification and distribution of ARG abun-
dance in different biomes. The present study also exposes the
importance of monitoring coastal water for anthropogenic im-
pact because the inflow of antibiotic-resistant strains by, e.g.,
wastewater might provide input of ARGs by HGT for environ-
mental strains. This study could also affect investigations deal-
ing with the evolutionary history of ARGs, with the herein-
presented genes as ancestors of common ARGs in clinically rel-
evant strains. Last but not least, the combination of multiple

modern machine learning tools and other open source data sci-
ence libraries such as Dash and Plotly produced a valuable re-
source for the scientific community working on further studies
on ARGs in different environments.

Availability of Source Code and Requirements
� Project name: ResistomeDB
� Project home page: https://resistomedb.com
� Operating system(s): Platform independent
� Programming language: Python
� Other requirements: None
� License: MIT
� RRID:SCR 018305

Availability of Supporting Data and Materials

Snapshots of code and other supporting data are available in the
GigaScience repository, GigaDB [91].

https://resistomedb.com
https://scicrunch.org/scicrunch/Resources/record/nlx_144509-1/SCR_018305/resolver
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Additional Files

Figure S1: ARG distribution in the 2 plasmids showing 5 ARGs
each. The sizes of genes and distances are not scaled. PBP2B:
methicillin-resistant PBP2; MTRA: transcriptional activator of
the MtrCDE multidrug efflux pump; DFRE: dihydrofolate reduc-
tase; DFRA3: integron-encoded dihydrofolate reductase; BCR: bi-
cyclomycin resistance protein; VANXA: variant of VANX D, D-
dipeptidase; MEXH: membrane fusion protein of the efflux com-
plex MexGHI-OpmD; VANSO: variant of VANS, required for high-
level transcription of other van glycopeptide resistance genes;
VANRI: regulatory transcriptional activator in the VanSR regula-
tor within the VanI glycopeptide resistance gene cluster.
Figure S2: Q-Q plots for each ARG class. The figure shows the
distribution of residuals from the OLS models for each ARG class.
Table S1: Number of contigs, ORFs, and putative ARGs for each
oceanic region (metagenomic co-assembly).
Table S2: Manual curation of the ARGs. The table shows if the
ARG was assigned for quantification studies and in each cate-
gory was classified.
Table S3: Pairwise Tukey HSD significant results. The table shows
the significant results (adjusted P-value > 0.05) of the paired Pair-
wise Tukey HSD for each pair of biogeographic biomes.
Table S4: ANOVA results for each ARG class. The table shows the
significant results (P-value > 0.05) of the ANOVA for each ARG
class.

Table S5: OLS results for each ARG class. The table shows the
results of the OLS model for each ARG class, including model
parameters and diagnostic

Abbreviations

AGS: average genome size; ALRT: approximate likelihood-ratio
test; ANOVA: analysis of variance; AR: antibiotic resistance;
ARDB: Antibiotic Resistance Genes Database; ARG: antibiotic
resistance gene; BLAST: Basic Local Alignment Search Tool;
bp: base pairs; CARD: Comprehensive Antibiotic Resistance
Database; CDD: conserved domain; EBI: European Bioinformat-
ics Institute; ENA: European Nucleotide Archive; FPKM: frag-
ments per kilobase per million mapped reads; GE: genome
equivalent; HGT: horizontal genetic transfer; HSD: honestly sig-
nificant difference; kb: kilobase pairs; Mb: megabase pairs; MCR:
mobilized colistin resistance; NCBI: National Center for Biotech-
nology Information; NDM: New Delhi metallo-β-lactamase; OLS:
ordinary least squares; ORF: open reading frame; PEA: phos-
phoethanolamine; RPKG: reads per kilobase per genome equiv-
alents; WAG: Whelan and Goldman.
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