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FHL2 interacts with CALM and is highly expressed in acute erythroid leukemia
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The t(10;11)(p13;q14) translocation results in the fusion of the
CALM (clathrin assembly lymphoid myeloid leukemia protein)
and AF10 genes. This translocation is observed in acute
myeloblastic leukemia (AML M6), acute lymphoblastic leukemia
(ALL) and malignant lymphoma. Using a yeast two-hybrid
screen, the four and a half LIM domain protein 2 (FHL2) was
identified as a CALM interacting protein. Recently, high
expression of FHL2 in breast, gastric, colon, lung as well as
in prostate cancer was shown to be associated with an adverse
prognosis. The interaction between CALM and FHL2 was
confirmed by glutathione S-transferase-pulldown assay and
co-immunoprecipitation experiments. The FHL2 interaction
domain of CALM was mapped to amino acids 294–335 of
CALM. The transcriptional activation capacity of FHL2 was
reduced by CALM, but not by CALM/AF10, which suggests that
regulation of FHL2 by CALM might be disturbed in CALM/AF10-
positive leukemia. Extremely high expression of FHL2 was seen
in acute erythroid leukemia (AML M6). FHL2 was also highly
expressed in chronic myeloid leukemia and in AML with
complex aberrant karyotype. These results suggest that FHL2
may play an important role in leukemogenesis, especially in the
case of AML M6.
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Introduction

Chromosomal translocations play a crucial role in the develop-
ment of many types of leukemia, lymphomas, sarcomas and
solid tumors.1 In translocations, normal gene function can be
altered in two different ways: either by the formation of fusion
genes or by transcriptional deregulation of genes adjacent to the
breakpoints.2 The t(10;11)(p12;q14) translocation results in the
fusion of CALM (clathrin assembly lymphoid myeloid leukemia
protein) on chromosome 11 band q14 with AF10 (MLLT10) on
chromosome 10 band p12.3 The CALM/AF10 fusion is observed
in acute myeloid leukemia (AML), acute lymphoblastic leuke-
mia (ALL) and malignant lymphoma, and has a poor prognosis4,5

(Figure 1a).
The AF10 gene was first identified as the fusion partner of MLL

in AML patients carrying a t(10;11)(p12;q23) translocation.6

AF10 codes for a 1027-amino-acid-long putative zinc-finger
transcription factor. The Drosophila homolog of AF10, alhambra,

has been suggested to play a role in heterochromatin-mediated
transcriptional silencing.7 We could recently show that AF10
interacts with Ikaros, an important regulator of lymphoid
development, and that CALM/AF10 influences the subcellular
localization of Ikaros.8

The CALM gene is located on chromosomes 11 band q14 and
encodes a 652-amino-acid-long protein. CALM is ubiquitously
expressed and homologous to the neuron-specific clathrin
assembly protein AP180.9 CALM is mainly located in the
cytoplasm and along the membrane in clathrin-coated pits.9

CALM does also shuttle between the cytoplasm and the nucleus,
permitting CALM and the nucleolar protein CATS to interact.10

CALM promotes the assembly of clathrin into clathrin cages
and takes part in the initial stage of clathrin-coated pit formation
and invagination together with clathrin, AP-2 and PtdIns(4,5)
P2.9,11–13 Both overexpression and downregulation of CALM
have been shown to inhibit clathrin-mediated endocytosis and
impair the trafficking of receptors between the trans-Golgi
network and endosomes.9,12 Interestingly, point mutations in the
mouse CALM homolog Picalm were shown to cause abnorm-
alities in hematopoiesis, iron metabolism and bone growth.14

The CALM/AF10 fusion protein has been shown to be strongly
leukemogenic. It causes an aggressive acute leukemia in a
murine bone marrow transplantation model15 and leads to the
development of acute leukemia in a transgenic mouse model
after a median latency of about 12 months.16

To study the function of CALM and the CALM/AF10 protein,
we searched for protein interaction partners of CALM using a
yeast two-hybrid (Y2H) approach. The four and a half LIM
domain protein 2 (FHL2) was identified as one of several CALM
interacting partners. FHL2 has been shown to be involved in
several important cellular processes like transcriptional regula-
tion, DNA replication and signal-transduction pathways.17

FHL2 plays an important role in Wnt signaling.18,19 Recently,
high expression of FHL2 has been associated with adverse
prognosis in breast and prostate cancer,20–22 and high expres-
sion of FHL2 is found in ovarian and gastrointestinal cancer.23,24

In this study, we show that FHL2 interacts with CALM and that it
is highly expressed in acute erythroid leukemia (AML M6),
suggesting an important role for FHL2 in leukemogenesis,
especially in the development of erythroleukemia.

Materials and methods

Plasmid construction
The bait plasmids for the Y2H screen were constructed by
inserting the full-length CALM cDNA, as well as the CALM
deletion mutants in frame into pGBKT7 vector (Clontech,
Heidelberg, Germany), to be expressed as GAL4-DBD fusion
proteins. The following fragments of CALM were cloned inReceived 13 July 2011; accepted 12 August 2011
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frame with the GAL4-DBD (aa 1–147) into the yeast expression
vector pGBKT7: (1) CALM (1–408); (2) CALM (1–294); (3) CALM
(1–335); (4) CALM (1–221); and (5) CALM (1–105). For mapping
the CALM interaction domain of FHL2, the following FHL2
fragments were cloned in frame into the pGBKT7 vector: (1) LIM

domains 1
2–3; (2) LIM domains 1

2–2; (3) LIM domains 1
2–1; and (4)

LIM domain 1
2, all PCR amplified using the following forward

primer: 50-ATTACCATGGATGGCTGGCATTTTGACTTTGGG-30

and the following backward primers: LIM 1
2 (50-CGGGATCCCTG

ACGAACAGGGTCTCAAAGCACAC-30), LIM 1
2-1 (50-CGGGAT

CCCGCATTCCTGGCACTTGGATGAG-30), LIM 1
2-2 (50-CGGGA

TCCCTGACGCACT-GCATGGCATGTTG-30) and LIM 1
2-3 (50-CG

GGATCCCTGACCCAGCACACTTCTTGG-CATAC-30).
For the GST-pulldown assay, the GST-Flirt 1 (full-length FHL2)

construct was used (a gift from Dr Judith Müller, Freiburg,
Germany). The FLAG-FHL2 construct for co-immunoprecipita-
tion was provided by Dr Paul Riley (London, UK). Dr Judith
Müller (Freiburg) provided the GAL4-DBD-FHL2 construct for
the luciferase assay. The pGAL4-DBD-CALM/AF10 plasmid was
constructed by inserting the full-length CALM/AF10 open
reading frame, fused to GAL4-DBD (aa 1–47), into pcDNA3.
Plasmids expressing YFP-FHL2 fusion protein was constructed in
the pEYFP-C1 vector (Clontech).

Y2H screen
A co-transformation of the yeast strain AH109 (Clontech), using
the lithium-acetate procedure, was performed with the pGBKT7-
CALM (1–408) bait plasmid and a thymus library cloned into
pACT2 (Clontech). The resulting colonies were plated on
selective plates lacking histidine, adenine, leucine and trypto-
phan, and colonies exhibiting a positive b-galactosidase
reaction were selected for further analysis.

Mapping of interacting domains
The interaction domain mapping was performed by co-
transformation of the CALM deletion mutants and pACT-FHL2

prey plasmid into yeast strain AH109. Growth was assayed on
selective plates lacking tryptophan and leucine (–W, –L:
transformation control) and interaction was scored on plates
lacking histidine, adenine, leucine and tryptophan (–H, –A, –L,
–W: interaction assay).

Transfection of mammalian cells and preparation of
cytoplasmic extracts
A total of 1� 106 HEK293T cells grown in 100 mm Petri dishes
were transiently transfected with 8mg of plasmid DNA and 12 mg
polyethyleneimine (Sigma-Aldrich, Steinheim, Germany). After
24 h, the cells were harvested and nuclear extract was prepared
using 400ml hypotonic buffer (10 mM HEPES (pH 7.5), 1.5 mm
MgCl2, 10 mM NaCl, 0.5 mM dithiothreitol, 4 ml protease inhi-
bitor cocktail (Sigma-Aldrich)) as lysis buffer for cytoplasmic
extracts. Cytoplasmic extracts were then used freshly for
immunoprecipitation experiments.

GST-pulldown
The GST-Flirt 1 (full-length FHL2) was expressed in the Esche-
richia coli strain XL1 blue (Agilent Technologies, Böblingen,
Germany) and purified from bacterial proteins by incubation
with glutathione Sepharose 4B beads (GE Healthcare Bio-
Sciences, Munich, Germany). The CALM protein was obtained
from the in vitro TNT translation (Promega, Mannheim,
Germany) of the pGBKT7-CALM (aa 1–408) in the presence
of 35S-methionine. A measure of 20 ml of the 35S-labeled
CALM lysate was incubated with 10ml of Sepharose-bound
GST fusion protein or Sepharose-bound GST as control in
100ml binding buffer (100 mM NaCl, 25 mM Tris (pH 7.5), 0.1%
NP-40). After incubation, the beads were washed five times
with the binding buffer and subsequently boiled and separated
on a 10% sodium dodecyl sulfate polyacrylamide gel electro-
phoresis (SDS-PAGE) gel. The CALM protein was then detected
by autoradiography.

Immunoprecipitation
A measure of 200ml of freshly prepared cytoplasmic extract
from HEK293T cells, co-transfected with pcDNA-FLAG-FHL2
and YFP-CALM, was used for the immunoprecipitation experi-
ment. The cytoplasmic extract was incubated in 200ml protein
binding buffer (Dulbecco’s phosphate-buffered saline (DPBS),
0.1% NP-40) together with 15ml GFP-binder beads. The reaction
was incubated for 30 min at 4 1C on a rotating platform,
whereafter the beads were washed extensively with the binding
buffer. The beads were then resuspended in SDS sample buffer,
boiled and separated on a 12% SDS-PAGE gel. Subsequent
western blot analysis was carried out with a monoclonal rabbit
anti-GFP antibody (Life Technologies, Darmstadt, Germany), to
detect the precipitated YFP-CALM and YFP, and the monoclonal
mouse anti-FLAG M2 antibody (Sigma-Aldrich) to detect the
co-immunoprecipitated FHL2.

Immunoblotting analysis
Immunocomplexes and cellular lysates were electrophoresed on
10–12% SDS-PAGE gel and transferred to PVDF membrane
(Hybond P; GE Healthcare). The membranes were blocked for
1 h with 5% non-fat dried milk at room temperature and probed
with the described primary antibodies, followed by secondary
antibodies conjugated to horseradish peroxidase. Proteins were
detected with an enhanced chemiluminescence reagent (ECL;
GE Healthcare).

Figure 1 (a) Structure of AF10, AF10/CALM, CALM/AF10 and CALM.
BP: breakpoint; PHD: plant homeo domain; ePHD: extended plant
homeo domain; OM/LZ: octapeptide/leucine zipper; ANTH: AP180
N-terminal homology domain; CID: CATS interaction domain. The BP
in AF10 and CALM is indicated by arrows. (b) Structure of the FHL2
protein. FHL2 is composed of four and a half LIM domains.
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Immunostaining and confocal laser scanning
fluorescence microscopy
For localization studies, U2OS (bone sarcoma) cells were grown
on coverslips and co-transfected with FLAG-FHL2 and YFP-
CALM or FLAG-CALM/A10 and YFP-FHL2. After 24 h, the cells
were fixed for 10 min with PBS 2% paraformaldehyde, and then
permeabilized with PBS 0.1% Triton X-100 for 10 min and
blocked with PBS 10% fetal calf serum for 1 h. Coverslips were
incubated with monoclonal mouse anti-FLAG M2 antibody
(Sigma-Aldrich). After extensive washing with PBS 0.1% Tween,
the coverslips were incubated with secondary Cy3-conjugated
antibody for 1 h in room temperature. After further washing, step
cells were stained with 40,6-diamidino-2-phenylindole for 2 min
and then mounted with Cytomation medium (Dako, Hamburg,
Germany). The preparations were analyzed with a confocal
fluorescence laser scanning system (TCS-SP2 scanning system
and DM IRB inverted microscope; Leica, Solms, Germany).

Reporter gene assays
A total of 5� 104 HEK293T cells were seeded in 24-well plates
and co-transfected with 100 ng GAL4 SV40 minimal promoter
reporter plasmid,10 20 ng of p-RL co-reporter vector (Promega),
200 ng of GAL4-DBD-FHL2- or GAL4-DBD-only expression
plasmids, 100–400 ng of YFP-CALM and YFP-CALM/AF10,
respectively, and as a control the pEYFP-C1 (Clontech) only.
For the CALM/AF10 experiment, the cells were co-transfected
with 100 ng GAL4 SV40 minimal promoter reporter plasmid,
20 ng of p-RL co-reporter vector (Promega), 100 ng GAL4-DBD-
CALM/AF10 or GAL4-DBD empty expression plasmid, 100 ng
pcDNA-FLAG-FHL2 and empty pcDNA vector. The cells were
harvested after 24 h and assayed for firefly and Renilla luciferase
activities using the Dual-Luciferase Reporter Assay System
(Promega). The Renilla luciferase activity measurements were
used for normalization. Experiments were carried out four times
and the samples were measured three times.

Expression analysis of FHL2 in leukemic samples
For the first set of expression analysis, patient bone marrow
samples were hybridized to Affymetrix HG-U133A and HG-
U133B chips as described previously.25 The HG-U133A, HG-
U133B and HG-U133plus2 CEL files were first normalized
separately using robust multi-array normalization and then
combined into one matrix and normalized altogether using an
empirical Bayes method as described previously.26 The normal-
ized expression data were analyzed with the R software
package.27 The expression signal intensities are given on a
logarithmic scale

For the second analysis, 308 expression profiles from AML
leukemia patients were analyzed on Affymetrix HG-U133A,
HG-U133B and HG-U133plus2 chips. The data were depicted
as boxplot. The Wilcoxon–Mann–Whitney test was used to
calculate the statistical significance.

Quantitative real-time PCR
qPCR was used to determine the mRNA expression levels of
FHL2 in patients with AML M6, normal and complex
karyotypes. The endogenous control RPL10A was selected from
the microarray data. Individual qPCR reactions were set up in
triplicates in 96-well plates and were carried out in 10ml
reactions with TaqMan Gene Expression Assay according to the
manufacturer’s protocol (Life Technologies). In all, 100 ng of
patient cDNA was used for each reaction. The plates were run

and analyzed on an ABI PRISM 7900HT Sequence Detection
System (SDS 2.1; Applied Biosystems) according to the
manufacturer’s protocol (Applied Biosystems). The 2�DDCT

relative quantification method was used to analyze the qPCR
experiment.28

Results

Identification of FHL2 as a CALM interacting protein
To identify interaction partners of the CALM protein, the
N-terminal 408 amino acids of CALM were used as a bait to
perform a Y2H screen of a human thymus cDNA library. The
N-terminal 408 amino acids of CALM are contained within the
CALM/AF10 fusion protein and do not show any transcriptional
activation properties in yeast.10 Under high stringency screening
conditions of 1� 106 primary transformants, six clones were
identified that grew in the absence of histidine and adenine and
were b-galactosidase positive. These six clones encoded five
different proteins. One of these clones contained the complete
open reading frame of FHL2 (Figure 1b). FHL2 encodes for a
279-amino-acid-long protein with four and a half LIM (Lin11,
Isl-1, Mec-3) domains, reported to be overexpressed in several
different cancer types.

CALM interacts with FHL2 in vitro
To confirm the interaction between CALM and FHL2 in vitro, a
glutathione S-transferase (GST)-pulldown assay was performed.
FHL2 was expressed as a GST fusion protein in bacteria and
immobilized on glutathione beads. The beads were then incu-
bated with 35S-methionine-labeled CALM protein (aa 1–408).
FHL2, but not GST alone, retained the radiolabeled CALM
protein (Figure 2a). These results indicate a direct physical
interaction between CALM and FHL2.

CALM interacts with FHL2 in vivo
The in vivo interaction between CALM and FHL2 was confirmed
by co-immunoprecipitation experiments. After transient trans-
fection of FLAG-FHL2- and YFP-CALM-expressing plasmids in
HEK293T cells, and immunoprecipitation of YFP-CALM using
GFP-binder beads,29 the co-precipitated FHL2 protein could be
detected with anti-FLAG antibodies (Figure 2b). We were also
able to co-precipitate small amounts of overexpressed FHL2 by
immunoprecipitation of endogenous CALM in HEK293T cells
(Supplementary Figure S1).

Mapping of the FHL2 interacting domains of CALM
To map the minimal FHL2 interaction domain of CALM, yeast
cells were co-transformed with several CALM deletion mutants
fused to the GAL4-DNA-binding domain (DBD) and the FHL2
prey clone (Figure 3a). Only transformants with CALM mutants
containing amino acids 294–335 grew on selective plates
indicating protein–protein interaction (Figure 3b). These results
show that amino acids 294–335 of CALM are required for its
interaction with FHL2.

Mapping of the CALM interacting domains of FHL2
To map the minimal CALM interaction domain of FHL2, yeast
cells were co-transformed with several FHL2 deletion mutants
fused to GAL4-DBD and with a CALM prey clone, obtained in
the Y2H screening using the CALM bait (Figure 3c). Only
transformants with full-length FHL2 grew on selective plates
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indicating protein–protein interaction (Figure 3c). These results
show that amino acids 206–279 of FHL2 are required for its
interaction with CALM.

CALM/AF10 alters the subcellular localization of FHL2
To learn more about the interaction between CALM and FHL2,
colocalization experiments were performed. YFP-CALM, YFP-
CALM/AF10 and YFP-FHL2 were transiently expressed in the
osteosarcoma cell line U2OS (Figures 4a–i). YFP-CALM is
localized mainly in the cytoplasm (Figures 4a and b), as is YFP-
CALM/AF10 (Figures 4d and e). In contrast to YFP-CALM, the
CALM/AF10 protein is enriched in speckles in the cytoplasm
(Figure 4e). These cytoplasmic speckles might be CALM/AF10
protein inclusions in clathrin-coated pits due to disturbed
endocytosis or because of an altered solubility of the CALM/
AF10 protein. YFP-FHL2 is expressed in both the cytoplasm and
the nucleus (Figures 4g and h). When FLAG-FHL2 was co-
expressed with YFP-CALM, the distribution of YFP-CALM
changed with more YFP-CALM found in the nucleus (compare
Figures 4b and k). However, the distribution of FHL2 did not
change noticeably upon co-expression of YFP-CALM (compare
Figures 4h and l). There was also colocalization of YFP-CALM
and FLAG-FHL2 in the nucleus and especially in the cytoplasm
(Figures 4j–m), as it can be visualized in line scan images in

Figure 5a. When FLAG-FHL2 was co-expressed with YFP-
CALM/AF10 (Figures 4n–q), the subcellular localization of YFP-
CALM/AF10 did not change markedly (compare Figures 4e and
o), but there were pronounced changes in the cytoplasmic
localization of FLAG-FHL2 (compare Figures 4h and p), which
colocalized with YFP-CALM/AF10 in distinct cytoplasmic
speckles (Figures 4n–q). The colocalization of FLAG-FHL2 and
YFP-CALM/AF10 was also clearly visible in the line scans of the
confocal images (Figure 5b). The same pattern of colocalization
of CALM/AF10 and FHL2 was also observed when a FLAG-
tagged CALM/AF10 and YFP-FHL2 fusion protein were co-
expressed (Figures 4r–u and 5c).

CALM reduces the transcriptional activation of FHL2
Since FHL2 is known to act as an activator of transcription in
reporter gene assays when fused to a GAL4-DBD (GAL4-DBD-
FHL2),30 we tested the influence of CALM and CALM/AF10 on
FHL2-mediated transcriptional activation using a GAL4-UAS
minimal SV40 promoter luciferase reporter construct (GAL4luc)
in transiently transfected HEK293T cells. Expression of GAL4-
DBD-FHL2 resulted in a 40-fold activation of the reporter gene.
Co-expression of YFP-CALM and GAL4-DBD-FHL2 reduced the
FHL2-mediated activation from approximately 40- to 20-fold
(Figure 6a). However, co-expression of YFP-CALM/AF10 had no
effect on FHL2-mediated activation (Figure 6b). One explana-
tion for this result could be the fact that the AF10 portion of
CALM/AF10 contains an activating domain (see Figure 6c) that
over-rides the repressive effects seen with YFP-CALM. Interest-
ingly, when CALM/AF10 was expressed as a GAL4-DBD fusion
(GAL4-DBD-CALM/AF10), a strong transcriptional activation of
about 50-fold over background of the reporter gene was seen
(Figure 6c). Co-expression of FLAG-FHL2 led to a threefold
reduction of the CALM/AF10-mediated activation (Figure 6c).

FHL2 is highly expressed in AML M6 and is a marker for
erythroleukemia
To obtain an overview of FHL2 expression levels in leukemia
cells, we analyzed the expression of FHL2 in bone marrow
samples from 129 leukemia patients and 10 normal bone
marrows using Affymetrix expression chips. High expression of
FHL2 was observed in AML samples with complex aberrant
karyotypes and in chronic myeloid leukemia (CML) patient
samples. The expression levels of FHL2 were relatively low in all
the other subgroups examined, including CALM/AF10-positive
leukemias (Figure 7). The higher expression levels of FHL2 in
CML patients and AML patients with complex aberrant
karyotypes did not reach statistical significance at the 0.05
level, but suggested a trend, which was then examined in a
larger group of AML patients.

The second analysis was performed with a total of 308
leukemia patient samples using Affymetrix expression chips that
were divided into three groups. Group 1 consisted of 167 AML
patients with normal karyotypes and excluding any samples
with erythroleukemia (AML-M6). Group 2 was composed of 115
AML patients with complex aberrant karyotypes, which
included 46 patients with monosomy 5 or 5q deletions
(subgroup ‘�5/5q�’), seven patients with monosomy 7 or 7q
deletions (subgroup ‘�7/7q�’), 47 patients with aberrations of
both chromosomes 5 and 7 (subgroup ‘5þ 7’) and 15 patients
with no aberration of either chromosome 5 or 7 (subgroup
‘neither’). Group 3 contained 26 patients with AML M6. This
second analysis clearly showed that FHL2 is significantly higher
expressed in AML M6 patients than in patients with normal

Figure 2 (a) GST-pulldown experiment: bead-bound GST-FHL2 was
incubated with 35S-labeled CALM (1–408), and the beads were
washed and analyzed by SDS-PAGE. Only GST-FLH2 (lane 3), but not
GST alone (lane 2), is able to retain 35S-labeled-CALM (1–408). (b) Co-
immunoprecipitation (co-IP) of FLAG-FHL2 and YFP-CALM. HEK293T
cells were transiently co-transfected with plasmids expressing FLAG-
FHL2 and YFP-CALM or FLAG-FHL2 and YFP. In lanes 1 and 3, 10%
of the protein extract that was used for each co-IP reaction is loaded.
GFP-binder beads were used for the precipitation, and only YFP-CALM
(lane 2), but not YFP alone (lane 4), is able to precipitate FLAG-FHL2.
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Z Pašaliæ et al

4

Blood Cancer Journal



Figure 3 (a) FHL2 prey clone: alignment of the FHL2 prey clone with FHL2 (GAL4AD-FHL2). UTR: untranslated region; ORF: open reading
frame; AD: activation domain; nt: nucleotide. Numbers above the diagrams refer to amino acids, and that below refer to nucleotides. (b) Mapping
of the FHL2 interaction domain of CALM. A series of CALM deletion mutants was expressed as bait proteins in yeast together with the FHL2 prey
protein (GAL4AD-FHL2). Dilutions of the transformants were spotted on yeast synthetic drop-out medium lacking tryptophan and leucine (–W/–L)
to control for double transformant status or lacking tryptophan, leucine, histidine and adenine (–H/–A/–L/–W) to assay the activation of the reporter
genes. Only the yeast clones with the CALM mutants CALM (1–408) and CALM (1–335) grow on the –H/–A/–L/–W plates, indicating that amino
acids 294–335 of CALM are necessary for its interaction with FHL2. (c) Mapping of the CALM interaction domain of FHL2. Structure of CALM prey
clone obtained from the yeast two-hybrid assay, GAL4 AD-CALM. AD: activation domain. A series of FHL2 deletion mutants was expressed as bait
proteins in yeast together with the CALM prey protein (GAL4AD-CALM). Yeast double transformants were streaked on yeast synthetic drop-out
medium lacking tryptophan and leucine (–W/–L) to control for double transformant status or on SD plates lacking tryptophan, leucine, histidine
and adenine (–H/–A/–L/–W) to assay the activation of the reporter genes. Only the yeast clones with the full-length FHL2 (clone (1)) grow on the
–H/–A/–L/–W plates, indicating that amino acids 206–279 of FHL2 are required for interaction with CALM.
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Figure 4 Subcellular localization of FHL2, CALM and CALM/AF10. Confocal images of U2OS cells transiently transfected with plasmids
expressing the proteins indicated on the left-hand side. Channels are indicated above the images (40,6-diamidino-2-phenylindole, YFP, Cy3 and
merged). For a detailed explanation of this figure, see the Results section.
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karyotype or in the patients with complex aberrant karyotypes
(P-value¼ 5.256� 10�13 and ¼ 7.543� 10�7, respectively)
(Figure 8). There were no significant differences in the level of
FHL2 expression between the different subgroups of patients
with complex aberrant karyotypes (data not shown).

High expression of FHL2 mRNA transcript in patients
with AML M6
To confirm the results obtained from the microarray experiment,
a quantitative real-time-polymerase chain reaction (qPCR) was
performed on 45 patient samples. The 45 patients were divided
into three groups: patients with AML M6 (n¼ 15), patients with
complex karyotype (n¼ 15) and AML patients with normal
karyotype (n¼ 15). The qPCR revealed that the mRNA expres-
sion of FHL2 in patients with AML M6 was significantly higher
than that in patients with complex karyotype (P-value: 0.000
with (2369, 5379) 95% confidence interval) or normal
karyotype (P-value: 0.000 (2064, 5156) with 95% confidence
interval). No significant difference was detected between the
mRNA expression of FHL2 in patients with complex karyotype
or normal karyotype (P-value: 0.685 (�0.906, 0.378) with 95%
confidence interval) (Figure 9).

Discussion

The CALM/AF10 fusion is found in myeloid and lymphoid
lineage acute leukemias. In contrast to many other leukemia-

associated fusion genes (for example, AML1/ETO), expression of
CALM/AF10 leads to the development of an acute leukemia with
a latency of only 9 weeks in a murine bone marrow
transplantation model.15 One of the critical domains in the
CALM/AF10 fusion protein that is required for malignant
transformation is the octapeptide/leucine zipper domain in the
AF10 portion of the fusion, which interacts with the histone
methytransferase DOT1L.31 The octapeptide/leucine zipper
domain is also critical for the transformation potential of MLL/
AF10 fusion.32 However, much less is known about the domains
in CALM that contribute to the transforming potential of the
CALM/AF10. We therefore used a Y2H approach to identify
CALM protein interactors.

Using the N-terminal 408 amino acids of CALM as bait, a
member of the FHL subfamily of LIM-only proteins, FHL2, was
identified as a protein interactor of CALM. FHL2 interacts with
proteins belonging to different functional classes, including
nuclear receptors, structural proteins, transcription factors and
cofactors, splicing factors, DNA replication and repair enzymes,
metabolic enzymes and signal transducers.17,30,33–38

The FHL2 interacting domain in CALM was mapped to amino
acids 294–335 of CALM. The N-terminal domain (aa 22–138) of
CALM contains the ANTH domain, which specifically binds to
lipids (PtdIns(4,5)P2) in the plasma membrane.11,39–41 The three-
dimensional structure of the N-terminal 280 amino acids of
CALM has been solved and consists of 10 a-helices, which
aggregate to form a globular protein.11 The C-terminal half of
CALM, on the other hand, has most likely a poorly ordered
structure that contains multiple short protein interaction motifs,

Figure 5 Line scans of the confocal images m, q and u from Figure 5 to demonstrate colocalization of (a) FLAG-FHL2 with YFP-CALM; (b) FLAG-
FHL2 with YFP-CALM/AF10; and (c) YFP-FHL2 with FLAG-CALM/AF10.
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functioning like a flexible ‘fishing line’.42 This composition of
CALM permits the establishment of interactions during clathrin-
coated pit assembly.40 Interestingly, FHL2 binds to b-integrin,43

which together with clathrin, a major binding partner of CALM,
has been shown to be involved in endocytosis.9,44 Taken
together, these data suggest a role for the CALM–FHL2
interaction in the complex interaction network in endocytosis.
The notion that FHL2 and CALM may act together in the
cytoplasm in the endocytic machinery is supported by the fact
that the expression of YFP-CALM and FLAG-FHL2 in U2OS cells
result in colocalization of both proteins in the cytoplasm and at
the cell membrane. In addition, CALM and FHL2 also
colocalized in the nucleus of the U2OS cells, suggesting a

nuclear function for these proteins. FHL2 has previously been
shown to be localized to both the nucleus and cytoplasm.45–47

Our immunofluorescence experiments with YFP-tagged FHL2
and FLAG-tagged CALM/AF10 showed that CALM/AF10 was
located mainly in the cytoplasm, while the FLAG-tagged FHL2
was predominantly seen in the nucleus. Interestingly, a minor
fraction of the FHL2 also colocalized with CALM/AF10 in
distinct spots in the cytoplasm and there was a pronounced
change in the distribution pattern of the cytoplasmic FHL2 when
CALM/AF10 was co-expressed with FHL2 colocalizing with
CALM/AF10 in distinct speckles in the cytoplasm. We suggest
that these speckles might be inclusions of CALM/AF10 into
clathrin-coated pits due to CALM/AF10-induced aberrant
endocytosis. CALM/AF10 may tether its interaction partners
into these endocytic vesicles and thereby disturb their physio-
logical function.

FHL2 interacts with transcription factors like SKI and the
promyelocytic leukemia zinc-finger protein (PLZF). PLZF has
been shown to be a transcriptional repressor with a role in the
control of cellular proliferation and Hox gene regulation,48,49

and FHL2 has been shown to enhance PLZF-mediated repres-
sion.50 PLZF is involved in the PLZF/RARa translocation found
in patients with acute promyelocytic leukemia.51 Through the
interaction with PLZF, FHL2 may mediate the activation of Hox
genes by CALM/AF10, which was previously observed in patient
samples and murine models.31,52 Interestingly, the FHL2
interactors FOXO1 and SIRT137 link FHL2 to the histone
methyltransferase DOT1L, which interacts with AF10 and
CALM/AF10 and methylates histone H3 at lysine 79. CALM-
AF10-positive patient samples and cell lines show marked
histone H3 K79 hypomethylation.53 Therefore, CALM/AF10 may
strongly influence the levels of H3K79 methylation by interact-
ing with both FHL2 and DOT1L; however, it will be very
challenging to understand the complex interplay between these
multiple interacting proteins involved in the regulation of
histone marks. The SKI–FHL2 interaction potentiates the
function of b-catenin in melanoma cells, inducing proliferation,
cell cycle alterations and tumor progression.54 FHL2 is also a
crucial member of the transmembrane glycoprotein EpCAM’s
signaling complex, which regulates transcription in the nucleus
through its association with components of the Wnt signaling
pathway, like b-catenin and Lef1.55

Figure 6 (a) CALM inhibits FHL2-dependent activation of transcrip-
tion. HEK293T cells were transiently transfected with plasmids
expressing GAL4DBD, GAL4DBD-FHL2 and YFP-CALM, a luciferase
reporter plasmid and a Renilla luciferase control plasmid as indicated.
The bars indicate fold activation of luciferase activity compared to
GALDBD. Four independent experiments with three measurements
per sample were performed. The error bars represent standard
deviations. The firefly luciferase values were normalized to the Renilla
luciferase values. (b) CALM/AF10 does not inhibit FHL2-dependent
activation of transcription. HEK293T cells were transiently transfected
with plasmids expressing GAL4DBD, GAL4DBD-FHL2 and YFP-
CALM/CAF10 and a luciferase reporter plasmid as indicated. Co-
transfection of YFP-CALM/AF10 did not have a significant influence on
the transcriptional activation mediated by GAL4DBD-FHL2. (c) FHL2
inhibits CALM/AF10-dependent activation of transcription. HEK293T
cells were transiently transfected with plasmids expressing GAL4DBD,
GAL4DBD-CALM/AF10, YFP-CALM/AF10 and a luciferase reporter
plasmid as indicated. In this setting, GAL4DBD-CALM/AF10 is a
strong transcriptional activator. A threefold reduction of the
GAL4DBD-CALM/AF10-mediated transcriptional activation is ob-
served when FLAG-FHL2 is co-expressed. Three independent experi-
ments were performed and measured in duplicate.

FHL2 interacts with CALM and is highly expressed in acute erythroid leukemia
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In reporter gene assay, FHL2 functions as a transcriptional
activator when fused to the GAL4-DBD.30 We could show that
co-expression of CALM significantly disturbed the transcrip-
tional activation induced by FHL2. Since the FHL2 interaction
domain of CALM is present in the leukemogenic CALM/AF10
fusion protein, we also tested whether CALM/AF10 would
influence the transcriptional activation function of GAL4-DBD-
FHL2. Interestingly, this was not the case. The transcriptional
activation mediated by FHL2 was inhibited by CALM, but not by
CALM/AF10, suggesting that the CALM/AF10 fusion protein
might interfere with a physiological negative regulatory role of
CALM on the function of FHL2. In other words, CALM/AF10
might change the function of FHL2 and this could be an
important mechanism in CALM/AF10-induced leukemia. In
particular, the loss of FHL2 inhibition by CALM may potentiate
the enhanced proliferation of myeloid progenitors that was
observed upon forced expression of FHL2 in murine bone
marrow cells.56

One of the characteristics of AML with complex aberrant
karyotypes is the frequent loss of chromosome 5 as well as a
high incidence of TP53 deletions and/or mutations, resulting in
an overall unfavorable prognosis.57 Interestingly, Qian et al.56

showed that therapy-related myelodysplastic syndrome and
AML characterized by a loss of a whole chromosome 5 or a
deletion of the long arm of chromosome 5 (�5/del(5q)) showed
elevated FHL2 expression levels. Another characteristic of AML
with complex aberrant karyotypes is the frequent loss of
chromosome 7 that is also associated with adverse prognosis.58

Figure 8 Expression of FHL2 in samples from patients with AML with
complex aberrant karyotypes, AML M6 and AML with normal
karyotypes. FHL2 microarray expression levels from 308 AML. Group
1 consists of 167 AML patients with normal karyotypes of all FAB
subtypes, except M6, group 2 consists of 115 samples from patients
with AML with complex aberrant karyotypes, and group 3 contains 26
samples from patients with AML M6. FHL2 is significantly higher
expressed in patients with AML M6 than in AML patients with a
normal karyotype or in patients with complex aberrant karyotypes
(P¼2.2�10�16 and P¼ 9.967� 10�10, respectively). A significant
difference in the expression of FHL2 was found between AML patients
with normal karyotype and patients with AML complex karyotype with
a P-value¼ 1.04�10�12.

Figure 9 FHL2 is highly expressed in patients with AML M6
karyotype. FHL2 expression was determined using qRT-PCR in 45
AML patient samples. High expression of FHL2 was observed in
patients with AML M6 in comparison to patients with complex or
normal karyotype (P-value: 0.000). No statistical significance was
discovered between AML patients with complex karyotype and
patients with normal karyotype (P-value: 0.685). The data are
presented as fold change in gene expression compared to the gene
expression of AML patients with normal karyotype.

Figure 7 Expression of FHL2 in leukemia patient samples. FHL2 is
expressed at higher levels in CML and AML with complex aberrant
karyotype. A microarray analysis was performed on 129 patient
samples and 10 normal bone marrow (nBM) samples. The boxplots
depict the expression levels of FHL2 in nBM, CML, CALM/AF10-
positive leukemias, in seven different AML subtypes (AML_nk: AML
with normal karyotype; AML_comp: AML with complex aberrant
karyotype; AML_MLL: AML with an MLL rearrangement; AML_M4:
AML with CBFB/MYH11 fusion; AML_M3: acute promyelocytic
leukemia with a PML/RARA fusion; AML_M2: AML with an AML1/
ETO fusion; AML_FLT3: AML with normal karyotype and with an fms-
like tyrosine kinase receptor-3 (FLT3) internal tandem duplication),
and four ALL subtypes (ALL_Ph: ALL with BCR/ABL fusion; ALL-MLL:
ALL with an MLL rearrangement; ALL_BA: c-ALL: (common ALL) and
ALL: pro-B-ALL). Each group is composed of 10 patient samples,
except the ALL-MLL patient group, which contains 9 samples.
Expression intensities are depicted on a logarithmic scale. The median
of the distribution is indicated by a bar. The box presents 50% of the
expression values in that group and is called the interquartile range
(IQR). An expression value is considered an outlier when it lies more
than 1.5 IQR lower or higher than the first or third quartile, respectively.
Outliers are represented as circles. The smallest and largest values that
are not outliers are indicated by a vertical tic mark or ‘whisker’, which is
connected to the box via a horizontal line. If the notches of the boxes
do not overlap between two groups, there is evidence that the medians
are significantly different between the groups.
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We also observed high expression levels of FHL2 in patients
with complex aberrant karyotype and with CML. Although
analyzing the expression levels of FHL2 in patients with
monosomy 5 or del(5)(q), five patients with very high FHL2
expression levels were noted (data not shown). Three of these
outliers had erythroleukemia (AML M6) and two had AML M4.
When we performed a new analysis using the FHL2 expression
data from all available M6 patient samples, a significantly higher
FHL2 expression in patients with AML M6 was discovered.
Erythroid leukemia has a poor prognosis.59 These results are in
line with reports that high expression levels of FHL2 in breast
and prostate cancer have recently been shown to be associated
with an adverse prognosis.20–22 Interestingly, we could recently
show that the expression levels of another member of the FHL
family, namely FHL1, correlated closely with a poor prognosis
in cytogenetically normal AML.25 Early erythroid cells are
characterized by an increased expression of FHL2 (GNF
Expression Atlas 2 Data from U133A and GNF1H Chips;
http://www.genome.ucsc.edu). Thus, the observed overexpres-
sion of FHL2 could be only a marker of the erythroid lineage.
Additional experiments are required to determine the causes
and/or consequences of elevated FHL2 expression levels in
erythroid leukemia.

Our results, combined with previous reports of FHL2 being
associated with adverse prognosis in different cancers as well as
acting on the cell cycle program, thus regulating cell prolifera-
tion46 and cell differentiation,60 suggest that there might be a
common oncogenic pathway in the development and progres-
sion of leukemogenesis as well as in tumorigenesis. However,
more studies will be required to understand the role of the
CALM–FHL2 interaction in leukemogenesis and especially its
role in erythroleukemia.
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