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Abstract
Modern cancer genomics has emerged from the combination of the Human
Genome Reference, massively parallel sequencing, and the comparison of
tumor to normal DNA sequences, revealing novel insights into the cancer
genome and its amazing diversity. Recent developments in applying our
knowledge of cancer genomics have focused on the utility of these data for
clinical applications. The emergent results of this translation into the clinical
setting already are changing the clinical care and monitoring of cancer patients.
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Introduction
Even before we knew of DNA’s role in determining cellular func-
tion and biology, even before we knew chromosomes were made 
of DNA, there was speculation that the source of cancer somehow 
was determined by profound changes in the chromosomes1. Early 
pioneers in cancer genomics, such as Janet Rowley (cited in this 
review), provided substantial evidence of a role for the genome in 
cancer’s development by observing microscopically that patients 
with specific subtypes of leukemia shared specifically altered 
chromosomes2–4. Initially, these chromosomal translocations were 
used to provide diagnostic evidence of the specific subtype, and as 
our characterization of these translocations became more precise, 
the fusion gene drivers of oncogenesis such as BCR-ABL and PML-
RARα were identified and defined according to their mechanisms. 
Ultimately, several of the recurrent genomic events in hematologic 
malignancies have been targeted by highly specific and effective 
therapies, rendering them manageable from a clinical standpoint 
and permitting patients either to survive cancer as a chronic disease, 
especially with the development of specific second- and third-line 
therapies that address acquired resistance mutations in the targeted 
fusion proteins, or to be cured outright (for example, approximately 
94% of patients with acute promyelocytic leukemia are cured by 
all-trans retinoic acid or arsenic consolidation therapies).

As the Human Genome Project drew to a close in the early 2000s, 
scientists had a template or keystone with which they could com-
pare and characterize changes to the genome in disease states such 
as cancer5. Initially, however, sequencing technology did not per-
mit the sequencing of the entire genome at reasonable cost and 
throughput, so several groups began to design pipelines for high-
throughput polymerase chain reaction (PCR) amplification and 
sequencing of known cancer genes in an effort to catalogue cancer-
specific (“somatic”) mutations. During this same time frame, phar-
maceutical companies began to perform clinical trials of drugs for 
solid tissue malignancies in major cancer centers that targeted spe-
cific proteins or protein families thought to be drivers of oncogenesis. 
In some but not all cases, these tyrosine kinase inhibitors (TKIs) 
were highly successful at achieving dramatic reductions of tumor 
burden in some (but not all) advanced metastatic patients. Given 
these remarkable results and the differential patient responses, 
focused efforts began to identify whether specific mutations could 
be correlated with response. In 2004, three groups published inde-
pendently that, in non-small cell lung adenocarcinomas (NSCLCs), 
approximately 80% of responders to TKI therapy could be corre-
lated with patients having mutations in the tyrosine kinase domain 
of the epidermal growth factor receptor (EGFR)6–8. As remarkable 
as these responses were, patients frequently relapsed, often with 
more aggressive and widespread disease after several months of 
treatment. As initially defined by Engelman and colleagues, these 
examples of acquired resistance to targeted therapy were due to new 
mutations in EGFR that conferred a lack of response to the TKIs 
because of reduced binding affinity9.

In the midst of these efforts to catalogue the mutations in cancer 
genes, transformative sequencing technologies were emerging. So-
called “massively parallel” sequencing (MPS) technologies, they 
coupled the molecular biology of polymerase-catalyzed sequenc-
ing with light-based detection to report the incorporated nucleotides 

for each of several hundred thousand sequencing reactions taking 
place simultaneously10,11. These technologies further streamlined 
the sequencing library preparation steps and permitted pooled PCR 
products to be sequenced in the same instrument run, thereby accel-
erating throughput, reducing sequencing costs, and introducing a 
“digital” type of data that sequenced individual DNA molecules 
(after in situ amplification). Although these platforms introduced 
new challenges into data analysis based on the initially short reads 
relative to capillary sequencers, early efforts12–15 defined methods 
for whole genome sequencing of tumor and normal genomes and 
their comparison in order to identify somatic mutations in an unbi-
ased way. A “middle ground” between directed PCR of genes and 
whole genome sequencing was developed and reported by sev-
eral groups to capture by hybridization the exonic portion of the 
genome (“exome”), providing a more conscripted yet easier to 
analyze and interpret subset of the genome16–18. What has followed 
during the time period from around 2009 to the present is large-
scale discovery, by MPS-based methods, of somatic alterations in 
thousands of cancer genomes, including comparisons of the tissue 
site-specific range and diversity of mutational load genome-wide19, 
the identification of phenomena such as chromothripsis20 and 
kataegis21, and a broad-based recognition that cancer genomes find 
myriad and different ways to create themselves.

Several early studies pioneered the notion of using high-depth dig-
ital MPS-based sequencing and clustering of mutation sites with 
shared variant fractions of reads to evaluate the changes in clonal 
heterogeneity that occur between primary and metastatic or recur-
rent disease22,23. Recent comparisons of this type have explored 
changes to the cancer genome in the transition from treatment-naïve 
to post-therapy recurrent disease24–29. One challenge that has limited 
these types of studies in solid tissue malignancies has been the dif-
ficulty in obtaining post-treatment biopsies, which often cannot be 
obtained as the standard of care and/or may have associated risk or 
morbidities.

Given the range and scope of discovery that have taken place over 
the past five years, a basic understanding of the tumor genome land-
scape has been defined for most of the prevalent tumor types and a 
few rare ones as well. There is ample evidence that, given this body 
of knowledge and pertinent clinical questions that may be further 
informed by genomics, the clinical translation of genomics is an 
obvious next step. This review will focus on three pertinent aspects 
of clinical translation for cancer genomics in an effort to highlight 
the trends and add evidence from the existing body of translational 
work that genomics already is impacting and will continue to impact 
on cancer medicine.

Tumor evolution and changes in genomic heterogeneity
Several groups have built upon early studies and methods that evalu-
ated deep coverage at mutation sites to build models of founder and 
subclonal cell population genotypes. As mentioned, recent studies 
have focused on the comparison of primary with metastatic or of 
treatment-naïve with recurrent post-treatment tumors. The compari-
sons of primary with metastatic disease in solid tissue malignancies 
have illustrated the persistence of the founder or trunk mutations 
into metastases, with new mutations being acquired in differ-
ent metastatic sites. These studies30–32 build upon, but somewhat 
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differ in their conclusions when compared with, the earlier work by 
Gerlinger and colleagues33, who reported comparisons of primary 
with metastatic renal cell carcinomas.

Similar studies have evaluated treatment-naïve to recurrent disease 
in the setting of DNA-damaging chemotherapy, establishing a 
mutational “signature” in the recurrent disease setting that defines 
the resulting DNA damage and results in an elevated mutation rate. 
Our early work describing this result in recurrent acute myeloid  
leukemias22 was recently followed by a study of post-temozolomide- 
treated pediatric gliomas, illustrating a profound increase in the 
number of mutations from exome sequencing-based comparisons34. 
In both cases, the emergent disease has a mutational landscape 
akin to carcinogen-associated mutational processes, such as those 
observed in lung cancer due to smoking or in melanomas due to 
ultraviolet (UV) exposure. Another study of platinum-resistant 
high-grade serous ovarian cancer has identified post-therapy resist-
ance signatures akin to BRCA (breast cancer, early onset)-associated 
mismatch repair (MMR) defects35 or, in a minority of samples, 
the apolipoprotein B mRNA editing enzyme-related (APOBEC) 
defects36. However, the predominant impact in high-grade serous 
ovarian disease for platinum resistance appears to be due to gene 
breakage defects at tumor suppressor loci, discernable only by the 
integration of whole genome and transcriptome data performed in 
this study35. Interestingly, the sequencing results revealed a higher 
mutational burden measured as single-nucleotide variants and inser-
tion-deletion variants when comparing the platinum-resistant recur-
rent tumor cells derived from ascites fluid with the primary tumor. 
A significant relationship between the number of non-coding muta-
tions and the numbers of courses of platinum-based chemotherapy 
the patient received also was described.

Recent genomic comparisons of matched treatment-naïve 
disease with post-therapy recurrent tumors have mainly studied 
patients emerging with acquired resistance to targeted therapy 
treatment24,37,38. The results have elucidated the nature and types 
of mutations that are conferring therapy resistance and give rise 
to the hope that pinpointing the genomic source(s) of acquired 
resistance to targeted therapies might be more straightforward and 
less complicated than to chemotherapies. In one report regarding 
the genomics of therapy-resistant EGFR-mutated NSCLCs, the 
mechanism for a rarely observed transition of NSCLCs into small 
cell lung carcinoma was elucidated as being due to loss of RB1, 
solving a long-standing puzzle39.

Therefore, it is important to understand the genomic alterations 
that might lead to treatment resistance, where possible. When these 
alterations are identified as the means by which the tumor cells 
can evade the mechanism of therapeutic action, real-time blood-
based monitoring for the rise and fall of the acquired resistance 
alteration(s) may be possible. This genomics application addresses 
the difficulty of obtaining recurrent tumor biopsy material for 
genomic testing. Often, the sensitivity of blood-based monitoring 
or “liquid biopsy” over imaging-based detection of recurrent tumor 
growth is quite desirable as well. In the next section, the concepts 
and practices of liquid biopsy will be addressed as a means of intro-
ducing this alternative approach to tumor progression and treatment 
response monitoring.

Liquid biopsy
Although some of the cancer genomics discovery work that was dis-
cussed above has contributed substantially to our understanding of 
the genomic relationships between primary and metastatic disease 
in the same patient, the reality is that obtaining a metastatic resec-
tion or biopsy sample is often not the standard of care and therefore 
is not reimbursable by private insurance payors. Beyond these prac-
tical considerations, metastases can be inaccessible and therefore 
difficult to sample. Small studies of multiple metastatic lesions have 
indicated that there are differences in the genomes of metastases in 
different sites that must be considered in tracking the progression 
or stability of the cancers present in the individual. There also can 
be associated morbidity and risk with biopsy procedures that dimin-
ish the enthusiasm of study participants to undergo the procedure. 
Suffice it to say that a proxy for detecting solid tumor progression-
associated changes is badly needed in cancer medicine.

In this regard, an opportunity may be present in assays referred to col-
lectively as “liquid” or blood-based biopsy, whereby a blood sample 
is obtained from a patient at diagnosis and compared with sequen-
tial temporal blood samples obtained during treatment for the pur-
poses of monitoring tumor burden, often as a function of response 
to therapy40–45. From these blood samples, one can study the DNA 
shed from tumors as cells turn over, in the form of mutation-specific 
assays of circulating free DNA (cfDNA), or DNA from isolated 
circulating tumor cells (CTCs) or from tumor-derived exosomes.

Each approach has its own nuances, including specialized isolation 
approaches and assay types, as follows. CTCs are rare cell types 
that can be isolated from the blood and indeed may fluctuate in 
their prevalence and representation of the mutational landscape 
according to disease stage, tissue site, and other factors required for 
isolation such as cell surface markers46–48. Typically CTCs require 
specialized instrumentation to isolate, of which several types are 
available commercially, any one of which may be more applicable 
to different tumor types. Also, the rarity of CTCs requires higher 
amounts of blood input, which can impose a practical/clinical limi-
tation. After isolation and cell lysis, whole genome amplification 
of CTC DNA is followed by whole genome, exome, or targeted 
sequencing. cfDNA, by contrast, requires isolation from plasma 
within a few hours of blood draw to minimize degradation and var-
ies in amount according to disease stage and tissue site. Mutational 
assay of cfDNA requires focused PCR of known or suspect muta-
tions, due to the degraded state of tumor DNA in the circulation, 
followed by high-depth sequencing to overcome the background 
of cfDNA provided by normal cell apoptosis49–51. Exosomes, which 
are small (950–1000 μm) vesicles containing DNA, RNA, and pro-
tein components from apoptotic tumor cells, also are shed at lower 
amounts by normal cells. Owing to the contents of exosomes, eval-
uation may occur by multiple assay types to identify DNA, RNA, 
or protein related to tumor monitoring. There are several different 
isolation procedures for obtaining purified exosomes from blood, 
ranging from low-throughput differential ultracentrifugation to 
size- or affinity-based purification52.

Regardless of the type of blood biopsy, there is increasing evidence 
that this approach will be broadly applicable to monitoring patient 
response to neo-adjuvant therapy, to surgery, or to surgery followed 
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by chemo-, radiation, or targeted therapy. With the genomic char-
acterization of acquired resistance mutations arising in the targeted 
therapy setting, precise mutational analyses can detect patients 
who are developing acquired resistance in a much more sensitive 
way than by conventional imaging, which can often be mislead-
ing regarding objective response to a therapeutic intervention51. 
Depending upon the approach, blood-based monitoring also is 
quite rapid and inexpensive relative to imaging, yet more studies 
are required to fully understand its applicability and limitations.

Immunogenomics
Immunogenomics is a somewhat broad term that refers to numer-
ous genomics-based inquiries that (1) may assay specific immune 
components in their interaction with established cancers, (2) may 
indicate the likelihood of a tumor to respond to immunotherapy, or 
(3) may be used to design personalized vaccines for individual 
patients deemed likely to respond to an immune modulatory ther-
apy. Much of the foundational work in immunogenomics stems 
from studies of melanoma, a tumor type long recognized as having 
extensive immune system interactions53,54. Sequencing of DNA iso-
lated from melanomas has defined the signature of UV-associated 
DNA damage55 and has identified that melanomas have overall one 
of the highest mutation rates of any tumor type, as a result of UV 
damage19,56. In 2010, the first results of clinical trials in melanoma 
testing a new class of immunotherapeutic, called “checkpoint block-
ade immunotherapy”, were announced, showing dramatic responses 
in some advanced metastatic patients57. In 2011, the US Food and 
Drug Administration (FDA) approved the use of anti-CTLA4 immu-
notherapy (ipilimumab or Yervoy™; Bristol-Myers Squibb Com-
pany, New York, NY, USA) for the treatment of metastatic melanoma. 
Subsequent FDA approvals have been granted for immunotherapies 
targeting another checkpoint blockade protein, PD1, in melanoma 
(nivolumab and pembrolizumab). These therapies have expanded 
into single-agent clinical trials of other cancer sites, including non-
small cell lung and bladder cancers, and also are showing signifi-
cant response rates when used in combination58–60. Nivolumab was 
recently approved by the FDA for previously treated advanced or 
metastatic NSCLCs. Like melanomas, these tumors are associated 
with the carcinogens in cigarette smoke and have a correspondingly 
high mutation rate across the genome. Whether combination check-
point blockade therapies in smoker-associated lung adenocarcino-
mas will have increased efficacy as seen in melanomas remains to 
be tested.

Studies of mouse models of sarcomas induced by a chemical car-
cinogen, methylcholanthrine (MCA), have been used to study the 
interaction between the immune system and cancer61. A genomic 
study of these mouse model tumors revealed an MCA-specific 
mutational signature and a high mutational load. Combined exome 
sequencing with neoantigen prediction algorithms (based on major 
histocompatibility complex [MHC] binding avidity comparing 
mutated to wild-type peptides) identified those tumor-specific 
mutant antigens (TSMA) or “neoantigens” that were specifically 
targeted by the immune system to effect elimination of growing 
tumors62. More recently, this MCA model and the same genomics- 
based approach were used to demonstrate that TSMA were also 
the proteins targeted by anti-CTLA4 or anti-PD1 antibodies, and 
importantly that synthetic peptides corresponding to TMSA could 
be used as a prophylactic or therapeutic vaccine63.

In human cancers, exome sequencing and neoantigen prediction 
have now characterized that patients with melanoma who responded 
to anti-CTLA4 checkpoint blockade have a high number of non-
synonymous mutations64. Similar results were described on the 
basis of only exome sequencing data for lung cancer patients with 
anti-PD1 responses65, for bladder cancer and other high mutational 
load cancers with anti-PD-L1 responses66,67, and recently for MMR- 
deficient colon and other MMR-deficient cancers treated with anti-
PD1 therapy68. These results, though exciting, raise the issue of 
whether this high mutation rate is a biomarker of sorts for gauging 
which patients will respond to these therapies. Likely, it is more 
complicated since even in the small number of MMR-deficient 
patients who received anti-PD1 therapy, there were a small number 
of non-responders. To state the question in another way, will all 
tumors with a significant mutational load respond to checkpoint 
blockade? Or should the mutations be further evaluated algorith-
mically for their antigenic potential as neoantigens? How does the 
predictive quality of mutational load characterization or neoanti-
gen load compare with immunohistochemistry-based evaluation 
of PD1 and PD-L1 protein expression? These open questions 
require further study and the requisite comparisons of predictive 
power. Regardless of the answers, the notion that the mutational 
load of non-synonymous mutations in the tumor exome can predict 
therapeutic response fundamentally changes our definition of an 
“actionable mutation”.

Using an analytical approach similar to that described above for the 
MCA mouse models to predict neoantigens, we combined exome 
sequencing with algorithmic prediction of MHC binding to compare 
tumor-unique peptides with their wild-type counterparts in a small 
clinical trial of patients with melanoma. This approach identified the 
neoantigens most likely to stimulate tumor-specific T cells, which 
were further evaluated for RNA expression of the mutant alleles and 
then evaluated with patient-derived immune components in vitro. 
The neoantigenic peptides were synthesized and used to condition 
patient-derived dendritic cells to create personalized vaccines for 
three patients69. In all three patients receiving vaccines and post- 
vaccine monitoring to date, three of the seven tumor-specific pep-
tides elicited a T-cell response that was measurable after vaccination. 
In determining the neoantigens to include in each patient’s vaccine, 
we evaluated inter-metastatic heterogeneity by producing exome 
sequencing from multiple biopsies in two of the three patients. We 
also used T-cell receptor-specific PCR and MPS to characterize the 
resulting T-cell repertoire from blood. Here, we determined that for 
the three peptides eliciting an enhanced T-cell expansion in each 
patient, the T-cell receptor repertoire was very diverse, represent-
ing multiple clonotypes. These studies demonstrate how cancer 
genomics-based approaches are being used to characterize the muta-
tional load of tumors that do or do not respond to checkpoint block-
ade immunotherapies or to design personalized immunotherapies 
and monitor the resulting T-cell repertoire in vaccinated patients.

Future forward
Cancer genomics has progressed dramatically in its application to 
clinical questions of cancer care in just a few short years. This trans-
lational trajectory has been demonstrated in several ways. Firstly, 
the use of deep sequencing and analysis to evaluate the evolution 
of cancers via clonal heterogeneity changes has revealed impor-
tant information about the nature of acquired resistance to targeted 
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therapies and chemotherapies. Secondly, the concept of tracking 
emerging resistance to therapy has led to the notion of blood-based 
monitoring via “liquid biopsy” as a sensitive and inexpensive proxy 
for tumor response. Thirdly, a surprising application for cancer 
genomics has emerged from studies of the immune system’s inter-
action with cancer, supporting the notion that mutational load via 
genomics may be a predictor of response to checkpoint blockade 
therapy. Importantly, if mutational or neoantigen load is a predic-
tor of checkpoint blockade response, we may, in our clinical use 
of DNA-damaging chemotherapy as the standard of care for many 
patients, be creating an opportunity to use immunotherapies as a 
second-line therapeutic approach. This is predicted by genomic 
studies of post-therapy recurrent tumors or metastases that indicate 
a signature of DNA damage and a correspondingly higher mutation 
rate resulting from DNA-damaging chemotherapies22,34.

Genomics also is contributing to personalized vaccine development 
efforts by identifying tumor-specific neoantigens that potentially can 

stimulate T-cell memory against cancer cells. Though still in devel-
opment, the vaccine “angle” provided by genomics may provide an 
important possibility to cancer patients who have exhausted other 
treatment approaches, including other types of immunotherapy. 
Although cancer remains a significant and as-yet-unsolved disease, 
modern cancer genomics is contributing to clinical diagnosis and 
to therapeutic decision-making. Taken together, impactful clinical 
translational efforts involving cancer genomics should continue for 
some time to come. It will be exciting to see the results!
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