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Regulatory relationships between transcription factors (TFs) and their target genes lie
at the heart of cellular identity and function; however, uncovering these relationships is
often labor-intensive and requires perturbations. Here, we propose a principled frame-
work to systematically infer gene regulation for all TFs simultaneously in cells at steady
state by leveraging the intrinsic variation in the transcriptional abundance across single
cells. Through modeling and simulations, we characterize how transcriptional bursts of
a TF gene are propagated to its target genes, including the expected ranges of time delay
and magnitude of maximum covariation. We distinguish these temporal trends from
the time-invariant covariation arising from cell states, and we delineate the experimental
and technical requirements for leveraging these small but meaningful cofluctuations in
the presence of measurement noise. While current technology does not yet allow ade-
quate power for definitively detecting regulatory relationships for all TFs simulta-
neously in cells at steady state, we investigate a small-scale dataset to inform future
experimental design. This study supports the potential value of mapping regulatory
connections through stochastic variation, and it motivates further technological devel-
opment to achieve its full potential.

transcriptional bursting j gene regulation j single-cell transcriptomics

Systematically identifying gene regulatory networks in any specific cellular context has
been a long-standing quest that remains unfulfilled. Existing approaches to link tran-
scription factors (TFs) to their regulatory targets based on gene expression data include
tracking gene coexpression across different cell states (1–4), perturbing TFs experimen-
tally and measuring transcriptomic changes (5–8), and studying coordinated changes in
genes’ expression over dynamic biological processes (9–11). Single-cell RNA sequenc-
ing (scRNA-seq) technologies have made it possible to apply these approaches to study
gene expression at unprecedented resolution (11–24).
However, systematic interrogation of human gene–gene regulatory interactions in

steady-state cellular systems has been limited by the need for targeted experimental per-
turbation of specific genes (14, 25–27). The ability to learn gene regulation from
unperturbed cells would provide a scalable approach applicable to any cell type and
state, providing novel insights into the transcriptional programs that shape steady-state
cellular identity.
Because all genes are transcribed in stochastic bursts (28–35), even isogenic cells in

the same cellular state have substantial variability in gene expression across time
(36–41). Cells thus carry out their own natural “perturbation” experiments, as the
accumulation or depletion of recent bursts leads to varied messenger RNA (mRNA)
abundances for each gene. These natural perturbations have the potential to help reveal
gene regulation (42–45). Specifically, a transient increase in the transcription of a TF
in a given cell generates a subsequent increase in the abundance of the TF protein,
which in turn leads to an increase in mRNA for the target genes of the TF (provided
the TF protein is localized to the nucleus).
In this paper, we demonstrate how stochastic fluctuations across individual cells in a

single cell state can give rise to time-shifted covariation between the level of TFs and
their target genes. Using this information, we lay out a theory for inferring regulatory
relationships between TFs and target genes in cells at steady state, based on the time-
shifted covariation between TF mRNA levels and target gene mRNA levels; the
approach can be used to study simultaneously all TFs and potential targets.
Specifically, we use published ranges for gene-specific parameters to characterize the

shape of the time-shifted correlation curve resulting from regulatory relationships. As
we discuss, it is important to examine time-shifted correlations rather than just simulta-
neous correlations between the level of gene pairs at the same time point—because the
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latter can arise from the undetected presence of multiple cell
states, whereas the former should not. Finally, we explore prac-
tical considerations in designing future experiments to detect
gene regulation by measuring time-shifted correlations, includ-
ing the sample sizes and improvements in mRNA detection
efficiency that will be required.

Results

We first lay out the conceptual framework for the paper. Con-
sider a transcription factor gene, TF, and a possible target gene,
Target. Because gene expression occurs in bursts, the number
of transcripts of TF and Target will fluctuate over time.
(Throughout, Gene(RNA)

T and Gene(ΔRNA)
T will denote the

amount of a gene’s total and nascent RNA at time t = T.
Nascent RNA refers to unspliced, pre-mRNA.)
The key insight is that if TF regulates Target in cells of a given

cell state, then the time-shifted correlation with either nascent or
total Target RNA—that is, CT = Corr(TF(RNA)

0, Target
RNA

T)
and CT

Δ = Corr(TF(RNA)
0, TargetΔRNA

T)—is expected to
increase and then decrease, as T increases from 0 (Fig. 1 A and B).
The reason is simple: Higher levels of TF(RNA) at t = 0 give rise
over time to higher levels of TF(Protein) and then to higher levels
of Target(ΔRNA) and Target(RNA), resulting in higher maximum
time-shifted correlations, until the relationship eventually breaks
down as the initial TF(RNA) degrades.
The temporal pattern is important because it allows one to dis-

tinguish correlation arising due to gene regulation from correla-
tion arising from an important alternative possibility. Specifically,
correlated gene expression across cells can also arise if the cells are
an undetected mixture of different cell types. However, such

correlations will not show the expected pattern of increase and
decrease in time-shifted correlation CT (Fig. 1 C and D).

We now turn to a more quantitative treatment, to study the
properties of the time-shifted correlation and determine the fea-
sibility of detecting it experimentally.

Transcriptional Bursting in Cells at Steady State Gives Rise to
Temporal Covariation between TFs and Their Target Genes.
We built a quantitative model that describes the processes link-
ing the key quantities for a regulatory gene pair involving a TF
and a target gene. The model builds on the traditional model
of transcriptional bursting, by extending it to include transla-
tion of the TF mRNA and gene regulation of a target gene.
The key quantities we track are total TF mRNA abundance
[TF(RNA)], measured in number of transcripts; total TF protein
abundance [TF(P)], measured in thousands of molecules; and
target-gene mRNA abundance, assessed as either total RNA
[Target(RNA)] or nascent RNA [Target(ΔRNA)] (Fig. 2A and
Materials and Methods). For each quantity, we can derive from
our model the average abundance level, the distribution of
abundance levels across cells, and the cross-correlation and
auto-correlation between these quantities across cells and time.
These values each depend on gene-specific kinetic parameters,
which we describe below.

Transcriptional bursting can be abstracted into a two-state
model, whereby transcription of a gene stochastically switches
between transcriptional “on” and “off” states (46–50). A gene’s
burst frequency (kon), burst size, and mRNA decay rate determine
its cellular mRNA abundance, which—along with the translation
and protein decay rates—determines the corresponding protein
abundance over time (SI Appendix, Eqs. 1–3 and 5). Following
transcription from a burst, each nascent pre-mRNA transcript
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Fig. 1. Overview of the conceptual framework for inferring TF:Target gene regulation from single cells at steady state. (A) Transcriptional bursting leads to
stochastic variation in the mRNA abundance of each gene, even within a population of isogenic cells at steady state. We invoke stochastic transcriptional
bursting as a source of TF mRNA heterogeneity across steady-state cell populations. If a TF directly regulates a target gene, we hypothesize that their abun-
dances will be correlated. (B) Idealized representation of the hypothesized time-shifted correlation between a TF and its target gene’s mRNA abundances in
the presence of regulation. Colored lines indicate the average behavior of cells that had at least one burst of the TF gene; gray lines represent those that
did not have a burst. The time delay reflects the time required for TF mRNA translation into protein, translocation, and target site search in the nucleus.
From left to right, dotted lines reflect the time of maximal TF mRNA (t0), TF protein (t1), or target mRNA abundance (t2), respectively. (C) Subpopulations of
cells (i.e., cell states, such as cells in different stages of the cell cycle) will also give rise to covariation—in this example, due to different baseline mRNA
counts for genes in each state. Thus, correlation does not always imply regulation. (D) We can theoretically distinguish between regulation- and state-based
covariation by looking at the shape over time: State-based covariation will tend to be more stable.
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encoding a TF is spliced into a mature transcript on the order of
<10 min (51–53), after which it is translocated into the cyto-
plasm and translated, also on the order of minutes (54).
While modeling the processes of transcription and transla-

tion is straightforward, modeling the impact of changes in TF
protein levels on the expression of target genes is more compli-
cated. TF protein levels are generally considered to affect target
genes by modulating their bursting frequency (although this is
not strictly true in all cases; see refs. 55–64). We modeled the
regulation of a target gene by a TF by adjusting the target
gene’s rate of burst initiation in a manner dependent on the
concentration of the TF protein (SI Appendix, Eq. 7). Here,
the derivative of the response function [i.e., the instantaneous
ΔTarget(kon)/ΔTF(P)] describes the proportional change in
bursting frequency relative to the change in TF(P). We chose
a Hill function to reflect the effect of changes in TF(P) on
Target(kon), although the specific shape of the response curve
can also be captured by other models (e.g., Michaelis–Menten).
We note that small fluctuations in TF(P) levels will only

affect target gene transcription when TF(P) is neither extremely
low nor near saturating concentrations. For instance, if a given

target gene’s promoter is already occupied with many molecules
of a particular TF protein, then a small increase in that protein
will likely have minimal to no effect on the target gene’s tran-
scription. In this work, we focus on regulatory relationships
that are “meaningful” within a cell type, by which we mean
that TF(P) is near the steep part of the response curve. Since the
coefficient of variation for TF(P) across a population of cells at
steady state is relatively small (∼0.3; Fig. 2C), the TF protein
abundance for any given cell is not likely to stray too far from
the mean. In these cases, the relationship between TF(P) levels
to Target(kon) is effectively linear, with a slope defined by the
Hill coefficient n (SI Appendix, Fig. S2C). (The slope of the
Hill coefficient roughly captures the degree of cooperativity in
the effect of TF molecules on gene regulation.)

We simulated a TF regulating a target gene in a steady-state
population of 20,000 cells, continuously tracking TF(RNA),
TF(P), Target(RNA), and Target(ΔRNA) for 20 h in each cell
(Materials and Methods).

For parameters related to transcription and translation, we
selected values based on published data in human and mouse
cells (40, 55, 65–70) as reported in Table 1.
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Fig. 2. Transcriptional bursting yields intrinsic variation for each gene across cells at steady state. (A) Two-state model of transcriptional bursting and regulation
for one Regulator–Target pair. Variables: kON (burst frequency), kOFF (1/burst duration), sRNA (transcription = burst size*kOFF), sprotein (translation), δ (decay),
Ø (no molecules left). Blue: TF, red: Target. (B) Simulation of TF(RNA), TF(P), and Target(RNA) bursting events and abundance for one cell in the presence of direct
regulation between a pair of genes. (C) Abundance distributions of TF(RNA) (μ: 29, CV: 0.84), TF(P) in thousands (μ: 61, CV: 0.31), and Target(RNA) (μ: 50, CV: 0.93), for
median values of burst parameters, across 20,000 simulated cells. (D) Overdispersion structure (variance/mean) of total mRNA for TF and Target for different
burst sizes (large TF: 32 transcripts/burst, large Target: 40 transcripts/burst; small TF: 3, small Target: 4). (E) Mean TF(RNA) (Top), TF(P) (Middle), and Target(RNA)

(Bottom) abundance over time, across cells that did have a burst of the TF gene (colored, n = 715) versus those that did not have a burst (gray, n = 715 randomly
subsampled cells with no burst) at t = 0 (20,000 total cells). Solid red line indicates TF(RNA) and dashed red line indicates TF(ΔRNA). Curves are based on data points
at 30 min intervals. (TF mRNA at 30 min shows a sharp peak due to discrete sampling; the actual peak is smooth.)
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For most gene-specific parameters, the estimates are consis-
tent across studies. However, certain studies (e.g., refs. 71
and 72) suggest that mRNA half-lives may be longer than other
estimates by two- to fourfold (65, 70). To be conservative, we
used the shorter estimates of half-life in our simulations. We
return to this point below, where we discuss the implications of
longer half-lives for inferring gene regulation.
For the Hill coefficient of the regulatory response function

(connecting changes in TF protein levels to target gene transcrip-
tion), the value can range from zero (no regulatory effect) to a
large positive number (with higher coefficients corresponding to a
stronger effect). In our model, we chose a modest value of 2, rep-
resenting the situation where doubling TF(P) results in a fourfold
increase in the target gene’s burst frequency [Target(kon)], in
bursts per hour (SI Appendix, Fig. S2C). With these parameters,
the distributions of TF(RNA), TF(P), and Target(RNA) across cells
are consistent with published, experimental measurements (SI
Appendix, Fig. S1 A and B) (69, 73, 74).
While our simulations assume a single copy of the TF and tar-

get genes, we confirmed that simulations with two alleles at both
genes, with each allele having half the bursting rate, produce
essentially equivalent results (as expected, because bursting events
are infrequent and thus the two alleles are rarely bursting at the
same time) (SI Appendix, Fig. S2B). We also confirmed that our
simulations produce equivalent results to using Gillespie stochastic
simulations for our model (SI Appendix, Fig. S2B) (75).
Applying our model to follow a collection of single cells over

time revealed the compounded effects of bursting and decay on
each gene’s mRNA abundance fluctuations (Fig. 2B). While
much of the variation in TF(RNA) is buffered at the protein level
due to longer protein half-lives, there is an approximately three-
fold difference in mean TF protein abundance between the top
and bottom deciles of TF(P) (Fig. 2C), which is robust to

changes in gene-specific parameter values over relevant ranges
(SI Appendix, Fig. S1C). Importantly, the production of
mRNA molecules in rapid succession due to bursts results in
the overdispersion (variance/mean >1) of mRNA expression,
with the amount of mRNA overdispersion directly proportional
to the gene’s burst size (Fig. 2D and SI Appendix, Eq. 4).

If we partition cells according to whether or not the TF gene
was bursting at time t = 0, we find that cells that were bursting
at t = 0 have substantially higher levels of TF(RNA), TF(P), and
Target(RNA) over the subsequent hours than cells that were not
bursting at t = 0; the difference eventually disappears as the lev-
els converge back to the population mean (Fig. 2E). [As seen in
the figure, we note that cells bursting at t = 0 already have
higher levels of TF(RNA) at t = 0, because the burst will have
typically begun before t = 0.] The temporal dynamics for each
of the quantities is notably different:

1) TF(RNA) rises steeply for nearly 30 minutes, by which time
the burst occurring at t = 0 will have ended and mRNA
decay will have taken over.

2) TF(P) rises more gradually as the TF mRNA is steadily trans-
lated. In cells that were bursting at t = 0, TF(P) reaches a maxi-
mum increase of ∼12% increase at ∼6 h. Elevated levels of
TF(P) persist for many hours, because TF(P) decays much more
slowly than TF(RNA) (median TF protein half-life = 28 h).

3) Target(ΔRNA) and Target(RNA) both rise at similar rates;
however Target(ΔRNA) peaks and drops off at ∼7 h, whereas
Target(RNA) continues rising gradually for another > 5 h
(approximately two mRNA half-lives). This difference reflects
the short lifespan of unspliced transcripts. Target(ΔRNA) thus
provides a sensitive measure of the instantaneous regulatory
effect of TF(P), while Target(RNA) reflects the accumulation of
mRNA over time.

Propagation of Stochastic Variation from TF to Target Genes.
We next analyzed in detail how the variance in a TF’s mRNA
level is propagated to a target gene’s mRNA level through
translation and then the TF protein’s modulation of the target
gene’s transcriptional bursting (Fig. 3A).

The amount of TF(P) in a cell produced from TF(RNA) pre-
sent at t = 0 can be expressed by a system of ordinary differen-
tial equations governed by translation and degradation rates (SI
Appendix, Eq. 5). TF(P) peaks after a time delay, because pro-
tein molecules continue to accumulate until the rate of new TF
proteins produced by the remaining mRNA that was present at
t = 0 is offset by the slow decay rate of the protein. For the
parameters in our model, the TF(RNA):TF(P) correlation is ini-
tially ∼0.35 at t = 0 [consistent with experimental measure-
ments in single cells (76)] and subsequently rises to a peak of
0.5 at around t = 6 h (SI Appendix, Fig. S2A), before gradually
falling again over the subsequent 10+ h, based on the TF pro-
tein’s half-life (Fig. 3B).

If we compare cells that were in the top decile (D10) and
bottom decline (D1) of TF(RNA) at t = 0, those that were in
the top decile have nearly double the level of TF(P) at the time
of maximum correlation at ∼6 h (D10:D1 interdecile ratio
[IR] = 1.7; Fig. 3C), showing how variance is propagated from
mRNA to protein.

In addition, cells with high levels of TF(P) have substantially
higher levels of nascent target-gene mRNA (Target(ΔRNA)),
which closely reflects the instantaneous Target(kon). For our
model (regulatory relationship with Hill coefficient = 2), com-
parison of cells in the top versus bottom decile of TF(P) (whose
IR = 2.8) reveals that the former have approximately sixfold

Table 1. Range of intrinsic parameter values for TFs
and non-TF genes

Parameter
Interquartile ranges

Refs.

Time between
bursts (1/kON)

67, 70

Burst duration
(1/kOFF)

67, 70

mRNA half-life 65, 69, 81

Protein half-life 69

Burst size 55, 67, 74

Translation
rate

65, 69

Derived from literature, where parameters were estimated and inferred from published
experimental data. Lines represent first quartile, median, and third quartile values for
TFs (blue) and non-TFs (red), respectively. Burst sizes used in simulations were based on
previously published smFISH-based copy numbers, although we note that scRNA-seq
data-based estimates are lower due to transcript capture inefficiencies (88–90).
kon = burst frequency; koff = number of burst ends per hour.
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higher levels of Target(ΔRNA) [maximum Spearman’s ρ = 0.32
between TF(P) and Target(ΔRNA); Fig. 3D].
In principle, to compare TF and Target RNA levels, we can

look at either CT or CT
Δ; the former reaches higher magnitudes

(e.g., a peak of 0.23 versus 0.18) but changes more gradually,
while the latter peaks earlier and falls more sharply. We mea-
sured both of these time-shifted correlations for 0 ≤ T ≤ 15
and focused on CT

Δ for our analyses. The peak CT
Δ occurs at

around 7 h, not long after the peak TF(RNA) correlation with
TF(P) (Fig. 3E, Left). The same is true for the D10:D1 IR of
Target(ΔRNA) (SI Appendix, Fig. S2D). This makes sense,
because the level of nascent transcripts reflects current tran-
scription rates and thus is closely related to TF protein levels.
In contrast, CT continues to rise for several more hours (Fig.
3E, Right and SI Appendix, Fig. S2B), because transcription
continues to occur and total mRNA continues to accumulate.

Sensitivity of Time-Shifted Correlations to Gene-Intrinsic
Parameters. We explored the sensitivity of the magnitude and
timing of peak correlations to the choice of parameters in our

model, by replacing them with the 25th and 75th percentile
values (Table 1).

Broadly, the time-shifted correlation CT
Δ is robust to varia-

tion in most variables, although the magnitude is more sensitive
to changes in TF protein half-life and TF burst frequency (SI
Appendix, Fig. S2F).

With respect to the time of maximum correlation, increasing
the half-life of TF mRNA or TF protein from 25th to 75th
percentile delays the time from 5 to 9 h (as expected from SI
Appendix, Eq. 6), whereas increasing Target(kon) shortens the
time effect from 12 to 4 h (SI Appendix, Fig. S2 D and F and
Table S1).

With respect to the magnitude of the correlation CT
Δ,

increasing the TF mRNA half-life increases TF(1/koff) (burst
duration), which in turn increases the covariation by up to
25%, whereas increasing the TF protein half-life or TF(kon)

decreases the magnitude by up to 60% (SI Appendix, Fig. S2 E
and F and Table S1).

These results suggest that experiments to detect regulatory
covariation should sample time points across the range of 0
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Fig. 3. Information flow between a TF and its target gene is time-dependent. (A) Schematic of the multistep inference question. (B) TF(RNA) and TF(P) Spearman’s
ρ autocorrelations and correlations between TF(RNA) and TF(P) over time, across 25 simulation runs (each included as its own dot). (C–E) Kernel density estimates
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t ≥ 0 for cells binned by TF(RNA) at t = 0. (D) TF(P)0:Target
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T correlation and D10:D1 IR of adjusted Target(ΔRNA) distribution extremes for cells binned by TF(P) at
t = 0, under the Hill function model of interaction. (E) Relying on mRNA only—CT

Δ and TF(RNA)-binned Target(ΔRNA) D10:D1 IR (Left) and CT and Target(RNA) D10:D1 IR
(Right)—to infer regulation over time. (F) Correlation between a TF and its putative Target could be a result of cell-state-based structure; if so, the time-shifted
correlation would have a stable magnitude over time. (G) Effect of down-sampling the number of cells and/or UMI detection efficiency on estimated TF:Target
covariation trends over time (focusing on CT

Δ). Estimates get both noisier and lower in magnitude due to these two technical considerations.
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to >12 h in order to capture the start, peak, and decay of the
time-shifted correlation curves for most genes.
We also explored the sensitivity of the results to changing

the Hill coefficient (SI Appendix, Fig. S2C). Whereas the Hill
coefficient of 2 used in our model results in a maximum Spear-
man’s ρ for TF(RNA):Target(ΔRNA) of ∼0.2, larger values
increase the magnitude of the covariation (e.g., 0.33 with a Hill
coefficient of 4) while lower values decrease the magnitude of
the covariation (0.13 with a Hill coefficient of 1, corresponding
to no cooperativity).

Distinguishing Cell State-Based Structure from Regulatory
Covariation. While we have focused on how TF:Target regula-
tion gives rise to a characteristic time-shifted correlation CT

Δ,
it should be noted that such regulation also gives rise to simul-
taneous correlations—that is, when the quantities are measured
at the same time point. Specifically. TF(RNA) and TF(P), as well
as TF(RNA) and Target(RNA or ΔRNA), show positive correlation
even when the quantities are measured at t = 0 (Fig. 3 B, C,
and E; Spearman’s ρ = 0.35 and 0.1, respectively). This is due
to the fact that TF mRNA resulting from earlier bursts of tran-
scription persists long enough to overlap target gene expression
resulting from those bursts.
Given that TF:Target regulation results in simultaneous cor-

relation in between TF and Target mRNA levels at any given
time t, one might ask why bother looking at time-shifted corre-
lation. After all, simultaneous correlation is easier to study, as it
can be measured in a simple scRNA-seq experiment. The rea-
son is that, while simultaneous correlation can arise as a conse-
quence of gene regulation, it can also arise from the undetected
presence of multiple stable cell states. In drawing inferences
about gene regulation, it is important to rule out the latter
possibility.
To illustrate the issue, we compared the time-shifted correla-

tion CT that arises from gene regulation versus a mixture of two
stable cell “states” (Materials and Methods and SI Appendix, Fig.
S3A). Moreover, we examined both the standard “forward”
time-shifted correlation studied above CT

Δ = Corr(TFt = 0
(RNA):

Targett ≥ 0
(ΔRNA)) and, as a negative control, a “reverse” time-

shifted correlation Corr(Target(ΔRNA)
0:TF(RNA)

T), which assesses
whether the Target regulates the transcription of the TF gene (SI
Appendix, Fig. S3B).
As expected, the mixture of two stable cell states gives rise to a

time-shifted correlation that is roughly constant over time and
shows similar results in the forward and reverse directions—in
sharp contrast to the results seen for time-shifted correlation aris-
ing from gene regulation (Fig. 3F and SI Appendix, Fig. S3B).
Notably, it is easier to distinguish the time-shifted correla-

tion arising from gene regulation from the time-shifted correla-
tion arising from a mixture of cell states when focusing on CT

Δ

rather than CT. This is because CT
Δ shows an earlier, sharper

peak that is more readily distinguished from the stability of
state-based correlations. In contrast, CT changes more gradu-
ally, since the preexisting target-gene mRNA dilutes the acute
regulatory effect of TF(P) at t = 0.
Finally, we note that “stable cell states,” as used above, refers

to states that persist for the period over which time-shifted cor-
relations are measured—e.g., at least one cell division. [Stable
states thus include both permanent states and meso-stable states
(77, 78)]. States that persist for much shorter periods of a few
hours are best regarded as “transient states”; they might arise
from rapid processes, such as cell cycle progression or tempo-
rary activation of neuronal or immune cells. To distinguish
transient states from regulation, it will be useful to know gene

expression patterns associated with these rapid processes (as are
available for cell cycle progression).

From Theory to Experimental Design. The results above show
it should be possible to systematically learn gene regulatory
connections from stochastic variation in steady-state cells, pro-
vided one can measure transcriptome-wide mRNA levels at
pairs of time points in individual cells with sufficient sensitivity
and power. We now turn to how one might implement the
theory in practice.

Several high-throughput technologies exist for using
pulse–chase labeling to distinguish mRNAs synthesized at dif-
ferent time points (68, 71, 72, 79–81). One approach involves
1) pulse-labeling cells with 4-thiouridine (4sU, a uridine analog
that incorporates into RNA) to mark transcripts synthesized
during an initial interval (t1, t1 + δ), 2) chasing the label with
uridine, and 3) harvesting and profiling the cells at a later time
t3 using single-cell RNA-seq approaches. By performing chemi-
cal conversion of 4sU into cytosine analogs before performing
scRNA-seq, one can use the presence of U-to-C substitutions
to identify transcripts synthesized during (t1, t1 + δ). This
approach can be used to study both total mRNA and nascent
RNA, via intronic sequences.

Suppose we wish to detect an increase δ in the time-shifted
correlation—for example, a doubling from t = 0 to t = 7 (Fig.
3G). In this case, δ = C7

Δ � C0
Δ. The power to detect this

increase depends on the number of cells studied and the sensi-
tivity to detect transcripts.

First, consider the case of infinitely many cells and perfect
transcript detection α = 1 (that is, 100% sensitivity, such that
every transcript is represented by a unique molecular identifier
[UMI]). There will be no variance in independent correlation
estimates. Thus, δ can be estimated perfectly: The coefficient of
variation (CVδ, defined as SD divided by the mean of δ) is zero.

Next, consider the case of a finite number n of cells with per-
fect transcript detection α = 1. In this case, one must overcome
only biological variation across cells. Suppose the true mean
abundances are E(X) = 29 and E(Y) = 50 transcripts (Fig. 2C).
Simulations show that the time-shifted correlation doubles,
from C0

Δ = 0.09 to C7
Δ = 0.18 (SI Appendix, Fig. S3C),

with δ = 0.09 and CVδ ≈ 0.36/�(n/1,000), corresponding to
CVδ ≈ 0.17 for n = 2,500 and 0.04 for n = 50,000 (SI
Appendix, Fig. S3D). To estimate δ with an SD equal to 25%
of the mean (a reasonable level of precision) requires roughly
5,000 cells (SI Appendix, Fig. S3E).

Now, consider the case of a finite number of cells with
incomplete transcript detection α < 1 (Fig. 3G). In this case,
one must overcome both biological variation and measurement
noise. For example, current scRNA-seq methods detect only a
small fraction (∼10 to 15%) of the number of mRNA tran-
scripts present in each cell (82), owing to incomplete capture of
transcripts(73, 83) and incomplete sequencing of captured tran-
scripts (83–91). If we can detect only 10% of transcripts in the
preceding example, we have E(X) = 2.9 and E(Y) = 5.0. Simu-
lations show that the time-shifted correlations are now smaller
(roughly, C0

Δ = 0.04 and C7
Δ = 0.08) (SI Appendix, Fig. S3C)

and the CVδ is larger (by 2.24-fold) (SI Appendix, Fig. S3F).
To estimate δ with CVδ = 0.25 requires many more cells—-
roughly 50,000 cells (SI Appendix, Fig. S3G).

Finally, we noted above that some papers have suggested
mRNA half-lives may be two- to fourfold longer than previ-
ously reported values, which were used in our simulations.
Increasing the half-life (while maintaining the mean level) of
both the TF and Target mRNA by two- or fourfold increases
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the value and time of the maximum time-shifted correlation
CT, but it has minimal effect on δ or on the number of cells
required (SI Appendix, Fig. S3H).
In summary, to reliably detect relevant increases in time-

shifted correlation, it will be necessary to improve current
methods for time-resolved labeling by increasing 1) transcript
detection efficiency, 2) the number of cells that it is feasible to
study, or 3) both. For example, a detection efficiency of 50%
would allow the use of 17,500 cells per time point for TF and
Target mRNA half-lives of 2.5 and 3.6 h, respectively. Such
improvements seem achievable but will require focused efforts.

Leveraging Simultaneous Correlations in a Single-Cell Dataset
to Enrich for Gene Regulation. We noted earlier that regulatory
relationships give rise to two types of correlation between
TF(RNA) and Target(RNA): 1) a positive correlation C0 between
the quantities when measured simultaneously [because TF(RNA)

from past bursts persists long enough in cells to overlap
Target(RNA) due to those bursts] and 2) an increase δ in the
time-shifted correlation after an appropriate time interval.
Simultaneous correlation has the disadvantage that it could also
arise from undetected cell types, whereas the time-shifted corre-
lation approach controls for this possibility.
Because the time-shifted correlation approach is not yet feasi-

ble with current labeling methods, we undertook an experiment
to examine genes that show simultaneous correlation with a
TF, to look for other evidence that some of the correlations
may be due to regulation. Using a droplet-based method,
scNT-sEq. (71), we generated a temporally resolved scRNA-seq
dataset with K562 cells labeled with 4sU for a 24-h pulse
phase, followed by a 10-h chase phase with uridine, during
which we sampled cells every 2 h (Fig. 4A, SI Appendix, Fig. S4
A–D, and Materials and Methods). We collected ∼1,000 to
4,000 cells at each of six time points (total of 13,679 cells) (SI
Appendix, Fig. S4B). We confirmed that burst sizes (SI
Appendix, Fig. S4E) and mRNA half-lives (SI Appendix, Fig.
S4F) estimated from the K562 data are consistent with recent,
published estimates from scRNA-seq data (55, 71, 72, 80),
including the longer estimates of mRNA half-lives.
We started by considering GATA1, a well-known erythroid

regulator, in these steady-state cells (Fig. 4B) and looking for
genes whose mRNA levels showed significant correlation with
GATA1 mRNA levels across cells (Spearman’s ρ P < 0.05;
Materials and Methods). Specifically, we analyzed each time
point separately and looked only at those genes that showed
significant correlation with GATA1 at all six time points. A
total of 36 genes met these criteria. Based on two lines of evi-
dence, many of the correlations seem likely to reflect regulation
by GATA1: 1) The genes are enriched (3.8-fold) for genes dif-
ferentially expressed (92) in an independent GATA1 Perturb-
seq knockdown experiment (Fig. 4C, SI Appendix, Fig.
S4G¸and Materials and Methods) and 2) 22 of the genes are
well-known GATA1 targets (see refs. 93–97 for a few promi-
nent examples), of which 19 are significantly down-regulated
and 3 significantly up-regulated upon GATA1 knockdown (SI
Appendix, Fig. S4H).
We next calculated mRNA correlations for 342 TFs, finding

a total of 17,152 TF:non-TF pairs that showed significant cor-
relations at all six time points (mean number of significant links
per TF = 50). We focused on 56 TFs with at least 15 signifi-
cantly correlated genes whose genome-wide binding sites had
been measured in K562 cells using chromatin immunoprecipi-
tation and sequencing (ChIP-seq) in the ENCODE project
(98). For each such TF, we identified putative binding sites

based on stringent ChIP-seq peaks; we then assigned these sites
to a specific gene based on the Activity-By-Contact model (ref.
99 and Materials and Methods). We found that 53/56 (95%) of
the TFs were enriched for binding in enhancers and promoters
assigned to the significantly correlated genes relative to all other
genes expressed in K562 cells (Fig. 4D).

These results suggest that many of the genes that show
simultaneous correlations are likely to be regulatory targets,
although time-resolved experiments will be necessary to rule
out alternative possibilities. If confirmed, this framework would
provide a method for identifying regulatory connections in
steady-state cells.

Discussion

The ability to infer gene regulation from observations of cells at
steady state, without experimental perturbations, would vastly
expand the study of regulatory networks in any cell type—
providing insight into previously inaccessible realms of biology.
Here, we introduce a framework to do so that uses the stochas-
ticity of transcription to identify, in a principled way, all pairs
of covarying TF and target genes in cells at steady state.

Our model, which is grounded in experimentally-derived
parameters, captures a distinctive, time-shifted correlation curve
between the abundance of the mRNA of a TF and nascent
RNA of a target gene, which rises and then falls, at time scales
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Fig. 4. Enrichment of gene regulatory signal from simultaneous correla-
tions in scRNA-seq data of K562 cells at steady state. (A) Schematic of the
experimental design of a pulse–chase metabolic labeling experiment to
capture two temporally resolved snapshots of RNA abundance in the same
single cells. U, uridine. (B) UMAP of 13,679 unperturbed K562 single cells
across six time points (∼1,000 to 4,000 cells per time point), colored by
GATA1 scaled counts. (C) Differentially expressed genes upon GATA1 knock-
down, inferred from an orthogonal GATA1 knockdown Perturb-seq experi-
ment in K562 cells (92). The horizontal dotted line represents a Bonferroni-
adjusted P value threshold of 0.001, and the vertical one a log2 fold change
of 0. Purple dots denote the set of correlated genes with P < 0.05 at all
time points, which have a 3.8-fold enrichment. (D) Enrichment of predicted
TF binding from simultaneous Corr(TF(RNA)
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T) correlations for
ChIP-seq binding signal across 56 TFs with ENCODE ChIP-seq data that
have at least 15 significantly correlated genes from the K562 data.

PNAS 2022 Vol. 119 No. 34 e2207392119 https://doi.org/10.1073/pnas.2207392119 7 of 10

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207392119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207392119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207392119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207392119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207392119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207392119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207392119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207392119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207392119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207392119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207392119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207392119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207392119/-/DCSupplemental


reflecting the half-lives of the TF mRNA and TF protein.
While we focus on CT

Δ, we show that CT (using total Target
mRNA) results in a similar curve that increases and decreases
more gradually. Importantly, these temporal relationships dis-
tinguish correlation due to gene regulation from correlation
due to the undetected presence of multiple cell states.
Simulations indicate that identifying regulatory pairs should

be feasible, in principle, for genes within typical gene-specific
parameter ranges. The key challenge is that current experimen-
tal methods lack adequate power. For example, given current
transcription detection efficiencies of ∼10%, detecting a two-
fold increase in the time-shifted correlation would require
∼50,000 cells sampled per time point, which is not currently
practical. We quantify the effects of improving transcript detec-
tion and sample sizes on the ability to infer gene regulation.
While simultaneous correlation does not allow us to conclu-

sively distinguish between gene regulation and undetected cell
states, we investigated simultaneous correlation between TFs
and other genes in K562 cells at steady state. Independent
results from Perturb-seq and ChIP-seq strongly suggest that
many of the significantly correlated pairs represent true gene
regulation. These results support the idea that pairwise correla-
tions of gene mRNA abundances in cells at steady state can
highlight potential instances of gene regulation, which can then
be tested via patterns of time-shifted correlation.
A reviewer raised an interesting question that is worth

addressing: Given that the variation in TF protein levels across
cells should cause a positive correlation in bursting between the
two alleles of a gene within a cell, why do studies often find no
such allelic correlation (100, 101)? The answer is that there is
indeed an allelic correlation, but its magnitude is tiny (typically,
in the range of 0.003) given the variation of TF protein levels
and the regulatory response in our model and thus would be
difficult to detect.
Our results have various limitations. Estimates of kinetic

parameters from scRNA-seq data remain imperfect. Our simu-
lations assume a regulatory effect size (Hill coefficient) of 2;
extremely weak regulatory relationships in a cell type [i.e., cor-
responding to very high or very low concentrations of TF(P)]
will not be detected but likely constitute less meaningful biol-
ogy in the cell type. Our model does not currently include such
factors as nuclear buffering of mRNA (102), TF autoregulation
(76, 103, 104), and posttranslational modifications (105). Such
factors could be incorporated, but we believe that the current
model provides sufficient guidance for initial experimental
designs.
While our work focuses on scRNA-seq–based transcriptomic

correlations, technologies to profile complementary aspects of
cells broaden the spectrum of informative approaches. Joint pro-
tein and mRNA measurements in single cells (106) can enable
simultaneous measurement of TF(P) with the Target(ΔRNA). Addi-
tionally, pairing intronic gene abundances with spatial informa-
tion (107) could leverage the spatial organization of the nascent
transcriptome to yield more nuanced regulatory insights.
Given the critical roles of gene regulatory networks in cell

types, we anticipate that the ideas presented here—coupled with
improvements in high-throughput single-cell technologies—could
provide powerful approaches for understanding biology.

Materials and Methods

Modeling Transcriptional Bursting and Gene Regulation. The underlying
stochastic model (SI Appendix, Eqs. 1 and 2) relies on the following transcrip-
tional burst parameters, which we incorporated in a gene-specific manner:

kon, koff, and burst size. Parameter values for each gene are based on TF- and
non-TF ranges observed experimentally (Table 1). We used a Poisson decay
model to enable discrete removal of mRNA transcripts and protein molecules
(SI Appendix, Eq. 3). We also incorporated splicing and translation from the litera-
ture in a TF- and non-TF-specific manner (Table 1 and SI Appendix, Eqs. 4–6). Tran-
scription rates were calculated as the burst size * koff for each gene, and the rate
of mRNA synthesis was the product of whether bursting was on for that gene and
the transcription rate. As a check, we confirmed that the resulting mRNA and pro-
tein abundances match those estimated by deterministic ordinary differential
equations (SI Appendix, Eq. 5). We modeled the TF(P):Target(kon) response function
as a Hill function (SI Appendix, Eq. 7), with a Hill coefficient of 2.

Simulating Two-Gene Regulation in a Population of Cells at Steady
State. We wrote a simulation (Python v3.7) based on the two-state stochastic
bursting model of gene transcription above and simulated two genes, one TF
(regulator) and its target gene, across 20,000 cells. At each time step, we tracked
TF(ΔRNA), TF(RNA), TF(P), Target(ΔRNA), Target(RNA), and Target(kon), to reflect the
abundance changes between each time point. To assess regulatory signal, we
calculated the following time-shifted RNA:RNA Spearman’s ρ correlations
between 1) TF0 and TargetT

Δ (CT
Δ) and 2) TF0 and TargetT (CT), for each time

point ranging from 0 h after the burn-in time to up to 2 d after. We have made
our simulator code, including code to run the simulator with various parameters,
and a notebook with the key analyses included in this paper, available on
GitHub (https://github.com/agupta-landerlab/stochastic-regulation-code).

Gene-Specific Parameter Sensitivity Analyses. We measured the sensitivity
of CT

Δ to gene-specific parameters, with each taking on either the 25th, 50th, or
75th percentile value, taken from the literature (Table 1). We ran 25 indepen-
dent simulations of 20,000 cells each. In each run, we estimated the regulatory
effect using the IR measure (ratio of the mean abundance of the top decile of
cells to the mean of the bottom decile of cells) as well as CT

Δ. We plugged in
various values of mRNA and protein half-lives into SI Appendix, Eq. 6 to analyti-
cally model each parameter’s effect on protein production from a baseline
mRNA abundance at t = 0.

Simulation of State-Based Covariation. We simulated two cell “states” with
no regulation between the TF and Target by removing the link function between
TF(P) and Target(kon) and creating one “state” with low mRNA abundances and
another with high abundances for each gene. Specifically, we varied the basal
burst frequency for both the TF and Target to be either their first quartile or third
quartile values, depending on the state. At each time point, we then combined
the 10,000 cells from each state to yield a total of 20,000 cells that we tracked
over time.

Assessing the Effect of Sequencing Inefficiencies and Sample Size. To
mimic the combined effects of capture inefficiencies and read depth in scRNA-
seq (which we call “UMI detection efficiency”), we varied the sampling density of
counts for each cell by introducing Poisson down-sampling, with the Poisson
rate parameter equal to the number of counts*capture_efficiency. We chose the
minimum between the raw and down-sampled counts to ensure that we never
overestimated the number of counts per cell. To determine the effect of either
changing the sample size (number of cells) or UMI detection efficiency on our
ability to detect regulation-based covariation, we simulated 25 runs for each pair
of capture efficiencies and sample sizes.

Pulse–Chase Experiment with 4sU. K562 erythroleukemia cells (ATCC, CCL-
243) were cultured in RMPI 1640 + L-glutamine, with 10% fetal bovine serum,
1% penicillin/streptomycin, and 1% L-glutamine 200 mM. For 4sU experiments,
cells were plated in six-well plates ∼12 h before the start the experiment at a
density of 5 × 105 to 8 × 105 cells per mL in 5 mL of fresh media. The 4sU
(Sigma, T4509-25MG) in dimethyl sulfoxide (DMSO) was added to culture wells
at a final concentration of 100 μM for 24 h, with renewal every 6 to 8 h.
Between the pulse and chase phases, the cells were washed twice to remove
any residual traces of 4sU. Subsequently, media with saturating concentrations
of uridine (Sigma, U6381) at 10 mM was added. Cells were collected at 0, 2, 4,
6, 8, and 10 h. All the samples from each pulse–chase experiment were proc-
essed the same day to minimize batch effects. To control for genes induced by
the long exposure to 4sU and to uridine, two control samples with chase only or
DMSO only were included.
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Conventional and Temporally Resolved Single-Cell RNA Sequencing.

The same datasets were used to analyze stochastic transcriptional variation and
to calculate gene-specific burst sizes and mRNA half-lives. Our scNT-seq protocol
was adapted from previously published methods (71–73), with modifications
described in SI Appendix. Details on raw sequencing data demultiplexing, align-
ment, and doublet detection can also be found in SI Appendix. These scRNA-seq
data were deposited to Gene Expression Omnibus (GEO), with accession number
GSE202292. We have made code related to the analysis of these real data avail-
able on GitHub (https://github.com/agupta-landerlab/stochastic-regulation-code).

Gene-Specific Parameter Estimation from Real Data (mRNA Half-Lives
and Burst Sizes). To estimate gene-specific half-lives from real data, we fit the
fraction of labeled counts for each gene at each time point to an exponential
decay model (SI Appendix). Genes in which the fraction of labeled counts
increased overtime were removed from the analysis. Genes with a fitting r2 > 0.6
were plotted for the comparison with half-lives from ref. 71.

Identification of Significantly Correlated TF:non-TF Pairs Using
Simultaneous Correlation Analysis. To determine the list of TFs and non-TF
genes, we used a recently published, curated list of human TFs (66). We filtered
out cells with low UMI and genes expressed in few cells across time points. We
scaled raw counts to account for differences in library size. Correlated genes for
each TF were identified based on genes whose expression profiles had a Spear-
man’s rank correlation with the TF’s expression that fell in the right tail of the
null distribution (defined by a permutation test to randomize ranks). We defined
significantly correlated genes for each TF as the intersection of correlated genes
with a P value <0.05 in all sampling time points.

Enrichment of GATA1 Correlated Genes in Perturb-seq Data. We com-
pared the genes significantly correlated with GATA1 with a recently published
dataset that combined CRISPR interference on GATA1 with a single-cell RNA
sequencing readout (92). A guide-cell barcode dictionary with the identity of the
perturbation in each cell was obtained from GSE132080. We used a Wilcoxon
rank sum test to identify differentially expressed genes between GATA1 KD and
nonperturbed cells (Bonferroni-adjusted P < 0.001).

ChIP-seq Enrichment for 56 TFs. We obtained K562 ChIP data from the
ENCODE consortium (98). We linked enhancers to genes using the Activity-By-
Contact model (99). For 56 TFs with at least 15 significantly correlated genes, we
used Fisher’s exact test to check for enrichment of TF binding: An odds ratio >1
indicates that the ratio of correlated genes with the TF bound to the TF unbound
is higher than for uncorrelated genes.

Data, Materials, and Software Availability. scRNA-seq data have been
deposited in Gene Expression Omnibus (GSE202292) (108). Code related to the
analysis of these data is available on GitHub (https://github.com/agupta-
landerlab/stochastic-regulation-code).
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