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Abstract

one.

Background: Translating the conventional scientific concepts into a new robust invention is a much needed one
at a present scenario to develop some novel materials with intriguing properties. Particles in nanoscale exhibit
superior activity than their bulk counterpart. This unique feature is intensively utilized in physical, chemical, and
biological sectors. Each metal is holding unique optical properties that can be utilized to synthesize metallic
nanoparticles. At present, versatile nanoparticles were synthesized through chemical and biological methods.

Main body of abstract: Metallic nanoparticles pose numerous scientific merits and have promising industrial
applications. But concerning the pros and cons of metallic nanoparticle synthesis methods, researchers elevate to
drive the synthesis process of nanoparticles through the utilization of plant resources as a substitute for use of
chemicals and reagents under the theme of green chemistry. These synthesized nanoparticles exhibit superior
antimicrobial, anticancer, larvicidal, leishmaniasis, wound healing, antioxidant, and as a sensor. Therefore, the
utilization of such conceptualized nanoparticles in treating infectious and environmental applications is a warranted

Conclusion: Green chemistry is a keen prudence method, in which bioresources is used as a template for the
synthesis of nanoparticles. Therefore, in this review, we exclusively update the context of plant-based metallic
nanoparticle synthesis, characterization, and applications in detailed coverage. Hopefully, our review will be
modernizing the recent trends going on in metallic nanoparticles synthesis for the blooming research fraternities.
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Highlights
> Metallic nanoparticles are a new dimensional form of
nanoparticles possessing splendid optical properties.

> The synthesis of metallic nanoparticles from plants
and its parts is a time deed one.

> The characterizations of nanoparticles infer the
nano shape and size of the nanoparticles.

> Application of nanoparticles in diseases manage-
ment and environmental sector is emphasized in prolific
manner.
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> Challenges in green synthesis should be resolved
and the feasibility of green synthesized nanoparticles in
translating into industrial applications must be focused
for future medicine.

Background

Nanotechnology is a new-fangled term that becomes an
inescapable part of the modern tool and people are now
witnessing the ease of technology in day to day applica-
tions [1]. The small-sized nanoparticles (1-100 nm)
dominate the entire research globally, due to its stupen-
dous applications in physical, chemical, and biological
sciences [2]. Due to intensive and extensive research by
the research fraternity, nanotechnology has successfully
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knocked on the door and a common man at present sce-
nario experiencing the feature of nanotechnology [3].

The delivery address given by Nobel laureate Richard
P. Feynman “There’s Plenty of Room at the Bottom” re-
ceived colossal attention from researchers and there on-
wards nanotechnology steps ahead and make various
revolutionary developments in the field of nanotechnol-
ogy [4]. When materials are operated at the nanoscale
level, the properties of the materials have changed and
exhibited tremendous optical, magnetic, and electrical
properties. Such kind of unique nano properties is uti-
lized in electronics, batteries, fuel additives, solar cells,
catalysts, electrochemical industries, defense, cosmetics,
pharmaceuticals, food additives and packaging, agricul-
ture, biosensors, diagnostic imaging, vaccines, antimicro-
bial and chemotherapy, and drug delivery [5].

Nanoparticles (NP’s) play a decisive role in developing
various dimensions of nanomaterials such as carbon
nanotubes (CN), metal nanoparticles (MN), ceramic
nanoparticles (CN), semiconductor nanoparticles (SN),
and polymeric and lipid-based nanoparticles [6]. These
kinds of nanoparticles are varying in their morphology,
size and shape, and optical properties but excel in vari-
ous applications in divergent fields [7].

In this review, we conceptualize the green synthesis of
metal nanoparticles (MN) synthesis (plants only),
characterization, and their biological applications in a
lucid approach. Further, we brief the technical
challenges of nanoparticles synthesis and its obstacles,
toxicity and environmental concern of MN’s, and its per-
spective for commercialization of MN’s. For the past few
decades, numerous reports have been published in view
of MN’s synthesis; but addressing the challenges and its
associated problems of MNs is very limited. Due to this
rationale, we intend to provide a comprehensive review
of MN’s. This review will pose a better understanding of
the biosynthesis of nanoparticles (NPs) and their appli-
cations to the scientific community in a substantial
manner.

Main text

Traditional nano concepts and its applications
Nanotechnology is not an era of modern science while
reverting to history; nanotechnology exists in the history
of arts and nature beings. In sculpture, gold and copper
are mixed with other substances and reduced in a de-
fined temperature into respective metal ions. This result-
ant mixture is applied on the surface of the coatings to
make a glittering effect. Naturally, NP operates at the
nanoscale in various living beings. These natural nano-
materials have the unique property of molecular recog-
nition due to which they can self assemble [8]. The most
dynamic example of natural nanoparticles is a nano-
scopic wax crystal papillae in the upper side of each
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epidermal cell of lotus leaf to reduce the contact area of
water with leaf. As a result, its scientific basis has
opened the possibilities of fabricating superhydrophobic
surfaces for a variety of products such as Lotusan® a self-
cleaning paint (lotus effect), slippery liquid-infused
porous surface (SLIPS) used in refrigeration (nepenthes
walls). Bhasma is a unique Ayurvedic herbal-mineral-
metallic compound in the size of nano dimensions
(usually 5-50 nm). These are the products of classical
Indian alchemy, the “Ayurveda Rasa Shastra,” used for
treating diverse chronic ailments.

In the current epoch, nano-based concepts and
applications are again flourishing since the 1990s in all
scientific sectors. In particular, the Nanobiotechnology
concept started at the beginning of the twentieth century
exploring various new avenues in the development of
nanomedicine and for developing a sustainable
environment.

Metallic nanoparticles

Metallic nanoparticles are becoming the limelight of re-
search for scientists and they have proved their compe-
tence in various reports addressing the synthesis and
applications of versatile inorganic metal nanoparticles
(silver, gold, copper, iron, gold, platinum, and palladium)
[9] (Fig. 1). The specific properties of metallic nanoparti-
cles are it exhibits prospective optoelectronic and di-
mensional characteristics superior to their bulk metals
[10]. These particular traits render an increase in the
surface to volume ratio, reactivity, efficiency, and func-
tional modifications that can tap their potential in di-
verse applications as multifunctional technical tools [11].

Nanoparticles synthesis

Approaches of nanoparticles synthesis

For fabrication NP’s with the desired shape and size,
strikingly there are two classical approaches based on
their assemblies followed, either they are top-down and
bottom-up approach [12] (Fig. 2). Both these approaches
differ in the synthesis principles but finally produce NPs
with desired characteristics. In the top-down approach,
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bulk materials were shattered into the bit to bit pieces
leading to the fine generations of NPs. Such kind of NP’s
production methods were accomplished by photolitho-
graphic techniques, grinding, sputtering, and milling
[13]. Each method has its limitations and fine produc-
tion capacity of NPs. The top-down approach is quite a
feasible technique resulting in the production of a large
mass of NPs. But the disadvantages associated with top-
down are surface imperfection of NPs and in some cases,
NP’s may get damaged [14]. The optical and physio-
chemical properties of the NPs depend on the surface
architecture of NPs; henceforth, top-down approach of
NPs synthesis is restricted in some cases of applications.

Another fashionable approach, for NPs production, is
the bottom-up approach by coalescence or assembling
of atoms by atoms, molecules by molecules, cluster by
cluster to generate a diverse range of NP’s [15]. Tech-
niques like self-assembly of monomer/polymer mole-
cules, chemical or electrochemical nanostructural
precipitation, sol-gel processing, laser pyrolysis, chemical
vapor deposition (CVD), plasma or flame spraying syn-
thesis, and bio-assisted synthesis are employed for the
production of NPs [16]. Henceforth, bottom-up is an
amenable technique for creating nanoclusters intended
for various applications.

Methods of nanoparticles synthesis

Physical methods of nanoparticles synthesis

The synthesis of nanomaterials using physical methods
involves deposition, sputtering, ball milling, and plasma-
based techniques [16]. The rate of synthesis of metal
nanoparticles is very slow in most of these methods. For
example, a yield of nanomaterials is 50% or less for ball
milling techniques [17]. In the case of sputtering, a big

particle size distribution is obtained and only 6-8% of
sputtered material is reported to be less than 100 nm. A
high-energy consumption is required for laser ablation
and plasma techniques. Extensive size distribution, slow
production rate, and waste by-products and high con-
sumption of energy make most of the physical methods
extremely expensive which cannot be adopted for prac-
tical commercial applications [18].

Chemical-mediated synthesis of nanoparticles

A variety of chemical methods for nanoparticle synthesis
has been put forward and most of them are widely used
to synthesize nanostructured materials (e.g., chemical re-
duction, pyrolysis, sol-gel method, microemulsion, polyol
synthesis, hydrothermal synthesis, chemical vapor depos-
ition) [19]. Moreover, employing hazardous chemicals
and reagents during the synthesis process and gener-
ation of byproducts is lethal to humans and the environ-
ment also [20]. Therefore, specifically such kind of NPs
is limited for biological applications.

Biological-mediated synthesis of nanoparticles

Green nanotechnology is an emerging field to design
novel NPs using a green chemistry approach. Biological
methods of NPs synthesis provide a new possibility of
synthesizing NPs using natural reducing and stabilizing
agents. It is an economical and environmentally friendly
alternative to chemical and physical approaches with no
usage of energy and toxic chemicals.

Biological synthesis of NPs is a bottom-up approach
that involves the use of simple unicellular to complex
multicellular biological entities like bacteria, fungi, acti-
nomycetes and yeast, algae, and plant materials [21-27].
Microbial-mediated synthesis of nanoparticles is another
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variant method of producing nanoparticles. In this syn-
thesis method, microbial culture filtrates (extracellular
and intracellular) are used as a reducing agent for nano-
particles production. Generically, microbes like bacteria,
fungi, yeast, and actinomycetes having the metal-tolerant
capability and thrive at utmost environmental conditions
[28]. These inherent features are employed by microbes
to tolerate, accumulate, and convert metal into respect-
ive metal ions. For instance, the first bacterial gold nano-
particles were synthesized from Bacillus subtilis [29].
Likewise, the variant face of metallic nanoparticles silver,
gold, copper, iron, zinc, platinum, and selenium were
synthesized from the bacterium. The common
phenomenon in reducing metals into metal ions is by
redox reactions through the intracellular/extracellular
pathway. At first, the metal is trapped onto the surface
of bacterial cells while later, these trapped metals were
exclusively reduced into metal ions by the action of en-
zyme NADH and NADH-dependent nitrate reductase
enzymes [30]. These enzymes perform electron shuttle
donor processes during synthesizing nanoparticles which
are reported in the synthesis of silver nanoparticles from
Bacillus licheniformis [31].

In fungi, Fusarium oxysporum synthesized silver nano-
particles by the action of nitrate reductase and anthra-
quinones [32]. Conceivably, with the above bacterial-
and fungal-mediated synthesis of metallic nanoparticles,
it is evident that NADPH nitrate reductase is a major
biofactor in the synthesis of metallic nanoparticles.

Though green nanoparticles are a new alternative
method for conventional nanoparticles synthesis, but
for a nanoparticles synthesis and production, an ease
method should be adopted. In-universe, amply bio-
resources (plants, microbes) were available. But for
synthesis and commercialization perspective,
utilization of such bioresources is imperative. In such
a case, microbes can be effectively utilized; expensive,
but the handling of microbes, scale-up process, mo-
lecular mutation, hurdles in mass cultivation, down-
stream processing, and other factors make a
bottleneck for nanoparticles synthesis and application.
Henceforth, research should drive lucidly; employing
plants as a resource in nanoparticles synthesis is in-
deed one. Plants bestowed with numerous active con-
stituents phenols, alkaloids, flavonoids, terpenoids,
saponins, tannins, polysaccharides, polyphenols vita-
mins, etc. These constituents were effectively reduced
and stabilized the nanoparticles. Moreover, using
plants as a resource for synthesis offers advantages
such as plant material availability, cost inexpensive,
easy scalable for mass production, secondary metabo-
lites, and purgative properties. Proper and optimized
use of biological entities for the synthesis of NPs will
produce well-characterized and highly stable NPs.
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Schematically, a generic equation for the NPs synthesis
is as follows:

A
A+B —
°C,T.RPM pH

C + D (Fig. 3a, b)

A denote plant moieties; B denote chemical precursors
[salts].

When A reacted with B [salt] in the presence of
heat, temperature, rotation per minute [RPM], and
pH, A reduce B into respective metal ions and by-
products. The rate of reduction and generation of
NPs is influenced by various factors such as time,
temperature, stiochemistric proportion, and pH. The
synthesis of metallic nanoparticles is accountable by
the action of phytoconstituents present in the plant
extracts. Plants endowed with numerous active con-
stituents; these constituents activate the reaction
mechanism and synthesize the metallic nanoparticles.
Similarly, the synthesis of metallic oxide nanoparticles
is the same process but until now a lucid mechanism
is not yet been explored [33].

Technical challenges for nanoparticles synthesis
Generally, the production of NPs with a specific
shape, size, and distribution can be achieved by chan-
ging the methods of synthesis, the reducing agents,
and stabilizers [34]. The data from Table 1 showed
how plant extract greatly affects the size and shape of
NPs. There are variations in plant extract used and
the methodology adopted for the synthesis is import-
ant to standardize and optimize the synthesis protocol
to get NPs with desired size, shape, and surface
charges.

Likewise, the synthesis of NPs using the same plant
material showed variation in its characters due to differ-
ences in the synthesis method. Table 2 shows a synthesis
of metal NPs using Zingiber officinale rhizome extract.
The researcher used different methods for the prepar-
ation of extract, different concentration of precursor,
and reducing agent with various temperature and pH.
The NPs obtained with these methods are having differ-
ent features concerning size and shape.

In aspects of large-scale synthesis, among the plant
materials, leaves can be extensively used for large-
scale synthesis. The plant material (leaves) will be
available at all times and all seasons. Moreover, the
plants will not be affected by using leaves but using
other resources like a flower, fruit, seed, root, and
latex will also be meaningful but the volume of mate-
rials and it should not affect crop productivity. More-
over, the plant-based nanoparticles are reproducible,
stable, and environmentally friendly also. In plant-
mediated nanoparticles, various parameters like pH,
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precursor, and extract concentration, time, and other
factors will determine the size of nanoparticles. Since
plant constituents were different in species and gen-
era level, so optimization of these parameters will
eventually produce nanoparticles with the desired size
and shape. Another important concern of nanoparti-
cles is stability. The colloidal stability of nanoparticles
is important for long-term application studies. Com-
paratively, chemical-mediated synthesis of nanoparti-
cles is stable for a long duration; biological synthesis
of nanoparticles stability is determined by the capping
agents. In a study, silver nanoparticles are synthesized
chemically and biologically; the zeta potential of
chemical AgNPs is 17.8 mV and biological AgNPs are
15.2 mV [75]. In biological nanoparticles, the stability
of the nanoparticles solution is due to the
stabilization of the metal particles by the biomole-
cules. Moreover, the stability of the nanoparticles is
determined by pH, surface capping agents, and func-
tionalization techniques.

Effect of pH

The role of pH during nanoparticle synthesis not only
affects size but also the shape of the particle. Yang and
Li [76] demonstrated the shape of the product prepared

under lower pH was less regular and tend to aggregate.
While synthesis of NPs under different pH conditions,
the size of particles can be produced with the desired
size and shape uniformly [77-79]. The pH causes the
local surface of nanoparticles by protonation and depro-
tonation of molecular atoms in the nucleation and
growth stage of NPs [80]. At the alkaline pH range, the
NPs forms cluster distribution in the colloidal stage
preventing aggregation [81]. Armendari et al. [36] dem-
onstrated the role of pH in gold nanoparticles synthesis
and as a result, the synthesized nanoparticles exhibit
tetrahedral, decahedral, hexagonal, icosahedral multi-
twinned, irregular, and rod shape at pH values of 2, 3,
and 4. Therefore, formations of truncated octahedron,
rhomb-dodecahedron, cubic, octahedron, and octagon
structures are thermodynamically favored at the nucle-
ation stage and at the initial growth stage when the par-
ticle sizes are not very large [48].

Effect of precursor and reducing agents concentration

The concentration of reactants like precursors and redu-
cing agents also affect the size of NPs formed. This
phenomenon may be due to too many reducing agents
bound to the surface of preformed nuclei, which intensi-
fies the secondary reduction of silver ions on the surface
of the nuclei. Consequently, the growth rate of NPs is
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Table 1 Effect of biological material, precursor concentration and extract concentration on the morphology of biological
nanoparticles
Plant name and  Nanoparticles Precursor  Concentration of  Size Shape References
part used plant extract used
Aloe vera leaf Gold and T mM 0.5-4 mL 5-50 nm Gold-triangular, spherical Silver-spherical [35]
Silver HAuCl, 5mL
10 mM
AgNOs
Avena sativa Gold 0.1 mM 2 mL 5-20 nm Tetrahedral, deca- hedral, hexagonal, [36]
biomass Au(lll) icosahedral multitwinned, irregular shape,
and rod shape nanoparticles
Black tea leaf Gold and 001 M 10 mL 20 spherical [37]
extract Silver HAuCl,
AgNO3
Cinnamon Silver 1T mM 5mL 31-40 cubic, hexagonal [38]
zeylanicum bark AgNO3
powder
Hibiscus rosa Gold, Silver 0.0005 M 5mL 14 Gold-triangular, hexagonal, dodecahedral [39]
sinensis leaf HAuCl, 20 mL 13 and spherical
0.0008 M Silver-spherical
AgNOs
Ocimum sanctum  Gold, Silver 1T mM 30 mL 30 Gold-hexagonal, prism [40]
leaf AuCly 25 mL 13 Silver-spherical
T mM
AgNO3
Parthenium Silver T mM 50 mL 50 Irregular [41]
hysterophorus leaf AgNO3
Pear fruit extract  Gold 2 mM 500 mL 200-500 Triangular, hexagonal [42]
HAUCl4
Tamarindus indica  Gold T mM 45 mL 20-40 triangular [43]
leaf HAuCl,
Garcinia Gold, Silver 10 mM, 3mL 13.65 + 5.07 to  Nanodumbbell shapes [44]
mangostana HAuCl, 31.08 £ 3.99
pericarp 10 mM,
AgNOs
Terminalia chebula  Gold 001 M 2mL 6-60 Triangles, pentagons and spheres [45]
Seed HAuCl4
Cassia tora leaf Gold 1T mM 100 mL 41-57 spherical [46]
HAuCl,
Madhuca longifolia ~ Silver T mM 30 mL 30-50 Spherical and oval [47]
flower AgNO3
banana stem Silver 2 mM 9 mL 75.50 nm to Truncated octahedron, rhomb-dodecahedron, [48]
AgNO3 1.22 um cubic, octahedron and octagon
Pine cone Silver T mM 45 mL 1-50 Triangular and hexagonal [49]
AgNO3
Lycium chinense  Gold, Silver 7 mM 50 mL 20-100 nm, Polydispersed, spherical [50]
fruit HAuCl, 50-200 nm
1 mM
AgNOs
Ocimum sanctum  Platinum TmM 190 mL 23 nm Spherical [51]
(tulsi) leaves H,PtClg
Diopyros kaki leaf  Platinum TmM 190 mL 2-20 nm Spheres and plates [52]
H,PtClg
Curcuma longa Palladium 7 mM PdCl, 50 mL 15t0 20 nm  Spherical [53]
tuber
Musa ornate Iron 5mM 10 mL 43.69 nm [54]
flower FeSO,
Calotropis Iron 001 M 10 mL 50-90 nm Spherical [55]
Gigantean flower FeNO3.9H,0
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Table 1 Effect of biological material, precursor concentration and extract concentration on the morphology of biological

nanoparticles (Continued)

Plant name and Nanoparticles Precursor  Concentration of  Size Shape References

part used plant extract used

eucalyptus leaf Iron 010 M 10 mL 20-80 nm Spherical [56]
FeSO,4

tea powder Iron 01N 10 mL 40 to 50 nm Spherical [57]
Fe(NOs);

Platanus orientalis  Iron oxide Fe(NO3)3 30-40 nm Spherical [58]

leaf

Ficus carica fruit Iron oxide 0.14 M 10 mL 475 nm Spherical [59]
FeCl;.6H,0

Conyza Canadensis  Zinc oxide 0.15M 20 mL in 80 mL - Somewhat spherical [60]

leaf ZnNO3

Lemongrass leaves Zinc oxide ZnNO; 50 mL 85-98 nm Spherical [61]

Hibiscus subdariffa  Zinc oxide 91 mM 50 mL 12-46 nm Spherical, dumbbell shaped [62]

leaf ZnC4Hs04

Costus pictus D. Zinc oxide 0.1 M 50 mL 40 nm Elongated, hexagonal and rodshaped [63]

Don leaf (Zn(NOs),

Artemisia Magnesium Mg (NO3), 90 mL 10 nm Spherical [64]

abrotanum oxide

Trigonella foenum- Magnesium 5mMMg 150 mL 13 nm Spherical [65]

graecum leaf oxide (NO3)»

Punica granatum ~ Magnesium MgSO, 0.1 250 mL 50-65 nm [66]

Peels oxide M

Brassica oleracea  Magnesium MgSO, 0.1 250 mL 30-45 nm

flower oxide M

increased, leading to larger NPs. On the other hand, too
many reducing agents may enhance the bridging effect
among the formed NPs, resulting in the aggregation of
NPs. This may be due to too many metal ions absorbed
on the surface of preformed nuclei, where the secondary

reduction process occurred leading to form larger NPs

[82]. Not only size, but the shape of NPs will also get
affected (Tables 1 and 2). Chandran et al. [26] and
Shankar et al. [83] reported the percentage of triangles
formed in the reaction medium as a function of varying

Table 2 Synthesis parameters and characters of nanoparticles synthesized using plant Z. officinallae

Effect of temperature

As the temperature increases during nanoparticles syn-
thesis, the rate of producing NPs from large to small size
is achieved. Generally, high temperature is conducive to

amounts of the plant extract reveals that more spherical
particles are formed with an increasing amount of ex-
tract. So, the optimum concentration of both the
reducing agent and precursor is necessary to get the de-
sired nanoparticle size.

Nanoparticles Concentration Concentration of Z. Time for synthesis Size Shape References
of precursor officinallae extract used

Gold, Silver T mM, HAuCl, 50 mL Gold 2.5 h Gold 10 nm Silver 30.31 nm  Spherical [67]
1 mM AgNOs Silver 12 h

Silver 1T mM AgNO; 9mL Over night - [68]

Gold 1 mM, HAuCl, 25 mL 20 min boiling 5to 15 nm Spherical [69]

Silver 1-3 mM AgNOs 25 mL 30 min boiling 6 to 20 nm Spherical [70]

Gold, Silver 1 mM, HAuCl, 45 mL 10-210 min 20 to 100 nm Spherical [71]
1T mM AgNO;

Gold 0.2 mM, HAuCl, 10 mL 24 h 322 nm Spherical [72]

Silver 1T mM AgNO3 50 mL 1h 31 nm Spherical [73]

Silver T mM AgNOs 20 mL 2h 10.10-18.33 nm Spherical tetragonal = [74]
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nucleation for growth for larger nanoparticles [27, 76,
84, 85]. Low temperature is conducive to growth;
however, it is observed that the total reaction rate is in-
creased with the increasing reactive temperature.
Temperature exhibits different effects on the size of NPs
under sufficient and insufficient quantity of the precur-
sors due to its impressively different influence on the
nucleation kinetics constant k1 and growth kinetics con-
stant k2 [86]. As the reaction temperature increases, the
reduction rate increases and thus most metal ions are
consumed in the formation of nuclei, blocking the sec-
ondary reduction process on the surface of the pre-
formed nuclei. Therefore, small and highly dispersed
NPs are formed with increased yield [76].

The characteristics NPs synthesized using biological
methods are greatly influenced by the incubation time of
the reaction medium. The variations in characters dur-
ing long time incubation may occur due to aggregation
or shrinkage of particles; the self-life of particles may
affect the potential of particles [87]. Factors governing
the nanoparticles were enlisted in Table 3.

Applications

Antimicrobial activity

Development of resistance against antibiotics is threat-
ening the scientific world globally; therefore, it is indeed
to develop a pronounced novel material to alleviate
against antimicrobial-resistant strains. Since antiquity,
metals like copper, silver, iron, gold, magnesium, and
other metals are practiced in traditional medicine. Inher-
ently, these metals possess antimicrobial activity [88];
therefore, researchers elicited to make nano-based me-
tallic/metal oxide NPs as an alternative for developing
antimicrobial agents.

Metallic NPs generated from plant sources exhibited
numerous biocidal activities against Gram-positive,
Gram-negative bacterium and eukaryotes [89]. It is also
reported that metallic NPs displayed effective inhibitory
activity against resistant strains like Pseudomonas aerugi-
nosa, ampicillin-resistant Escherichia coli, erythromycin-
resistant  Streptococcus pyogenes, methicillin-resistant
Staphylococcus  aureus [MRSA], and vancomycin-
resistant  Staphylococcus aureus [VRSA] [90]. In the
present review, we provide the antimicrobial activity of
metallic NPs synthesized from plant sources against bac-
terium and fungi. The antimicrobial activity of NPs

Table 3 Parameters manipulating the biosynthesis of nanoparticles
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depends on the type of metals used, NPs [size, shape,
pH, charge, and coating agent], genus, and species [91].
Generally, it is presumed that NPs have a high surface to
volume ratio than bulk metallic counterparts, which en-
able them to easily interact with the cell membrane [92].

Different metallic NPs exert multiple mechanisms to
counteract the microbial activity. Numerous reports
have postulated the antimicrobial mechanism of NPs but
until now a precise mechanism has not yet been justified
for the mechanistic action of NPs. Generally, biogenic
metallic/metal oxide NPs exert their bactericidal activity
by releasing metal ions; interaction with cell membrane
leading to damage of cell membrane and thereby forma-
tion of pits/gaps in the cell membrane leading to frag-
mentation of cell membrane [93]. Consequently, NPs
interact with sulfur/thiol and phosphorus of proteins or
DNA, leading to disruption of the metabolic process [re-
spiratory chain, DNA replication, protein synthesis] and
finally cell death [94]. Likewise, NPs exert their bacteri-
cidal activity by triggering the production of ROS
followed by damaged cell wall integrity caused by
phospholipid oxidation and then the internal collapse of
proteins/DNA/RNA [95]. Moreover, the antibacterial ac-
tivity of NPs variably differs from Gram-positive and
Gram-negative bacterium due to the presence of a thick
peptidoglycan layer which acts as a barrier for penetra-
tion of NPs [96].

Fungi cell architecture is made up of well cell
membrane and cell wall; cell membrane is made up of
phospholipids and cell wall contain mannoproteins, -1,3-
D-glucan and P-1,6-D-glucan proteins, chitin, proteins,
lipids, and polysaccharides [chitin, glucan, and mannan or
galactomannan] [97]. Antifungal activity of metallic NPs is
initiated by interaction with the cell wall and membrane
diffusion of metal ions followed by inhibition of B-glucan
synthase or on N-acetylglucosamine [N-acetyl-D-glucose-
2-amine] an important component in the cell wall of fungi
[98]. Further induction of ROS followed by oxidative
stress which eventually interacts with macromolecules
[DNA/RNA/Proteins] and leads to cell death [99]. In
Table 4, we herein provided the antimicrobial activity of
metallic nanoparticles synthesized from plants.

Anti-inflammatory activity of metallic NPs
Inflammation is a localized phenomenon that occurs as
a result of injury, infection and stress by multiple

Parameters

Effect on biosynthesis of nanoparticles

pH
Reaction temperature
Reactants concentration

Reaction time

Variability in size and shape
Size, shape, yield, and stability
Variability in shape

Increase in reaction time increases the size of metal nanoparticles




Patil and Chandrasekaran Journal of Genetic Engineering and Biotechnology

mechanisms like recruitment of macrophages, killer cells
cytokines like IL-1, IL-1B, and TNF-« to the desired site
and develops the onset of inflammation [111]. Conven-
tionally, steroidal and nonsteroidal anti-inflammatory
drugs are administered for inflammation but the side ef-
fect exerted by the drugs had an adverse effect [112].
Nano-based herbal formulation is proved as a pioneer in
developing anti-inflammatory drugs. Numerous articles
emphasize the metallic NPs synthesized from plant
extracts endowed with anti-inflammatory properties.
Recently, a study concluded that silver NPs generated
from Selaginella myosurus demonstrated the anti-
inflammatory potential under in vivo and in vitro condi-
tions. The study implied that AgNPs can be able to
inhibit the protein denaturation, which is an important
phenomenon in inflammation in the Carrageenan-
induced rat hind paw edema model AgNPs that inter-
feres with the release of acute inflammatory mediators
[histamines, serotonin, kinins, prostaglandins, and cyclo-
oxygenase products] and antagonizes their action [113].
Similarly, gold NPs synthesized from Prunus serrulata
was assayed against LPS-induced RAW264.7 macro-
phage [114]. The results depicted that AuNPs
suppressed the production of inflammatory mediators
and pro-inflammatory cytokines in LPS-induced in

Table 4 Antimicrobial activity of biological metal nanoparticles
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RAW264.7 cells by inhibiting NF-jB activation.
Nagajyothi et al. [115] demonstrated that zinc oxide NPs
from Polygala tenuifolia root extract displayed promis-
ing anti-inflammatory activity by inhibiting the expres-
sions of proteins iNOS, COX-2, IL-1b, IL-6, and TNF-a.
Recently in an investigation, anti-inflammatory activities
of selenium NPs coated with polysaccharide of Ulva lac-
tua effectively inhibited the NF-xB protein in DSS-
induced colitis mice [116]. The above-mentioned reports
suggest that green synthesized metallic NPs can be able
to minimize the inflammation with greater efficiency, by
blocking pro-inflammatory cytokines, ROS scavenging
mechanisms, and inhibiting the NF-«kB and COX-2
pathways.

Wound healing properties

A wound is defined as sharp injuries to skin tissues
where the dermal layers are cut, punctured, or torn due
to response to stimuli or trauma [117]. Generally,
wounds are classified into two types, namely acute and
chronic wounds, based on healing time and other com-
plications [30]. Healing of wound is a phenomenal
process in which various factors intricate each other be-
tween various cell types, coagulation factors, connective
tissue, growth factors, cytokines, and the vascular

S. NP’s Source Microbes Activity Ref
No
1 Tio, Hibiscus rosa-sinensis  Vibrio cholerae, Pseudomonas aeruginosa and Staphylococcus aureus Disc diffusion method [100]
M. citrifolia Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Bacillus ~ Agar well diffusion method [101]
subtilis
Candida albicans Aspergillus niger
2 Pt Taraxacum laevigatum  Bacillus subtilis, Pseudomonas aeruginosa MHA well diffusion method [102]
3 Pd Garcinia Pedunculata ~ Cronobacter sakazakii Agar well diffusion method,  [103]
MIC and MBC
4 Se Emblica officinalis Escherichia coli, Listeria monocytogenes, Staphylococcus aureus , Micro well dilution method [104]
Enterococcus faecalis
Aspergillus brasiliensis , A. flavus , A. oryzae, A. ochraceus, Fusarium
anthophilum, Rhizopus stolonifer
5 Ni Monsonia burkeana Escherichia coli, Pseudomonas aeruginosa Broth dilution method [105]
6. Iron Acacia nilotica Escherichia coli, Marsa, Salmonella, Staphylococcus aureus Gel diffusion assay [106]
oxide )
Candida
7. Zinc Albizia lebbeck Bacillus cereus, Staphylococcus aureus, Escherichia coli, Klebsiella Disc diffusion method [107]
oxide pneumonia, Salmonella typhi
8. CuONPs Syzygium alternifolium  Alternaria solani, Aspergillus flavus, Aspergillus niger, Penicillium Disc diffusion assay [108]
(Wt) Walp chrysogenum, and Trichoderma harzianum
9 Au Ziziphus zizyphus Escherichia coli Radial diffusion assay [109]
C. albicans Micro dilution plate assay
10. Ag Erythrina suberosa Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, agar cup and micro broth [110]

(Roxb.) Escherichia coli

C. albicans, C. kruseii, T. mentagrophytes, C. viswanathii

dilution method

broth dilution method
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system. There are four phases of the wound healing
process: (i) hemostasis phase, (ii) inflammatory phase,
(iii) proliferative phase, and (iv) maturation phase. These
four phases are a complex process and coordinately
function altogether to heal the wound. Failure in any
phase led to chronic wound and its complications are se-
vere [118]. Moreover, other factors lead to impaired
wound healing, such as diabetes, obesity, malnutrition,
medication, and lifestyle habits, including excessive alco-
hol intake and smoking [119]. The current therapies in-
volve the use of hyperbaric oxygen therapy, negative
pressure wound therapy, bioengineered cell construct,
dressing materials, and vascular surgery. Besides medica-
tions like steroidal drugs (glucocorticoid drugs), nonste-
roidal drugs (ibuprofen, naproxen, rofecoxib, and
celecoxib) and chemotherapeutic drugs (bevacizumab,
lenvatinib, cabozantinib, brivanib, refametinib, and
everolimus) are commonly practiced. But these drugs
are all associated with various side effects which limit
the usage [120].

In traditional medicine, plant extracts, honey, maggots,
propolis, and larvae are a fascinating alternative for
wound therapy [117]. But howsoever, with the advent of
science and technology, researchers drive their focus in
wound therapy by involving herbal extracts with nano
concepts to address the specificity and complexity asso-
ciated with wounds. Nano-based approaches for wound
therapy is comprised of two groups; in one group, nano-
materials (metals, metal oxide, metalloid) acts as a drug
for wound healing while the latter nanomaterials
(growth factors, nucleic acids, small molecules) act as ve-
hicles/delivery agent to repair wound [118].

Recently, silver NPs generated from Lindera strychni-
folia claimed to have wound healing property deter-
mined by the cell scratch method on NIH3T3 cells
[121]. Garg et al. [122] reported the synthesis of silver
NPs from the root extract of Arnebia nobilis and formu-
lated with hydrogel and applied in albino rats. The re-
sults demonstrated that formulated silver NPs exhibit
splendid antibacterial and healing activity. Interestingly,
Coleus forskohlii root extract generated silver and gold
NPs displayed prominent wound healing activity in exci-
sion wounds in albino Wistar male rats [123]. Moreover,
NPs do not exert a toxic effect on the animals and
stimulate re-epithelialization of cells in a shorter period.
Shankar et al. [124] fabricated copper oxide NPs from
Ficus religosa leaf extract. The synthesized copper oxide
NPs rendered superior wound healing activity and
upregulated major 60, 47, 32, 26, and 25 kDa proteins
which play an important role in the different phases of
wound  repair, wound contraction, and re-
epithelialization process. Moniri et al. [125] reported the
synthesis of magnetic NPs (Fe;O,) from Aloe vera ex-
tract and impregnated the Fe;O, NPs in bacterial nano
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cellulose (BNC) to form a nanocomposite BNC/Fe3Oy,.
Under in vitro conditions, BNC/Fe;0, nanocomposite
exhibited wound healing activity in HDF cells by scratch
assay. Further, BNC/Fe;O, nanocomposite triggers the
expression of TGF-B1, CTNNB1, MMP2, MMPY,
WNT4 and downregulate the expression miR-29b and
miR-29¢ gene. These genes play a pivotal role in the
wound healing process and henceforth the nanocompos-
ite is a prominent agent in wound healing. Shao et al.
[126] reported that Barleria gibsoni leaf extract-
mediated zinc oxide NPs ameliorated the wound healing
effectively in male albino Wistar rats. Likewise, Ori-
ganum vulgare-mediated titanium dioxide NPs improve
the healing efficacy in an excised wound in male albino
Wistar rats [127]. The underlying mechanism behind the
wound healing efficacy is not yet clearly understood. But
regarding the literature report, we can plausibly affirm
that the wound healing reaction is initiated by inhibiting
the proliferation of the microbial population. Further, in-
organic metallic NPs induce ROS and activate angiogen-
esis by downregulating 38MAPK/Akt/eNOS-dependent
pathway and upregulating key angiogenesis growth fac-
tors like vascular endothelial growth factor [VEGF] and
fibroblast growth factor [FGF] to accelerate wound heal-
ing. Henceforth, it is very essential to understand the
molecular mechanism of inorganic metallic NPs-
mediated wound healing process for developing metallic
NPs as an alternative for wound treatment. Therefore, it
is indeed to carry out extensive research to determine
the effect of metallic NPs in differing phases of wound
healing, toxicity, and biocompatibility to develop NPs as
therapeutic potential.

Anticancer activity of metallic nanoparticles

Cancer is a dreadful global disease causing major health
problems and mortality, accounting for 8.8 million
deaths worldwide in 2015 [128]. Metallic NPs have been
studied for their novel biological activity to induce au-
tophagy and promote cell death. Additionally, biological
metallic NPs are cytotoxic agents to fight against various
types of cancer. Some recent in vitro anticancer studies
of biological NPs are enlisted in Table 5.

There are three proposed mechanisms for the antican-
cer activity of biological NPs. Firstly, the apoptotic path-
way, which depends on an increased level of ROS which
leads to oxidative stress and DNA fragmentation in the
cancerous cell [141]. Secondly, interference of proteins/
DNA, resulting in cell chemistry functions. Thirdly, the
interaction of biological NPs to cell membranes makes
changes in the cell permeability and mitochondrial dys-
function [142, 143]. Kim et al. [144] demonstrated that
the activation of p38 MAPK and Caspase-3 at gene and
protein expression levels results in response to nanopar-
ticles. The general mechanism for anticancer activity
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Table 5 Anticancer activity of biological metal nanoparticles
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Biological agent used Nanoparticle Cell line IC5o value Reference
for synthesis
Marsilea quadrifolia Silver Human ovarian teratocarcinoma (PA-1) 4588 ug/ml and 52.015 pg/mL [25]
and lung adenocarcinoma (A549)
Morinda pubescens Silver HEP G2 (Human Epithelium cells of liver 937 pg/mL [129]
cancer
Nepeta deflersiana Silver Human cervical cancer cells (HelLa) 5 pg/mL [130]
Murraya koenigii Silver HT-29 colon cancer 26.05 pg/mL [131]
Cyanobacterium Nostoc sp.  Silver MCF-7 cells 27.5 pg/mL. [132]
strain HKAR-2.
Piper nigrum Silver MCF-7 and Hep-2 cells 52 mL, 54 pg/mL [133]
Ficus religiosa Silver A549 and Hep2 cells 1.9 pg/mL and 1.6 pg/mL [134]
Solanum xanthocarpum Gold HCT 15 human colon cancer - [135]
Streptomyces sp. Gold Hela 350 pg/mL [136]
Evolvulus alsinoides Palladium Human ovarian cancer A2780 cells - [137]
Gloriosa superb Platinum and MCF-7 (human breast adenocarcinoma 49.65 + 1.99% and 36.26 + 0.91% [138]
palladium
Barleria prionitis Platinum Human breast adenocarcinoma (MCF-7) - [139]
Paladium
Sargassum muticum Iron oxide Hela cells, MCF-7 cells, HepG2 cells, and 1.1 ug/mL (HepG2), 18.75 + 2.1 pg/mL [140]
nanoparticles human cell lines for leukemia Jurkat (MCF-7), 125 £ 1.7 ug/mL (Hela), and
64 + 2.3 pug/mL (Jurkat)
Albizia lebbeck Zinc oxide MDA-MB 231 and MCF-7 48.5, 48.7, and 60.2 ug/mL [107]
Costus pictus D. Don Zinc oxide DLA - [63]
medicinal
black bean extract Copper oxide Hela - [115]
Ficus religiosa Copper oxide A549 cells 200 pg/mL [127]

biological NPs concluded from various studies is given
in Fig. 4

The cytotoxic effect of silver NPs synthesized from
Panax ginseng fresh leaves (PgAgNPs) exhibited oxida-
tive stress in A549, MCF7, and HepG2 cancer cell lines
[145]. PgAgNPs inhibits the epidermal growth factor
(EGF) and enhances migration, with decreased mRNA
levels and phosphorylation of EGF receptors in A549
cells. Moreover, it modified the morphology of the cell
nucleus and increases apoptosis percentage; this effect
was linked to the stimulation of the p38 MAPK/p53
pathway. Therefore, up/downregulation of the EGFR/
p38 MAPK/p53 pathway might be the possible mechan-
ism of its anti cancer activity by PgAgNPs.

He et al [146] demonstrated in vivo and in vitro cyto-
toxicity of longan peel powder mediated silver NPs in
H1299 cells and in the mouse model. The antagonistic
effect of AgNPs was due to the inhibition of NF-«B ac-
tivity and decrease the expression of Bcl-2/caspase-3 and
increase the survivin expression. The apoptotic effect of
Ficus religiosa leaf extract-mediated copper oxide NPs
induce the generation of reactive oxygen species (ROS)
involving the disruption of mitochondrial membrane po-
tential [Aym] in A549 cells [147].

The gold NPs synthesized from Scutellaria barbata
treated in pancreatic cancer cell lines (PANC-1) demon-
strated an upregulated expression level of Caspase 3,
Caspase 9, Bax and downregulated the expression of Bid
and Bcl-2 [148]. The dose-dependent cytotoxicity of the
PdNPs synthesized from Evolvulus alsinoides spur the
production of (ROS) generation, followed by autophagy
and impairment of mitochondrial membrane potential
(MMP) [137].

The use of biological NPs is a blooming field in cancer
therapy due to their small size and large surface area en-
ables efficient drug delivery, tumor specificity, and
promising activity. Now, it is important to conduct re-
search using in vivo models for extending the in vitro
findings and to elucidate the mechanisms of biological
metallic nanoparticles for the advancement of anticancer
therapy.

Larvicidal activity of nanoparticles

Vector-borne diseases are caused by bacteria, parasites,
and viruses that are transmitted by vectors such as
mosquitoes, ticks, sandflies, flies, and fleas. Notably,
mosquitoes Aedes aegypti, Aedes albopictus, Culex qui-
quefasciatus, and Anopheles stephensi are the vectors
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that transmit diseases like dengue fever, chikungunya,
malaria, yellow fever, lymphatic filariasis, Japanese en-
cephalitis, and West Nile fever [149]. The prevalence of
vector-borne diseases in India is very high due to favor-
able climatic conditions transmitting the diseases expo-
nentially. Governmental agencies framework a layout
Pest management Program to control and mitigate the
mosquito population through a comprehensive approach
[150]. Various strategies have been developed to control
mosquito larvae and adult but the eradication of mos-
quitoes completely is a bottleneck factor for researchers.
Larvicides and adulticides are utilized routinely to dis-
rupt the growth of mosquitoes but adulticides are less
effective technique in mosquito control [151]. Larvicides
are an excellent agent that promotes the disruption of
larvae at their breeding sites drastically. Conventionally,
larvicides like synthetic insecticide dichlorodiphenyltri-
chloroethane [(DDT), organochlorines, pyrethroids, and
pyrethrins] carbamates and organophosphates, organo-
chlorine cyclodiene and phenylpyrazoles gave positive
results and effective to all kinds of mosquitoes at differ-
ent stages [152]. But howsoever, due to massive usage,
mosquitoes start to build up resistance against insecti-
cide. Moreover, insecticides also pose unwanted toxicity
to non-target organisms, human beings, and the envir-
onment. Considering the pitfalls associated with insecti-
cide, early researchers drive their focus to develop
botanical insecticides from plant sources. As a result,
plants Azadirachta indica, Nicotiana tabacum, Ocimum
basilicum, Cinnamomum osmophloeum and plant bases
oils have proved the potential as larvicides [153]. At the
present scenario, numerous plants and their derivatives

have been excelled as a botanical insecticide and some
of them are commercialized. As the progress of science
and technology, researchers drive their research by for-
mulating nano formulated herbal drugs. It is very indeed
at this juncture by combining plants and its products in
the nano module to counteract the larvicidal
populations.

Table 6 sums up the plant-mediated metallic nanopar-
ticles and their larvicidal activity. The NPs exhibited an-
tagonistic activity against the different instar larvae of
mosquitoes. Plant-mediated metallic nanoparticles dis-
played prominent activity in a dose-dependent manner.
Moreover, the effect of larvicidal activity of NPs is dir-
ectly proportional to the genus and species of mosqui-
toes, larvae stages, and plant moieties that coat the NPs,
size, shape, and charge [154]. All these factors govern
the larvicidal efficacy of NPs. The widely accepted pre-
cise mechanism behind the NPs toxicity is that they in-
duce oxidative stress in tissues of arthropods. Another
study concludes that NPs exert their toxicity by pene-
trating the cavity of the exoskeleton followed by inter-
action with sulfur from proteins or phosphorous from
DNA leading to rapid denaturation of enzymes and
organelles [155, 156]. Jiang et al. [157] also reported
that decrease in membrane permeability and disturb-
ance in proton motive force may also lead to impair-
ment of cellular function and death. Subsequently, to
shed light on the consequences of exposed NPs, Kali-
muthu et al. [158] reported that Hedychium coronar-
ium ]. Koenig rhizome-synthesized Ag NPs damaged
the midgut epithelial cells of A. aegypti revealed by
histopathological study. Sundararajan and Kumari
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S. No NPs Plant Species LCso Ref
1. Ag Curcuma zedoaria Culex quinquefasciatus 0.57 ppm [160]
2. Holarrhena Aedes aegypti ; Culex quinquefasciatus 5.53 ppm; 9.3 ppm [161]
antidysenterica (L) Wall.
3 Au Artemisia vulgaris L. Aedes aegypti 6247 ppm [159]
4. Chloroxylon swietenia DC Aedes aegypti 0423 ppm [162]
Anopheles stephensi 0.602 ppm
5. Cu Tridax procumbens Aedes aegypti 4.209 ppm [163]
6. CuO Artocarpus heterophyllus Aedes aegypti 5.08 ppm [164]
7. Zn0O Scadoxus multiflorus Aedes aegypti 34.04 ppm [165]
8. Zn0O Momordica charantia Anopheles stephensi 542 ppm [166]
Culex quinquefasciatus 4.87 ppm
9 Fe Ficus natalensis Aedes aegypti 359 ppm [167]
Anopheles stephensi
Culex quinquefasciatus
10. Ni Aegle marmelos Aedes aegypti 534.83 ppm [168]
Anopheles stephensi 595.23 ppm
Culex quinquefasciatus 520.83 ppm
11. Pd Cocos nucifera Aedes aegypti 259.24 ppm [169]
12. Se Clausena dentata Aedes aegypti 104.13 ppm [170]
Anopheles stephensi 240.71 ppm
Culex quinquefasciatus 99.60 ppm
13. Tio2 Morinda citrifolia Aedes aegypti 1862 ppm [171]
Anopheles stephensi 571 ppm
Culex quinquefasciatus 33.69 ppm
14. Mangifera indica Anopheles subpictus 7.72 ppm [172]
Culex quinquefasciatus 8.10 ppm

[159] observed that Artemisia vulgaris L. mediate gold
NPs damage the midgut, epithelial cell, and cortex of
A. aegypti with the accumulation of Au inside the
midgut region. In the above-reported studies, accumu-
lation of metals in the thorax and abdomen is a com-
mon phenomenon that occurred; this accumulation
leads to various complications like ROS generation
and cell death.

Antiviral activity of metallic nanoparticles

Another important research to be addressed by the re-
searchers is the antiviral properties of green nanomater-
ials. Viruses are one of the contagious agents causing
various diseases in humans, plants, and animals. In par-
ticular, the severity of viral diseases in human is panic
and cause detrimental effects in human beings [173].
Notably, viruses like influenza, hepatitis, herpes simplex
virus [HSV], and human immunodeficiency virus [HIV]
are life-threatening to humans. These viruses cause
pathologically complicated diseases and if left untreated
or vaccinated it will worsen or in some cases, death may
occur [174]. In the present scenario, numerous antibi-
otics identified from plant and microbial sources have
been developed and formulated and commercialized as

antiviral agents [175]. These drugs exert their mechan-
ism effectively, but prolonged administration of drugs
causes the virus to build up resistance mechanisms
[176]. In the crusade to develop fabricated nano drugs
for antiviral therapy, plant-based metallic nanoparticles
have open up the potential to combat viral diseases.
Among the metallic nanoparticles, silver NPs are
ranked top in antiviral NPs. This is due to the fact that
application of silver as an eye solution for the treatment
of conjunctivitis [177]. Later, silver NPs synthesized
using chemical methods were evaluated against HIV,
herpes, Influenza, and hepatitis virus [178]. These results
were clinically significant and pave the way for develop-
ing NPs as antiviral agents. Despite the facts, concerning
the toxicity of metallic nanoparticles through the
chemical methods, an alternative strategy should be
adopted. Recently, Haggag et al. [179] postulated the
green synthesized silver NPs of Lampranthus coccineus
and Malephora lutea and performed splendid antiviral
activity against HSV-1, HAV-10, and CoxB4 viruses. The
antiviral activity of silver NPs can plausibly confirm that
silver NPs bind with viral envelope glycoprotein and in-
hibit the process. Silver NPs integrate with the viral gen-
ome and also inhibit viral replication [178]. Though
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there are numerous reports on the antiviral activity of
metallic nanoparticles synthesized by chemical methods,
but until now, there are no scientific reports related to
the antiviral activity of plant-mediated metallic nanopar-
ticles except silver. Hence, it is indeed to explore the
possibilities of plant metallic nanoparticles to study the
antiviral activity.

Leishmanicidal activity of nanoparticles

Leishmaniasis is another important life-threatening dis-
ease caused by the parasite Leishmania transmitted by
the sandfly Phlebotomus species [180]. Pathologically,
Leishmaniasis can be classified based on severity and in-
tensity as visceral, cutaneous, and postkalaazar dermal
leishmaniasis, mucocutaneous leishmaniasis [181]. The
therapeutic efficacy of Leishmaniasis has relied on the
utilization of antileishmania drugs, but some drugs suffer
from resistance mechanisms like increased efflux mech-
anism, decreased drug concentration inside the parasite,
inhibition of drug activation, and inactivation of active
drug which hampers the drug activity [182].

Naturally, plants bear the active ingredients to perform
antagonistic activity against bacterial and viral infections.
Ullah et al. [183] synthesized silver NPs through the
chemical and biological method from the aqueous ex-
tract of Teucrium stocksianum and evaluated for antil-
eishmanicidal activity. The study outputs that both
chemical and biogenic NPs demonstrated strong antag-
onistic assay against Leishmania infantum promastigotes
with ICso value 30.71 + 1.91 ug/mL for biogenic AgNPs
and 51.23 + 2.20 pg/mL of chemically synthesized silver
NPs. Moreover, the infectivity of Leishmania parasites
(treated with chemical and biogenic AgNPs) on macro-
phages cells was observed by Giemsa staining in the in-
fected macrophages. By MTT assay, the study
resulted that chemical AgNPs exert high toxicity
while compared with biogenic AgNPs. Ahmad et al.
[184] reported the synthesis of gold NPs from an ex-
tract of Maytenus royleanus and evaluated against
Leishmania tropica promastigotes. The in-vitro assay
resulted that AuNPs drastically reduced the viability
of L. tropica in a shorter period. Likewise, ZnO NPs
were synthesized from Mirabilis jalapa leaf extract
were shown to eradicate the viability of the Leish-
mania parasite and cause a lethal toxic effect at a
concentration of 0.5 M [185]. Similarly, Rosmarinus
officinalis-mediated iron oxide NPs effectively inhib-
ited the viability of L. major in a dose-dependent
manner with an LCsq value of 350 pug/mL [186]. The
plausible mechanism antileishmanicidal activity of
NPs is hypothesized to be NPs binds with the cell
membrane and cause intracellular damage (mitochon-
dria) and inhibition of enzyme synthesis which
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consequently leads to high-level production of ROS
and trigger apoptosis.

Antioxidant activity

Free radicals are highly reactive unstable atoms or mole-
cules with outermost unpaired electrons generated by
reactive oxygen species (ROS). These are responsible for
the number of human diseases like atherosclerosis and
cancer including brain damage and chronic complica-
tions in the physiological system. The electronic config-
uration of metallic nanoparticles is ready to accept or
donate an electron to quench free radicals [187]. Recent
reports prescribe that biological NPs synthesized from
plants such as copper [ICso 500 pg/mL], copper oxide,
gold [ICs5q 50 pg/mLl], silver [IC5q 73.27 pg/mL], magne-
sium oxide [ICs5y 4.73 pg/mL], and zinc oxide [ICsq
127.74 pg/mL] [30, 68, 72, 188—190] shown a radical
scavenging activity with significant ICs, value. Antioxi-
dant activity of Albizia lebbeck stem bark extract-
mediated ZnO NPs was carried out using H,O, free
radical scavenging assay which revealed higher ICs,
values of 48.5, 48.7, and 60.2 pug/mL for 0.1 M, 0.05 M,
and 0.01 M ZnO NPs, respectively [111]. The result ob-
tained from the antioxidant activity study of Artemisia
abrotanum herb and MgO NPs synthesized using the A.
abrotanum indicated the high antioxidant activity shown
by MgO NPs [4.73 pg/mL] as compared to the herb
[6.28 pug/mlL] itself. Most of the studies are based on 1,1-
diphenyl-2-picrylhydrazyl (DPPH) assay while some
studies also include nitric oxide, hydrogen peroxide,
superoxide, and reducing power assays. The method of
synthesis, reducing biological material used for synthesis,
and capping agent acquired by nanoparticle play an
important role in the antioxidant activity of that
nanoparticle [191].

Toxicity

As the field of nanotechnology began to grow, the po-
tential toxicity of these novel materials is unveiling after
its use. Scientists and toxicologists were involved in the
safety and evaluation of NPs but very few reports are
available on the green NPs toxicity [192]. Butea mono-
sperma-mediated silver NPs had shown a therapeutic
index of 3.77 when tested over 24 h on human myeloid
leukemia (KG-1A) cells and in human peripheral blood
mononuclear cells (PBMC) [193]. Biological metallic
NPs synthesized from Abutilon inducum, Butea mono-
sperma, Gossypium hirsutum, Indoneesiella echioides,
and Melia azedarach are among the potential anti-
cancer agents with an acceptable therapeutic index as
their therapeutic index values were > 2.0 when tested on
both cancer cells and normal human cells [194].
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Silver NPs synthesized rapidly using sulfated polysac-
charide extract from Sargassum siliquosum, a brown alga
when given up to 2000 mg/kg did not cause mortality to
rats but caused minimal elevation of serum creatinine
and blood urea nitrogen [195]. However, silver NPs syn-
thesized using Ficus religiosa leaf extract when adminis-
trated in rats revealed a significant increase in serum
levels of AST, ALT, and LDH, TNF-a and IL-6 on day
29. These levels reverted to normal at the end of the
washout period on day 89. ICP-OES analysis revealed
the accumulation of silver in the liver, brain, and lungs
on day 29 with the respective concentrations of 4.77,
3.94, and 3.043 pg/g tissue. However, complete elimin-
ation of silver was observed on day 89. Histological ana-
lysis performed in vital organs indicated pathological
changes only in the liver which was also normalized after
89 days [136].

Rheder et al. [196] demonstrated the importance of per-
forming toxicological and ecotoxicological evaluations of
new NPs, since although they may provide the desired bac-
tericidal and anticancer effect, their toxicity could threaten
the survival of organisms. Althaea officinalis-mediated sil-
ver NPs cause oxidative stress followed by the increase in
CAT and decrease in GPx and GST even in the lower con-
centration and in almost all tissues. In this circumstance, it
seems to reflect an aggravation status due to reduced cell
protection ability to protect fish against ROS under stress
conditions caused by these NPs. Olive, mulberry, and fig-
mediated silver and sulfur have a significant effect on larvae,
pupae, and adult mortality and they have decreased larval
longevity significantly [197]. Sengottaiyan et al. [198] dem-
onstrated that the Solanum nigrum phyto-synthesized silver
NPs significantly improved the bodyweight loss in diabetic
rats. It also retrieved the total cholesterol and triglyceride
levels compared to the normal group for 21 days of admin-
istration. While Vasanth and Kurian [199] studied nephro-
toxicity of silver NPs prepared by chemical and green route
[aqueous extract of Desmodium gangeticum root] in rat,
proximal epithelial cell lines and renal mitochondria were
evaluated by oral administration of silver NPs [100 mg/kg]
to the Wistar rats. After 15 days, significant changes in the
renal architecture were observed in both receiving rats, sup-
ported by the urine and blood chemistry data. Further, ex-
posure toward renal epithelial cells and renal mitochondria
also confirm the toxic similarities between the silver NPs
synthesized from two routes.

Green-synthesized gold NPs from Curcuma mangga
(CM) were found to have good stability in physiological
media after 24 h of dispersion. It is also cytocompatible
with human colon fibroblast cells (CCD-18Co) and human
lung fibroblast cells (MRC-5). Hemocompatibility tests re-
vealed that these gold NPs were blood-compatible, with less
than 10% of hemolysis without any aggregation of erythro-
cytes. This study suggests the potential in employing a CM-
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extract-based method in the preparation of gold nanoparti-
cles for anticancer diagnosis and therapy [200].

A systemic study on the accumulation of Helianthus
tuberosus-mediated gold NPs in rats revealed that gold
element concentration accumulated in the liver, lung,
kidney, and spleen. The study showed a that the lung is
the major target organ and further suggests that endur-
ing administration could lead to organ damage as ma-
jorly observed in lung tissue. This study suggests the
necessity of complete in vivo toxicity analysis, before
introducing NPs in biomedical applications [201].

At present, there are very few reports of biocom-
patibility study of biological metal nanoparticles on
animal models that have been available [202, 203].
The atomic economy of biological NPs is controlled
by the reduction efficiency of plant molecules that
affect the number of surface atoms, single or agglom-
erated form, uncapped or partially capped or fully
capped, morphology, and possibility of unreduced me-
tallic ions these all factors, in turn, affects the cyto-
toxicity of biological NPs during toxicity study of
biological NPs. The quick, efficient, economic proto-
col needs to develop toxicity study NPs [198].

Other applications of metallic nanoparticles

With the growing awareness in nano-based themes and ap-
plications, the nano-based sensor is occupying an eminent
role in scientific studies. Metal nanoparticles are preferen-
tially used in the transducer component of sensors; that too
silver, gold, and platinum is widely used. Though reports
on nanosensors are practiced in glucose detection, immu-
nosensors, aptamers. But here, the green metallic nanopar-
ticles as a nano-sensor are utilized in very few studies only.
Alex et al. [204] reported the sensitivity of biologically syn-
thesized silver nanoparticles and compared their sensitiv-
ity with others and concluded that biological silver
nanoparticles showed high sensitivity which can be
employed in various cost-effective and eco-friendly
sensor devices applications. They have demonstrated
the sensitivity of silver nanoparticles toward MCZ
fungicide with the 39.1 nm/mM. In another study,
the sensitivity of gold nanoparticles synthesized using
C. nudiflora plant extract was used for the detection
of HCG hormone in pregnant women urine with
100% accuracy [205]. Similarly, gold nanoparticles can
be employed as a biosensor to determine the glucose
content in commercial glucose injections was success-
fully achieved and performed [206].

Future research and outlook of metallic
nanoparticles

With the inception of NPs over a half-century, the per-
ception of NPs is still now not clearly understood by the
researchers. Green chemistry philosophy warrants the
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synthesis of NPs as an eco-friendly alternative for con-
ventional methods of NPs synthesis. Moreover, the green
chemistry approach of NPs synthesis stands on the view-
point that NPs synthesis should be a benign process,
utilization of natural resources, avoiding usage of haz-
ardous materials, free from toxicity and cost inexpensive.

Hitherto, numerous reports have documented the
synthesis of metal/metal oxide NPs using the re-
sources plants, bacteria, fungi, yeast, and actinomy-
cetes. Among the natural resources, plants are widely
employed for NPs synthesis owing to the ethnobotan-
ical value, active ingredients, easily available, simpli-
fied process, and cost inexpensive. Despite the facts,
there are a lot of key issues and technical challenges
to be addressed by the researchers to develop green
NPs as a successful one.

Physical and chemical-based methods of NPs synthesis
produce uniformity, homogeneity, and mono NPs but in
biological-based, it is questionable.

The following are the key issues about green NPs syn-
thesis and development:

> Lack of holistic knowledge to develop green NPs
using plants entity.

> The logical strategy should be adopted to develop
green NPs with discrete size and shape.

> Uniformity of NPs should be ensured. Plant-
mediated NPs produce more variant size, shape, and
structure.

> Conversion of salt to ion is the main challenge to be
addressed. In plant-mediated synthesis, the maximum
conversion of salt to ion should be accomplished.

> The precise role of plant molecules in NPs should
be elucidated. These molecules act as a reducing and
stabilizing agent.

> Whether the NPs fabricated are homogenous since
there is a difference in substance [biological resources]
utilized for synthesis.

> The transfer of technology processes should be
implemented to fabricate NPs from the lab to the
industrial level.

> Industrial production of NPs should have come with
a benign method focusing on ease of synthesis,
utilization of resources, particle generation
[monodispersity, uniformity, reproducibility], waste
management, and toxicity perspective.

> It is a distant dream to produce NPs completely free
from toxicity. In our review also, we explain the
potential threat of toxicity of plant-mediated metallic
nanoparticles to humans and the environment. Hence-
forth, at least researchers should be directed to fabri-
cate NPs with minimal toxicity.

> It is also imperative to understand the
ecotoxicological perspective of metallic NPs for
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environmental applications. Studies on the aquatic
ecosystem, various habitats on niche areas, nontarget
organisms should also be carried out.

Another important and most serious concern to be
addressed is the utilization of NPs in biomedical ap-
plications. Infectious diseases are caused by bacteria,
viruses, fungi, and parasites. In practice, routine usage
of antibiotics led to the development of resistance
mechanisms by microbes. In some cases, these antibi-
otics also create toxicity to humans and they are non-
selective too.

We are living in an exciting age where these size de-
pendencies offer both challenges and opportunities, and
that, if we take the appropriate approach, this will give
us more room for discoveries and applications.

Conclusion

Herein, we have comprehensively provided the recent
trends in the synthesis of metallic nanoparticles
through plants only. The present review aims to the
concept and demands the need for a synthesis of
metallic nanoparticles from various plants. Moreover,
we strongly focused on the challenges encountered in
the synthesis of nanoparticles and characterization
convincingly. Further, we advocated the applications
of metallic nanoparticles such as antimicrobial,
antioxidant, anticancer, anti-inflammatory,
healing, larvicidal, and leishmanicidal activities of me-
tallic nanoparticles in context with recent findings. Fi-
nally, we highlighted the future perspective of metallic
nanoparticles with strong recommendations and ne-
cessitate the changes to be adopted for developing
metallic nanoparticles as a safe biocompatible agent.
Overall, considering all the above scientific merits and
demerits of metallic nanoparticles, researchers tune
their research toward metallic nanoparticles from
plants by ease process and develop such kinds of me-
tallic nanoparticles as theranostics for various infec-
tious and noninfectious diseases.

wound
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