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1  |  INTRODUC TION

Real-time release of pharmaceuticals (small molecules and biologics) 
requires the ability to use in-process data to evaluate and ensure 
the quality of the final product (Shintani, 2016). Within biologics, 
determining sterility and measuring microbial contamination are 

especially important (Jiang et al., 2017). Traditional United States 
Pharmacopeia microbial testing methods depend primarily on the 
culturing of microorganisms to determine bioburden and sterility 
(England et al., 2019; Shintani, 2016). Since culturing and culture-de-
pendent methods are slow (1–21 days), they cannot be used for re-
al-time release testing. Nucleic acid-based technologies (polymerase 
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Abstract
Deep learning has the potential to enhance the output of in-line, on-line, and at-line 
instrumentation used for process analytical technology in the pharmaceutical industry. 
Here, we used Raman spectroscopy-based deep learning strategies to develop a tool 
for detecting microbial contamination. We built a Raman dataset for microorganisms 
that are common contaminants in the pharmaceutical industry for Chinese Hamster 
Ovary (CHO) cells, which are often used in the production of biologics. Using a convo-
lution neural network (CNN), we classified the different samples comprising individual 
microbes and microbes mixed with CHO cells with an accuracy of 95%–100%. The 
set of 12 microbes spans across Gram-positive and Gram-negative bacteria as well as 
fungi. We also created an attention map for different microbes and CHO cells to high-
light which segments of the Raman spectra contribute the most to help discriminate 
between different species. This dataset and algorithm provide a route for implement-
ing Raman spectroscopy for detecting microbial contamination in the pharmaceutical 
industry.
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chain reaction, next-generation sequencing) have reduced the 
time for analysis to the order of hours but they still require sam-
ple preparation and thus, remain invasive methods of detection. 
Spectroscopic methods, such as Raman spectroscopy, on the other 
hand, are non-invasive, rapid (minutes), and versatile (can detect a 
variety of microorganisms) (Maruthamuthu et al., 2020).

Although incidents of microbial contamination are rare, they can 
be extremely costly. For example, bioreactors can be operated at 
scales of about 15,000-L scale with media costs of $8/L, and thus, 
single contamination could lead to a loss of around $120,000 (Kelley, 
2009; Shintani, 2016). Thus, detecting contamination promptly and 
monitoring critical control points are essential for real-time release. 
Recently, a proof-of-concept rapid microbiological screening sys-
tem was able to detect Escherichia coli spiked into Chinese Hamster 
Ovary (CHO) cell line culture within three hours by using filtration 
(to separate CHO cells), microfluidics (to generate nanoliter-sized 
droplets), and an indicator dye (to measure the doubling time of bac-
teria) (Surrette et al., 2018). Since the method requires filtration and 
growth of bacteria, it is still limited to at-line or off-line use.

Raman spectroscopy measures the inelastic scattering of light 
due to molecular vibrations. It is possible to distinguish phenotypes 
of microorganisms based on their molecular composition (Ho et al., 
2019). Since the differences in the Raman spectra of different mi-
crobes can be subtle, the use of deep learning algorithms helps dis-
tinguish these differences. A recent demonstration of this approach 
on human pathogens achieved an accuracy of about 82% for distin-
guishing isolates of microbes (Ho et al., 2019).

In the current work, we apply Raman spectroscopy and deep 
learning to pharmaceutical contaminants and demonstrate detection 

and discrimination of 12 different microorganisms (encompassing 
Gram-positive bacteria, Gram-negative bacteria, and fungi listed in 
Table 1). We have used a TeflonTM-coated polished stainless-steel 
substrate (Figure 1) to obtain high signal-to-noise ratios. We also 
demonstrate discrimination of microbial contamination in a mixture 
with CHO cells. We achieve accuracies in the range of 95%–100% 
for determining microbial identity (Figure 2).

2  |  MATERIAL S AND METHODS

Microorganisms and growth conditions: The list of microbes con-
taminating the pharmaceutical industry was identified from the 
FDA’s manual of pharmaceutical microbiology, and we also included 
a few environmental microbial sources found in the pharmaceutical 
industry (Cobo & Concha, 2007; Deal et al., 2016; 2015; Pacheco & 
Pinto, 2010; Salaman-Byron, 2019) The list of microbes/cells used 
in the study and media used for culturing these strains are listed in 
Table 1.

Raman substrate fabrication and sample preparation: The sub-
strates (21 mm × 21 mm) were made from polished stainless steel 
with alumina and were coated with a thin layer (50  nm) of Teflon 
using spin coater as described previously (Zhang et al., 2003) 
(Figure 1). The surface characterization of the substrates were per-
formed with the Hitachi S-4800 field emission scanning electron 
microscope (SEM). The microbes were cultured overnight to obtain 
108 cells/ml (as measured by optical density at 600  nm of 0.1 for 
bacteria, and 0.6 for fungi). The overnight grown cultures were fixed 
with 2.5% of glutaraldehyde and washed with water to remove the 

TA B L E  1 List of microbes/cells used in this study.

No Name Source Growth media
Growth 
condition Reference

1. Aspergillus brasiliensis ATCC 16404 Potato dextrose broth Aerobic, 25°C FDA (2015)

2. Bacillus cereus ATCC 10876 Nutrient broth Aerobic, 30°C Deal et al. (2016)

3. Bacillus subtilis ATCC 6633 Brain heart infusion broth Aerobic, 37°C FDA (2015)

4. Candida albicans ATCC 10231 Yeast extract peptone 
dextrose (YPD media)

Aerobic, 25°C FDA (2015)

5. Clostridium sporogenes ATCC 19404 Trypticase Soy Broth with 
defibrinated sheep blood

Anaerobic, 37°C FDA (2015)

6. Escherichia coli ATCC 8739 Nutrient broth Aerobic, 37°C FDA (2015)

7. Micrococcus luteus ATCC 10240 Trypticase Soy Broth Aerobic, 30°C Pacheco & Pinto (2010)

8. Propionibacterium acnes ATCC 29399 Tryptone Yeast glucose 
media (TYG)

Anaerobic, 37°C Salaman-Byron (2019)

9. Pseudomonas aeruginosa ATCC 9027 Trypticase Soy Broth Aerobic, 37°C FDA (2015)

10. Salmonella enterica ATCC 14028 Trypticase Soy Broth Aerobic, 37°C FDA (2015)

11. Staphylococcus aureus ATCC 6538 Trypticase Soy Broth Aerobic, 37°C FDA (2015)

12. Staphylococcus epidermis ATCC 35984 Trypticase Soy Broth Aerobic, 37°C Cobo and Concha (2007)

13. CHO cells ATCC CCL−61 F−12 K medium with 10% 
Fetal bovine serum (FBS)

Aerobic, 37°C
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debris and diluted to a concentration of 105 cells/ml for Raman data-
set development. The CHO cells were cultured up to 80% confluent 
in T75 cell culture flask, and the cells were trypsinized and processed 
for Raman spectroscopy as mentioned by Rangan et al. (2018). 105 
cells/ml of CHO cells were measured using the Invitrogen Countess™ 
Automated Cell Counter. The prepared cells/microbes were placed 
in the substrate using a micropipette (5 µl) on the substrate and dried 
for 5 min. Once dry, the sample forms a circular spot on the substrate 
with a diameter of about 2 mm. The dried cells on the substrate are 
used to collect the Raman spectra for individual species of microbes/
cells. Raman measurements were performed with a customized, mi-
cro-Raman system with an argon-ion laser (532 nm, 20 mW power 
at the sample) with thermoelectrically cooled charge-coupled de-
vice detector (1,340 pixels × 4,000 pixels) mounted on a 300-mm 
focal length imaging with a working distance of 20 mm as described 
previously (Davis et al., 2012). The spectra were collected on three 
different days (biological replicates) and 10 different points (tech-
nical replicates) on the 2-mm spot. At each point, 200 scans were 
obtained; a total of 2,000 scans were obtained for each microbe/
cell every day (10 points × 200 scans/point = 2,000 scans). These 
6000 spectra were used for the deep learning-based analyses. The 
Raman spectra signal-to-noise ratio was 1,000:1, and there is almost 
no interference of the background (Figure A1).

Deep learning-based classification between the potential micro-
bial contaminants: The architecture for deep learning is composed 
of the following three layers: (a) initial convolution layer, (b) eight 

residual blocks, and (c) fully connected layer (Deep Residual Learning 
for Image Recognition, 2016). The convolution layer is composed 
of a kernel size of 7 and stride of 2. All the residual blocks consist 
of kernels with a size of 3 and strides of 1 and 2 (Deep Residual 
Learning for Image Recognition, 2016). The convolution layer pro-
ceeds with the batch normalization layer (Ioffe & Szegedy, 2015), 
and ReLU (Rectified Linear Unit) is used as a non-linear function. 
The residual blocks contain a shortcut connection between input 
and output, which enhances the training stability and addresses the 
problem of degradation in the deep neural network (Deep Residual 
Learning for Image Recognition, 2016).

The output of the model is a 1-d (Rd, R ∈ [0, 1]) vector containing 
the probability distribution over all the classes of microbes/cells. To 
train the model, we used Adam optimizer with betas = (0.9, 0.999), 
and the learning rate is set to 0.001. The factor of 0.1 decays the 
learning rate if the accuracy on the validation set reaches a plateau 
during training (Kingma & Ba, 2017). To train the model, we use 
5-fold leave-one-out cross-validation (LOOCV) method to split the 
collected dataset into training and validation sets. In this method, 
the reference dataset is randomly split into five groups, and in each 
round of training, one group is held out to be used as the validation 
set and the remaining data are used as the training set. This process 
is repeated five times to ensure that all the samples fall into the vali-
dation set once. The performance of the model was evaluated on the 
individual class scale to form a confusion matrix. Furthermore, using 
Grad-CAM++, 2018, we developed a saliency map for each sample 

F I G U R E  1 Schematic of a workflow to identify contamination using deep learning strategy.
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that shows the attention map of each microbe/cell with the Raman 
spectra. With this feature, we can explain how the deep learning 
model chooses a class for an arbitrary input by providing the corre-
sponding attention map.

3  |  RESULTS AND DISCUSSION

We used the convolution neural network (CNN) as a deep learning 
strategy to classify the microbial contaminants (and CHO cells) rel-
evant to the pharmaceutical industry. The CNN consists of multi-
ple hidden convolutional layers. In each layer, a certain number of 
filters convolve over the input map and abstract it into the feature 
map, which is passed to the next layer. Each layer extracts a pat-
tern (which is determined during the optimization process) in the 
input data and passes the resulting feature maps to the next layer to 
search for higher-level patterns. The final output is passed into a fully 
connected layer that converts the extracted feature maps into the 
probability distribution over various classes (Krizhevsky et al., 2012). 
In our study, the input layer is Raman spectroscopy data obtained 
from different samples, and the output is the probability distribution 
over the 16 classes of samples (12 microbes, 1 CHO cell, 3 mixtures 
of CHO cells and microbes to represent Gram-positive bacteria, 
Gram-negative bacteria, and fungi). To evaluate the multi-class clas-
sification model, we use a confusion matrix shown in Figure 2. In this 

matrix, the vertical axis denotes the actual classes of samples, and 
the horizontal axis represents the predicted classes. In this study, we 
classified the samples into 16 categories. Using the confusion matrix, 
we can evaluate the performance of the model on every single class 
and learn about the type of microbe where the model has the weak-
est capability in recognition. In our study, the model has the lowest 
accuracy for Salmonella enterica that is misclassified as Escherichia 
coli in 4.45% of the cases. On the other hand, the model has very 
high accuracy in detecting the difference between microbes and mi-
crobes mixed with CHO cells. According to the confusion matrix, the 
average accuracy of the model is 98.19 ± 0.55% (the standard devia-
tion is calculated over the 5 splits of training and validation sets in 
the LOOCV approach).

The attention map helps explain the mechanism behind the clas-
sification. To explain the internal functionalities of proposed CNN, 
we use the recently developed Grad-Cam++ method (Grad-CAM++, 
2018). This method uses a linear combination of positive partial 
derivatives of class scores for last convolutional layers features as 
weights to provide the attention map of particular class labels. The 
resulting attention map helps us understand the regions that are im-
portant for CNN to predict the class of input data. In this case, we can 
identify the range of wavenumbers in spectral data of species that 
are significant in categorizing them, as shown in Figure 3. According 
to the attention maps for various species, we notice that any pat-
terns after the largest peak in spectral data (2,850–3,050 cm−1) do 

F I G U R E  2 Confusion matrix from the developed neural network for the classification of microbes using the Raman dataset. The gray 
background indicates the expected true positive results.
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not have any significance for the model, and CNN focuses mostly on 
a range of wavenumbers before the largest peak, which is around 
400–2,850 cm−1 in our study. This range is slightly wider than previ-
ously published work on Raman spectroscopy in a similar application 
where the authors had used the spectra in the range of approxi-
mately 450–1,800 cm−1 (Ho et al., 2019).

Important features of Raman spectra help distinguish microbial 
contaminants. The Raman spectra were collected in a wide range of 
100–6,000 cm−1 to avoid missing any minute variations within the 
different microbes. We collected 10 technical replicates by measur-
ing the same dried sample from different points on the substrate 
(with 200 scans per point) and three biological replicates by repeat-
ing the experiment on three different days for each species of inter-
est. The average (bold lines) of 6000 spectra/sample class of all the 
microbes/cells is depicted in Figure 3 where shaded regions indicate 
standard deviations.

The Raman spectra of all the microbes and CHO cells have 
prominent peaks of nucleic acids (1,575, 1,481, 812, 783 cm−1), pro-
teins (1,002 cm−1), and lipids (1,658, 1,448 cm−1) (Ren et al., 2017; 
Teng et al., 2016). A strong Raman shift found in all the microbes/
CHO cells is around 2,850–3,050 cm−1. This region is found to be a 
non-specific organic >CH2 and –CH3 stretching modes (Naja et al., 
2007). Though a subtle difference can be observed between the 
spectra visually, high-throughput analysis requires an automated 
tool for discrimination (Ho et al., 2019). Thus, CNN helped to classify 
the microbes and the CHO cells and to highlight which parts of the 
spectra had the most impact on discrimination between classes. We 
also observed that mixtures of CHO cells and microbes presented 
unique spectra that were different from those of pure components, 
which is consistent with published observations with polymicrobial 
mixtures (Kotanen et al., 2016).

Although Raman spectroscopy typically suffers from low signal-
to-noise ratios, here, the use of a polished stainless-steel substrate 
(Figure 4) has enabled the concentration of the bacteria and reduc-
tion of background noise. The same substrate has been used in the 
past for detecting proteins at levels as low as 1 fmol (Zhang et al., 
2003).

4  |  CONCLUSIONS

Based on the results presented in the current work, the use of 
Raman spectroscopy has the following four advantages over other 
rapid microbial testing methods in the pharmaceutical industry: 
(a) It can distinguish between several different types of microbes 
(spanning over Gram-positive bacteria, Gram-negative bacteria, and 
fungi as demonstrated in Figure 2), (b) it can distinguish between 
microbes and CHO cells in a mixture (as shown in Figure 2) and thus, 
does not require a physical separation or filtration of the cell types 
before detection, (c) when a small number of scans are used, it is 
non-destructive, and thus, the samples could be used for culturing or 
sequencing if needed for tracing the contaminant, and (d) collecting 
spectra require less than a minute, and thus, the technique could be 
used at-line in the production plant.

The use of CNN and attention mapping enables the following 
three advances: (a) high-accuracy classification despite only subtle 
differences between different classes, (b) when a training set has 
been incorporated, classification is rapid (in seconds), and (c) high-
lighting which parts of the spectra are relevant to classification helps 

F I G U R E  3 The attention map and Raman spectra for 
classification of microbes, CHO cells, CHO cells with Gram-
negative bacteria, CHO cells with Gram-positive bacteria, and CHO 
cells with fungi. The bold blue line indicates average spectra (6000 
scans), and the shaded area around the bold blue line indicates 
standard deviation. The heatmap (yellow-orange) indicates the 
importance of the different segments of the spectra according to 
the attention map. A. Aspergillus brasiliensis, B. Bacillus cereus, C. 
Bacillus subtilis, D. Candida albicans, E. Clostridium sporogenes, F. 
Escherichia coli, G. Micrococcus luteus, H. Propionibacterium acnes, 
I. Pseudomonas aeruginosa, J. Salmonella enterica, K. Staphylococcus 
aureus, L. Staphylococcus epidermis, M. CHO cells. N. CHO cells and 
Aspergillus brasiliensis, O. CHO cells and Bacillus cereus, P. CHO cells 
and Staphylococcus aureus.
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understand the reasoning behind the classification (instead of using 
a completely black-box approach).

The Raman spectra also show differences in fluorescence among 
microbes. Since these experiments were repeated on multiple days, 
the fluorescent signals also seem to be intrinsic to the microbes and 
help distinguish different species. Yet, there are also subtle Raman 
peaks that are highlighted by the heat map which help with differen-
tiation as well (e.g., panels E and F in Figure 3).

The key limitations of the current study are as follows: (a) We 
used a high concentration of cells (105 cells/ml) to show proof-of-
concept, (b) we dried the cells down before detection, and (c) we 
fixed the cells using glutaraldehyde before detection (due to con-
cerns of biosafety). Further studies are needed to demonstrate the 
feasibility of our method when applied to low microbial concentra-
tion in high (and/or variable) CHO cell concentrations.

In future studies, we aim to improve the sensitivity of Raman 
spectroscopy by using microfluidics and acoustic concentration. We 
also aim to detect the cells directly in a liquid sample to simplify the 
process. Since Raman spectroscopy has previously been used to de-
tect single bacterial cells (Xie et al., 2005), we aim to build a highly 
sensitive and specific method by leveraging Raman spectroscopy 
and deep learning. Also, it will be important to incorporate quanti-
fication of the microbial contamination (potentially by incorporating 
internal standards) so that the techniques can be applied to monitor-
ing contamination in bioreactors. Our current work serves as step-
ping stones for developing sensors for PAT and enabling a real-time 
release of biologics.
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APPENDIX 1 .

Figure A1 The Raman spectra signal-to-noise ratio between the 
substrate and E. coli (ATCC 8739).


