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Abstract

Neuroblastoma arises from sympathoadrenal progenitors of the neural crest and expression of the 

neurotrophin receptor TrkB and its ligand, brain-derived neurotrophic factor (BDNF) is correlated 

with poor prognosis. Although activated TrkB signaling promotes a more aggressive phenotype in 

established neuroblastoma cell lines, whether TrkB signaling is sufficient to transform neural crest 

derived cells has not been investigated. To address the role of TrkB signaling in malignant 

transformation, we removed two immunoglobulin-like domains from the extracellular domain of 

the full length rat TrkB receptor to create a ΔIgTrkB that is constitutively active. In the 

pheochromocytoma-derived cell line PC12, ΔIgTrkB promotes differentiation by stimulating 

process outgrowth; however, in the rat neural crest derived cell line NCM-1, ΔIgTrkB signaling 

produces a markedly transformed phenotype characterized by increased proliferation, anchorage-

independent cell growth, anoikis resistance, and matrix invasion. Furthermore, expression of 

ΔIgTrkB leads to up-regulation of many transcripts encoding cancer-associated genes including 

cyclind1, twist1, and hgf, as well as down-regulation of tumor suppressors such as pten, and rb1. 

In addition, ΔIgTrkB NCM-1 cells show a 21-fold increase in mRNA for MYCN, the most 

common genetic marker for a poor prognosis in neuroblastoma. When injected into NOD SCID 

mice, control GFP NCM-1 cells fail to grow while ΔIgTrkB NCM-1 cells form rapidly growing 

and invasive tumors necessitating euthanasia of all mice by 15 days post injection. In summary, 

these results indicate that activated TrkB signaling is sufficient to promote the formation of a 

highly malignant phenotype in neural crest derived cells.
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Introduction

Neuroblastoma, a pediatric malignancy arising from sympathoadrenal precursors from the 

neural crest, is a cancer typified by its heterogeneity of disease. Disease course in 

neuroblastoma can range anywhere from patients presenting with metastatic disease that will 

spontaneously regress with support treatment alone (stage 4S), to localized favorable 

tumors, to cases of aggressive neuroblastoma, in which children will often relapse following 

treatment despite the most intensive chemo- and adjuvant therapy (1).

This heterogeneity in neuroblastoma tumor properties is correlated with a number of 

different factors including Trk receptor expression (2). Trk receptors are important in normal 

sympathetic development; for example, TrkA, the high affinity receptor for nerve growth 

factor (NGF), promotes target-dependent survival of sympathetic neurons by preventing 

programmed cell death (3, 4) and neuroblastoma tumors that express TrkA have a favorable 

prognosis (5). In contrast, many MYCN amplified, poor prognosis neuroblastomas express 

TrkB, resulting in tumors that are often highly aggressive and eventually fatal (6). Because 

TrkB promotes plasticity, differentiation and survival of primary neurons, the aggressive 

phenotype correlated with TrkB expression was puzzling; however, we discovered that TrkB 

is transiently expressed in sympathetic progenitors prior to the onset of TrkA expression, 

and when stimulated with BDNF, the TrkB expressing cells proliferate in cell culture (7, 8) 

and in vivo (Straub and Nishi, unpublished observations).

An important question is whether TrkB expression is a marker of poor prognosis, or whether 

active TrkB signaling is directly responsible for the aggressive nature of poor prognosis 

neuroblastoma. Supporting a causal role for TrkB signaling, concomitant expression of full 

length TrkB and BDNF leads to autocrine signaling enhancing tumor cell survival and 

invasiveness (9), while expression of a truncated TrkB isoform lacking the tyrosine kinase 

domain is commonly found in more benign and differentiated tumors such as 

ganglioneuroblastomas (10). Furthermore, treatment of TrkB-expressing SMS-KCN 

neuroblastoma cells with BDNF enhances cell survival in serum free media (11). Similarly 

BDNF treatment of SH-SY5Y cells either transfected with TrkB or induced to express TrkB 

by retinoic acid have enhanced survival in conditions of limited growth factors (9, 12), 

increased resistance to chemotherapeutics (13–15), increased production of angiogenic 

factors (16, 17), and enhanced invasion (9). Therefore, TrkB signaling contributes to the 

aggressiveness of poor prognosis neuroblastoma, but it is still unknown whether TrkB 

signaling alone can transform cells of the neural crest lineage.

In order to determine if constitutively active TrkB signaling is sufficient to transform cells, 

we created a mutant form of the TrkB receptor by removal of two immunoglobulin-like 

ligand binding domains in the extracellular portion of the receptor. This construct is 

constitutively active and, when stably transfected into a normal neural crest-derived cell line 

NCM-1, promotes a highly malignant phenotype in vitro and in vivo.
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Results

Removal of two immunoglobulin-like domains renders TrkB constitutively active

Previous studies have shown the TrkA tyrosine kinase receptor can be rendered 

constitutively active by removal of the two immunoglobulin-like (Ig-like) domains in the 

extracellular region of the receptor (18). Therefore, we created a similar construct (ΔIgTrkB; 

Figure S1) and stably transfected HEK293 cells with ΔIgTrkB and full length wild type 

(WT) TrkB. Expression of both types of receptor were confirmed (Figure 1a). A marked 

increase of phosphorylated Erk 1/2 is observed when WT TrkB HEK293 cells are treated 

with BDNF and ΔIgTrkB HEK293 cells (Figure 1a) albeit at significantly lower levels when 

compared to the BDNF-stimulated WT TrkB (Figure 1b). Therefore, we tested whether this 

level of constitutive signaling by ΔIgTrkB was sufficient to promote downstream biological 

effects.

ΔIgTrkB promotes neurite outgrowth in PC12 cells

PC12 cells are a well-known model of nerve growth factor (NGF) induced neuronal 

differentiation via TrkA (19, 20), and TrkB transfected PC12 cells differentiate in response 

to BDNF (21). PC12 cells were transiently transfected with ΔIgTrkB or GFP control 

construct, and two days later treated with or without 7sNGF (1μg/mL). After 6 days, cells 

were fixed and stained for either TrkB or GFP to identify transfected cells. Cells transfected 

with ΔIgTrkB show a 6-fold increase in the number of neurite bearing cells over GFP 

transfected cells in the absence of NGF (Figure 2a–c). The ΔIgTrkB-induced neurite 

outgrowth is equivalent to that of NGF through TrkA as there is no difference in the number 

of neurite bearing cells between Δ IgTrkB or GFP transfected cells in the presence of NGF 

(Figure 2d).

ΔIgTrkB enhances proliferation in the neural crest derived cell line NCM-1

NCM-1 is an immortalized, but normal multipotent cell line with the ability to generate 

sympathoadrenal precursors (22). To determine if constitutive TrkB signaling promotes 

proliferation or differentiation in NCM-1 cells, we transfected cells with ΔIgTrkB using a 

PiggyBac transposase/transposon vector (pmGenie 3) that integrates the desired insert into 

the host chromosome followed by inactivation of the transposase (23). Stable ΔIgTrkB 

NCM-1 transfectants grow to confluency more rapidly than untransfect (CONT) NCM-1 

cells. To quantify this apparent increase in proliferation, cells were counted after various 

times in cell culture by measuring uptake of the vital fluorescent dye calcein AM (24). We 

noted a 2.5-fold increase in cell number after 4 days in ΔIgTrkB NCM-1 cells compared to 

CONT NCM-1 cells (Figure 3a). While constitutively active TrkA is transforming, full 

length (WT) TrkA plus NGF promotes differentiation (25); therefore, we compared the 

growth rate of WT TrkB NCM-1 cells with or without BDNF. As seen in Figure 3b, the 

growth rate of WT TrkB NCM-1 cells is enhanced by the presence of BDNF. Thus, ligand 

induced activation of WT TrkB also enhances proliferation as does the ΔIgTrkB. 

Additionally, treatment with the pan-Trk kinase inhibitor K252a abolished ΔIgTrkB-

mediated proliferation, resulting in calcein AM fluorescence equivalent to CONT NCM-1 

cells (Figure 3c) suggesting that TrkB kinase activity is required for the observed enhanced 

proliferation. In order to confirm that the enhanced proliferation did not arise from an 
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insertion of our construct into a tumor suppressor, five additional parent lines were 

established that all show a significant increase in cell number after 4 days in vitro (Figure 

S2). Further supporting the enhanced proliferation, western blot analysis for the proliferation 

markers, phosphorylated histone H3 and cyclin D1 kinase show significant increases in 

ΔIgTrkB NCM-1 compared to CONT NCM-1 cells (Figure S3). Therefore, constitutive 

signaling through ΔIgTrkB promotes an enhanced rate of growth in CONT NCM-1 cells.

ΔIgTrkB transforms NCM-1 cells

Enhanced proliferation alone is not sufficient to consider a cell transformed. Another feature 

common to transformed cells is the loss of requirement for attachment to a surface to divide, 

a property known as anchorage independent cell growth (26). To determine if ΔIgTrkB 

expression confers anchorage independent cell growth to NCM-1 cells, cells were cultured 

suspended in soft agar (Figure 4). While CONT NCM-1 cells failed to grow colonies in soft 

agar regardless of the presence of BDNF (Figure a,b), ΔIgTrkB NCM-1 cells grow many 

colonies whether or not BDNF is present (Figure 4c,d,g). In contrast very few colonies are 

formed by WT TrkB cells in the absence of BDNF (Figure 4e,g) but many are formed when 

WT TrkB NCM-1 cells are stimulated by BDNF (Figure 4f,g). Interestingly the number of 

colonies formed mirrored the level of phospho-ERK activation (compare Figure 1b to 4g). 

Furthermore, although ΔIgTrkB NCM-1 cells formed fewer colonies, the colonies that 

formed appeared larger than those formed by WT TrkB in the presence of BDNF (compare 

Figure 4d to 4f).

Another feature related to anchorage independent growth is the ability of transformed cells 

to survive when detached from the cell surface (27). Normally, when cells grown in culture 

detach, they undergo anoikis, or detachment induced apoptosis. To determine if ΔIgTrkB 

allows NCM-1 cells to become anoikis resistant, the number of live cells in the medium 

collected from transfected and untransfected cells was quantified (Figure 4h). We observed a 

4-fold increase in the number of live cells in the media from ΔIgTrkB NCM-1 cultures 

compared to CONT NCM-1 (p < 0.05, Figure 4d), indicating ΔIgTrkB promotes anoikis 

resistance in NCM-1 cells.

Another important characteristic of malignant transformation is the ability of cells to migrate 

to and invade surrounding tissues and blood vessels. To investigate whether ΔIgTrkB 

expression enhances migration and invasion we used a radial migration assay known as ‘the 

donut assay’ (28). In this assay, cells are limited to a restricted area by a silicone donut. 

Following donut removal, the number of cells migrating radially from the confined area are 

quantified. Neural crest cells are intrinsically migratory, as during development they must 

migrate from the neural tube to their final locations throughout the body. In light of this, we 

did not find any significant difference in the total number of migrating cells outside the 

originally confined area after 24 hours (Figure 5a–c, e–g, j). However, there is a significant 

increase in the area within which migrated cells could be found, indicating ΔIgTrkB NCM-1 

cells migrate farther compared to WT NCM-1 cells (Figure 5d, h–i).

To investigate invasion, a layer of crude extracellular matrix (matrigel) was overlaid on the 

cells. Although addition of matrigel leads to a reduction in the number of cells traveling 

outside the originally confined area for both cell types (Figure 5j vs. 5t), ΔIgTrkB NCM-1 
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cells have an enhanced ability to invade the extracellular matrix marked by a 2.5-fold 

increase in the number of cells invading after 24 hours (Figure 5k–m, o–q, t). Furthermore, 

ΔIgTrkB NCM-1 cells invade farther into the matrigel indicated by a 2.5-fold increase in the 

total area invaded by ΔIgTrkB NCM-1 cells compared to CONT NCM-1 (Figure 5n, r, s).

ΔIgTrkB enhances cancer related gene expression in NCM-1 cells

To identify genes contributing to the transformed phenotype in ΔIgTrkB NCM-1 cells, we 

analyzed transcripts using a targeted qPCR array of cancer pathway genes (full table of 

genes analyzed is in the Supplemental Materials). This analysis revealed that ΔIgTrkB 

increases transcript levels for a number of tumor promoting genes (Table 1), as well as 

decreases in expression of tumor suppressors (Table 2). Consistent with the enhanced 

proliferation of ΔIgTrkB NCM-1 cells, we detected a 436-fold increase in transcripts levels 

as well as significantly enhanced protein levels (Figure S3) for the cell cycle regulatory gene 

cyclind1. Furthermore, upregulation of twist1 (39-fold) and hepatocyte growth factor (hgf, 

29-fold), two genes known to play important roles in promoting invasion and metastasis (29, 

30), is consistent with the enhanced invasive capacity of ΔIgTrkB NCM-1 cells. Moreover, 

expression of ΔIgTrkB in NCM-1 cells significantly downregulates expression of the tumor 

suppressors pten (-1.71-fold) and rb1 (−1.77-fold). Therefore, the RNA expression profile of 

ΔIgTrkB NCM-1 cells is consistent with the highly transformed phenotype of the cells.

An important marker of poor prognosis in human neuroblastoma tumors is the amplified 

expression of mycn. To determine if the transformation of NCM-1 cells by ΔIgTrkB 

influences mycn, we compared transcript levels in CONT and ΔIgTrkB NCM-1 cells by 

qPCR. We found a 21-fold increase in mycn levels in ΔIgTrkB NCM-1 cells compared to 

CONT NCM-1 cells (p < 0.01). In contrast, although NCM-1 cells were immortalized by the 

use of a retroviral vector carrying vmyc, the levels of myc observed with the qPCR array 

were very low and did not differ between CONT- and ΔIgTrkB NCM-1 cells (see 

supplemental material regarding the gene list and qPCR array signals observed for each 

gene).

ΔIgTrkB NCM-1 cells form rapidly growing and aggressive tumors in vivo

To determine if ΔIgTrkB expression would enhance the ability of NCM-1 cells to form 

tumors in vivo, NOD-SCID mice were injected subcutaneously with 106 ΔIgTrkB or GFP 

NCM-1 cells suspended in matrigel. One week following injection, tumors became palpable 

in mice injected with ΔIgTrkB NCM-1 cells (Figure 6a, p < 0.01), and all ΔIgTrkB NCM-1 

injected mice were sacrificed by 15 days post-injection due to tumor burden (Figure 6b). 

GFP NCM-1 injected mice remained tumor free throughout the experiment (Figure 6). 

Monitoring tumor size daily, ΔIgTrkB NCM-1 tumors grew extremely rapidly, measuring an 

estimated 8 cm3 by 2 weeks after injection, while GFP NCM-1 cells failed to grow (Figure 

6c). Upon removal, ΔIgTrkB NCM-1 cell tumors were extremely large and heavily 

vascularized with an average wet weight of 4.5 grams (Figure 6e–f). Not only do ΔIgTrkB 

tumors grow at a rapid pace, these tumors are also highly invasive, invading the vertebrae 

and compressing the spine resulting in bilateral hind limb paralysis in one mouse only 10 

days following injection (Figure 6g–h). Tumor tissue contains many closely packed cells 

with scant cytoplasm and little extracellular stroma, reminiscent of aggressive, poor 
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prognosis neuroblastoma (Figure 6d). Furthermore, a separate injection of only 100 cells 

formed tumors in 3/3 mice within 21 days, demonstrating ΔIgTrkB NCM-1 cells are highly 

tumorigenic. Therefore, constitutive TrkB signaling is sufficient to transform the neural crest 

derived cell line NCM-1 into highly aggressive tumor cells in vivo.

Discussion

In this study we provide evidence that constitutive TrkB signaling is sufficient to transform 

a neural crest cell line into a carcinogenic phenotype marked by an enhancement of 

proliferation, anchorage independent cell growth, anoikis resistance, migration and invasion, 

and upregulation of tumor promoter genes. The enhanced rate of proliferation and anchorage 

independent cell growth was also observed when full length TrkB was stimulated with 

BDNF in the same cell line. The isolation of the ΔIgTrkB NCM-1 cell line allowed us to test 

the behavior of these cells in vivo, and they displayed highly aggressive, tumorigenic 

behavior when injected subcutaneously. Taken together, our data suggest that aberrant TrkB 

signaling in the developing sympathoadrenal lineage may be sufficient to promote 

neuroblastoma formation.

The involvement of Trk receptors in cancer is complex. The first Trk, for “tropomyosin-

receptor kinase”, was isolated from a colon carcinoma, and resulted from the fusion of a 

truncated tropomyosin with the tyrosine kinase domain of a receptor that rendered the kinase 

constitutively active (31). This kinase domain was subsequently discovered to belong to 

TrkA, the high affinity receptor for nerve growth factor (NGF; (20). In neuroblastomas, 

activation of full length TrkA slows the rate of proliferation and promotes differentiation, 

and shorter forms of TrkA have been identified that are constitutively active and antagonize 

the signaling between NGF and the full length TrkA (25). In contrast, the TrkB receptor, the 

high affinity receptor for BDNF, enhances proliferation and anchorage-independent cell 

growth in many cell lines (32–34) and enhances invasion in a number of cancer derived lines 

including neuroblastoma (9, 29, 35), colon cancer (36), head and neck squamous cell 

carcinoma (37), and non-small cell lung cancer (38). TrkB also enhances in vivo tumor 

growth in neuroblastoma (39) and transitional cell carcinoma (40). However, none of these 

studies have determined whether TrkB signaling in normal neural crest-derived cells is 

sufficient to promote an aggressive, fully transformed phenotype.

Constitutively activated TrkB in NCM-1 cells highly upregulates many genes also seen in 

poor prognosis neuroblastoma. CYCLIND1 is selectively amplified in poor prognosis 

neuroblastoma tumors (41), as is TWIST1, which is expressed in 100% (7/7) of MYCN 

amplified tumors, but only 11% (2/18) of non-MYCN amplified tumors (42). In MYCN 

amplified neuroblastoma cell lines, TWIST1 expression ranged from 16–164 fold that of 

non-MYCN amplified lines, levels consistent with the 39-fold increase in twist1 expression 

we observe here in ΔIgTrkB NCM-1 cells. Suggesting a specific cooperation of TWIST1 

and MYCN in neuroblastoma, TWIST1 inhibits expression of the tumor suppressor P53, 

which allows MYCN-amplified tumors, and in the case of our study, ΔIgTrkB NCM-1 cells, 

to escape P53-dependent apoptosis. In this study we also observed a 29-fold upregulation of 

hgf together with a 1.5-fold upregulation of the HGF receptor c-met in ΔIgTrkB NCM-1 
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cells. Increased c-Met signaling is a common occurrence in many types of cancer (43–47), 

and it has also been observed in neuroblastoma (29).

ΔIgTrkB NCM-1 cells display a greatly enhanced ability to form rapidly growing and 

invasive tumors compared to oncogenes expressed in other cell lines. NCM-1 cells were 

isolated from rat embryos and immortalized by transduction with a v-myc-containing 

replication-deficient retrovirus (22). Although v-myc expression itself can be transforming 

(48), this is not the case in NCM-1 cells because of their ability to differentiate (22), and 

because they do not grow in soft agar, or form tumors in vivo. This is confirmed by our 

qPCR array analysis, which showed very low, barely detectable levels of myc in CONT 

NCM-1 cells as well as in the ΔIgTrkB NCM-1 cells. ΔIgTrkB NCM-1 cells form large 

tumors prompting euthanasia of mice two weeks after a subcutaneous injection of 1 million 

cells; when only 100 cells are injected, 100% of the mice form tumors by 21 days. Similar in 

vivo tumor growth was seen in a v-myc immortalized rat fibroblast cell line expressing 

oncogenic BCR-ABL, however this study injected 50% more cells to initiate tumorigenesis 

(49). In another study, expression of the oncogene BCL2 in a rat L6 myoblast cell line 

expressing v-myc caused tumors formed only after 10 weeks (50). Recently, Schulte et. al. 

found JoMa1 neural crest progenitor cells (which are maintained in an undifferentiated state 

by inducible c-myc expression) can be transformed by an oncogenic variant of the 

ALKF1174L, and 2 out of 6 mice were able to form tumors in vivo that were lethal to the 

mouse by 48 days following injection of 20 million cells (51). Thus, ΔIgTrkB is 

considerably more oncogenic in vivo than ALKF1174L. Not only did ΔIgTrkB NCM-1 

tumors grow at a rapid pace, but they are also highly invasive. In one mouse, tumor cell 

invasion of the spine, caused spinal cord compression, and bilateral paralysis. This spinal 

cord invasion mimics human neuroblastoma, where the cancer can extend into spinal 

foramina causing nerve root and spinal cord compression in patients with paraspinal tumors 

(52–54). In total, 5% of all neuroblastoma patients will present with signs related to cord 

impingement.

It is not clear whether the TrkB signaling is directly responsible for this transformed 

phenotype or if TrkB is acting through upregulation of mycn. Regardless, it is likely that 

these changes result in alterations of other genes that contribute to the aggressive phenotype 

of these tumors. MYCN amplification is the most consistent genetic alteration seen in poor 

prognosis neuroblastoma (55) and as evidence that MYCN is sufficient to drive 

neuroblastoma formation, the TH-MYCN transgenic mouse forms neuroblastoma-like 

tumors spontaneously (56). However, the TH-MYCN derived tumors are slower growing 

and more confined than the tumors we observed from ΔIgTrkB NCM-1 cells. In addition, 

TH-MYCN tumors highly express BDNF, but lack TrkB expression (DeWitt and Nishi, 

unpublished data). JoMa1 neural crest cells overexpressing MYCN also form highly variable, 

slow growing tumors with mice surviving anywhere from 43–123 days (51). Thus, the 

activation of TrkB signaling likely contributes to the aggressive behavior of some tumors. 

On the other hand, constitutive TrkB signaling in NCM-1 cells induces a 21- fold 

upregulation of mycn mRNA in ΔIgTrkB NCM-1 cells that is comparable to the 20- to 80-

fold MYCN levels observed in neuroblastoma tumors and cell lines (57).
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Our studies suggest that one plausible initiating event in forming aggressive neuroblastoma 

is the failure of TrkB expression to be down-regulated early in development. Our previous 

studies in showed that TrkB is transiently expressed during a developmental period when 

sympathoblasts are commencing differentiation and hence likely downregulating mycn. 

However, when BDNF is introduced, these TrkB positive progenitors are stimulated to 

divide again (7). Thus, aberrant activation of TrkB could trigger upregulation of MYCN 

together with the activation of additional pathways that contribute to a highly aggressive, 

carcinogenic phenotype. This underscores the importance of the development of therapies 

targeting TrkB signaling, such as lestaurtinib (CEP-701) (58).

Materials and methods

Constructs

Using a full-length rat trkb (WT trkb) construct generously provided by Dr. Moses Chao, 

New York University, NY, NY, we used site-directed mutagenesis to convert a single base 

at base pair 1814 into a pst1 site. Both Ig-like domains could then be removed by pst1 (New 

England Biolabs, Ipswich, MA) digestion due to another pst1 site at base pair 1233. For 

HEK293 experiments ΔIgtrkb and WT trkb were cloned into pcDNA3.1 (Invitrogen, San 

Diego, CA). For PC12 experiments ΔIgtrkb was cloned into an inducible vector (pTRE-

tight, Clontech, Mountain View, CA) and transfected into an rTTa-expressing PC12 Tet-on 

cell line (Clontech). For NCM-1 experiments ΔIgtrkb was cloned into a piggyBAC 

transposon-transposase vector (pmhyGENIE-3) containing a DsRed tag and hygromycin 

selection gene (61). NCM-1 cells were transfected with a GFP-expressing control 

piggyBAC vector (pmGENIE-3) to establish a control cell line for in vivo experiments.

Cell Culture

Cells were grown at 37°C in 5% CO2. HEK293 and NCM-1 cells were maintained in 10% 

(v/v) fetal bovine serum, 20 U/mL penicillin, 20 mg/mL streptomycin, 2mM L-glutamine, 

and 6 mg/mL glucose in modified L15CO2 (62). Serum for PC12 cells was 5% fetal bovine 

serum and 5% heat inactivated horse serum.

Transfections

HEK293 and PC12 cells were transfected using JetPEI (Polyplus transfection, Illkirch, 

France). Stably transfected HEK293 cells were established by G418 (Sigma, St. Louis, MO) 

selection. NCM-1 cells were transfected using X-tremeGENE 9 (Roche, Indianapolis, IN) 

and stable cells were established by hygromycin (Sigma) selection.

Westerns

Cells were seeded at 250,000 per well in 6-well plates. For HEK293 experiments cells were 

serum starved for 24 hours, treated with, or without BDNF (100ng/mL, R&D Systems) for 1 

hour and then collected for SDS PAGE by direct lysis into 100μL 1x SDS sample buffer+β–

Mercaptoethanol (βMe). Samples were run on an 8% polyacrylamide gel, then transferred to 

a nitrocellulose membrane (Osmonics, Inc., Minnetonka, MN) overnight at 4°C at 30 volts 

(Hoefer Scientific Instruments, San Francisco, CA). Blots were incubated with primary 

antibodies overnight at 4°C followed by appropriate secondary antibodies for 1 hour at room 
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temperature. Primary antibodies used were: goat anti-TrkB (1:1000, R&D Systems); rabbit 

anti-p-Erk1/2 (1:500, Cell Signaling, Boston, MA); goat anti-β actin (1:1000, Santa Cruz, 

Santa Cruz, CA); rabbit anti-Phospho-Histone H3 (1:500, Cell Signaling); and mouse anti-

Cyclin D1 (1:1000; Cell Signaling). Secondary antibodies used were donkey anti-goat 700 

(Rockland, Gilbertsville, PA); donkey anti-rabbit 800 (Rockland); and donkey anti-mouse 

800 (Rockland) all at 1:10 000. Blots were analyzed using an Odyssey Infrared Imager (LI-

COR Biosciences, Lincoln, NE).

PC12 neurite outgrowth

PC12 cells were plated on poly-D-lysine (0.5 mg/mL, Sigma) and laminin (0.02 mg/mL, 

purified in the Nishi lab from EHS tumors grown subcutaneously in C57Bl6 mice) coated 

coverslips at 50,000 cells per well. The day after plating, cells were transfected with either 

an inducible GFP or the inducible ΔIgtrkb construct and allowed to recover for 48 hrs prior 

to treatment with doxycline (1μg/mL, Sigma) and 7s NGF (1μg/mL, Alomone, Jerusalem, 

Israel). Coverslips were fixed 30 min in Zamboni’s fixative (4% (w/v) paraformaldehyde, 

15% (v/v) picric acid in 0.1 M sodium phosphate buffer, pH 7.4) and processed for 

immunocytochemistry as previously described (63). Primary antibodies were: goat anti-

TrkB (1:1000, R&D Systems); chicken anti-GFP (1:1000, Aves, Tigard, OR). Secondary 

antibodies were: donkey anti-goat alexa 488 (1:1000, Invitrogen) and goat anti-chicken 

alexa 488 (1:1000, Invitrogen). A Nikon Eclipse E800 microscope connected to a computer 

equipped with StereoInvestigator software (MBF Bioscience, Williston, VT) was used to 

count neurite positive PC12 cells (at least one process of a length at least twice the cell’s 

soma size).

Calcein AM

NCM-1 cells were plated on poly-D-lysine coated 96 well plates at 200 cells per well in 

100μL of media and viability assessed using 2μM calcein AM (Molecular Probes, Eugene, 

OR) with a FLUOstar Galaxy (BMG, Cary, NC) fluorescent microplate reader. Each 

condition was replicated in a minimum of 8 wells on the same plate. For K252a (Merck, 

Darmstedt, Germany) and c-Met inhibitor (SU11274, Merck) experiments, inhibitors (50 

nM and 1 μm, respectively) were added at the time of plating.

Soft agar assay

6-well plates were coated with 0.5% agar (Affymetrix, Santa Clara, CA) in growth medium. 

After this base layer had solidified, NCM-1 cells suspended in 0.35% agar were plated on 

top of the base layer at 1000 cells per well. Cells were fed by adding 0.5mL of media to the 

top of each well every 3 days. After 10 days, cultures were fixed overnight with 4% 

paraformaldehyde in PBS, then stained with 0.005% crystal violet.

Anoikis assay

To quantify anoikis, medium was collected 3 days after cultures achieved confluence and 

the number of live cells growing in the media was quantified by trypan blue (0.08%, Sigma) 

exclusion and a hemocytometer.
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Migration and invasion

The ‘donut assay’ for migration and invasion was used as described (28). 10,000 cells were 

plated on poly-D-lysine and laminin coated coverslips in a 10μL volume. Initial images were 

acquired through a 2X PlanApo objective on a Nikon Eclipse TE-2000E inverted 

microscope. A second set of images acquired at 24 hours were compared and analyzed using 

the default settings of a custom written ImageJ macro. Area migrated/invaded was 

quantified by measuring the area between the outer bound of the farthest migrating/invading 

cells after 24 hours, and the bound of the cells directly after gasket removal.

RNA extraction and qPCR array

Cells were grown to confluence in 6-well plates, lysed directly into TRI Reagent (Molecular 

Research Center, Cincinnati, OH), and RNA was isolated using the manufacturer’s protocol. 

RNA quality and genomic DNA contamination were assessed using an Agilent 2100 

Bioanalyzer (Agilent Technologies, Santa Clara, CA). Reverse transcription and Cancer 

Pathways qPCRarray plate (SABiosciences, Valencia, CA) analysis were performed at the 

UVM Vermont Cancer Center DNA Analysis Facility using RT2 First Strand kit 

(SABiosciences, Valencia, CA). Data shown in Tables 1 and 2 represent the mean of three 

independently isolated RNA samples from 3 different wells of a 6 well plate for each cell 

line. Mycn expression transcription levels were evaluated by reverse transcription of 1μg of 

RNA transcribed to cDNA using (Superscript III, Invitrogen) and subsequent Taqman-based 

qPCR (ABI).

In vivo

Mice were housed in an NIH and AALAC approved animal facility at UVM and treated 

following an approved IACUC protocol. Cells were injected subcutaneously into flanks of 

NOD-SCID mice at 106 cells per mouse in 200μL of matrigel (BD Biosciences). Four mice 

injected per cell line. When tumors became palpable, tumor growth was quantified every 

other day at first, and then daily when it became apparent TrkB tumors were fast growing. 

Tumor volume estimated from length and width measurements using the established formula 

 (59). To examine the lower limits of the tumorigenic potential of 

ΔIgTrkB NCM-1 cells, 100 cells in 200 μL of matrigel were injected into 3 NOD-SCID 

mice, which were monitored for tumor formation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
ΔIgTrkB is expressed and is constitutively active. HEK293 cells were stably transfected 

with either a WT or ΔIgTrkB construct. Cells were then treated with or without BDNF (100 

ng/mL) and protein was isolated. (a) Western blot for TrkB and phosphorylated Erk 1/2 

demonstrates that ΔIgTrkB is expressed, and signals in the absence of the TrkB ligand 

BDNF. (b) Quantification of phosphorylated Erk 1/2 protein expression reveals a significant 

increase in phospho Erk 1/2 in ΔIgTrkB transfected cells treated with (black bars), or 

without (white bars) BDNF, compared to untreated WT TrkB transfected cells (p < 0.0001, 

ANOVA, n=3, error bars = SEM) or untransfected HEK293 cells. Constitutive ΔIgTrkB 

activity is two-fifths that of the WT TrkB receptor treated with BDNF.
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Figure 2. 
ΔIgTrkB promotes process outgrowth in PC12 cells. Transfected cells were assessed for 

process outgrowth 6 days following transfection. (a) PC12 cells transfected with GFP have 

minimal neurite outgrowth, (b) while ΔIgTrkB transfection stimulates neurite outgrowth. (c) 

Quantification of process outgrowth in PC12 cells reveals a 6-fold increase in the number of 

cells bearing neurites when transfected with ΔIgTrkB as opposed to a GFP control plasmid 

(p < 0.0001, Student’s t-test, n=3, error bars = SEM). (d) In the presence of NGF the number 

of cells bearing neurites is equivalent in the two transfection conditions. Scale bar is 

equivalent to 25 μm and applies to both images.
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Figure 3. 
ΔIgTrkB and full length TrkB promote proliferation in the neural crest derived cell line 

NCM-1. Cultures in 96 well plates were seeded with the same number of cells on day 0, then 

grown for the indicated periods of time up to 4 days and the number of cells were quantified 

using Calcein AM uptake. (a) stably transfected ΔIgTrkB NCM-1 cells (closed triangles) 

grow faster than the parent CONT NCM-1 cell line (closed squares; p < 0.0001, ANOVA; 

n=16). (b) full length TrkB expressing cells exhibit an enhanced rate with BDNF (open 

circles) over the same cell line grown in the absence of BDNF (closed circles; p< 0.0001, 
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ANOVA, n=8) (c) The pan-Trk inhibitor K252a (50 nM) abolishes increased proliferation (p 

< 0.0001, ANOVA, n=8, error bars = SEM) in ΔIgTrkB NCM-1 cells (open triangles) 

compared to DMSO treated ΔIgTrkB NCM-1 cells (closed triangles). ΔIgTrkB proliferation 

in the presence of K252a is similar to WT NCM-1 proliferation in the presence of either 

K252a (open squares) or DMSO (closed squares).
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Figure 4. 
ΔIgTrkB promotes anchorage-independent cell growth and anoikis resistance in NCM-1 

cells. (a, b) The CONT NCM-1 cells have little ability to grow in soft agar, even when 

BDNF is added (b). (c,d) ΔIgTrkB NCM-1 cells form numerous colonies even in the 

absence of BDNF (c). (e,f) NCM-1 cells stably transfected with WT TrkB form colonies 

only when BDNF is added (f). (g) Quantification of cultures shown in a–f (p < 0.001, 

Student’s t-test, n=6, error bars = SEM). (h) ΔIgTrkB NCM-1 cells are also resistant to 

detachment-induced apoptosis marked by a significant increase (p < 0.05, Student’s t-test, 

n=4, error bars = SEM) in the number of live cells in suspension as determined by trypan 

blue exclusion from media taken from confluent cultures.
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Figure 5. 
ΔIgTrkB enhances migration and invasion of NCM-1 cells in donut migration assay. (a–d) 

Migration in CONT NCM-1 and (e–h) ΔIgTrkB NCM-1 cells. (i) Quantification of 

migration shows a significant increase in the area migrated (p < 0.0001, Student’s t-test, 

n=8, error bars = SEM) in ΔIgTrkB NCM-1 cells (h compared to d), (j) but no difference in 

the total number of cells migrated. For invasion assay, cells were overlayed with matrigel. 

(k–n) Matrigel invasion in CONT NCM-1 and (o–r) ΔIgTrkB NCM-1 cells. (s) ΔIgTrkB 

significantly enhances both area invaded (r compared to n), and (t) the total number of 

invading NCM-1 cells (p < 0.05, Student’s t-test, n=3, error bars = SEM). Scale bar is 

equivalent to 1mm and applies to all panels.
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Figure 6. 
ΔIgTrkB NCM-1 cells form highly aggressive tumors in vivo. (a) Kaplan-Meier plot of 

tumor free survival in NOD-SCID mice subcutaneously injected with GFP NCM-1 cells 

(solid line), or ΔIgTrkB NCM-1 cells (dotted line). No mice injected with GFP NCM-1 cells 

formed tumors over the course of the experiment (p < 0.01, log-rank (Mantel-Cox) test, 

n=4). (b) Kaplan-Meier plot of overall survival. All ΔIgTrkB NCM-1 cell injected mice had 

to be sacrificed by 15 days after initial cell injection due to tumor burden (p < 0.01, log-rank 

(Mantel-Cox) test, n=4). (c) Estimated tumor volume over the course of the experiment. 

ΔIgTrkB NCM-1 cell injected mice formed rapidly growing tumors starting at 1 week 

following initial cell injection, with a significant difference in tumor volume versus matrigel 

plug volume by 11 days (p < 0.0001, ANOVA, n=4, error bars = SEM). Removed tumors 

had an average wet weight of 4.5 grams. (d) Hematoxylin and Eosin staining of tumor tissue 

reveals densely packed cells with scant cytoplasm and absent extracellular stroma 

reminiscent of poor prognosis neuroblastoma. (e) Example of mouse injected with GFP 

NCM-1 cells, and (f) ΔIgTrkB NCM-1 cells (matrigel (e) and tumor (f) are outlined in 

black). (g–h) In one mouse, the tumor invaded the spinal cord causing bilateral hind limb 

paralysis. (g) Normal thoracic spinal cord (labeled SC) surrounded by vertebrae, rostral to 

tumor invasion. (h) The lower thoracic spinal cord (labeled SC) is compressed in the 

vertebrae by invading tumor cells (labeled T). Scale bar in (g) is equivalent to 1mm and also 

applies to (h). Scale bar in (d) is equivalent to 100 μm.
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Table 1

Tumor promoters upregulated in ΔIgTrkB NCM-1 cells

Symbol Gene Fold Regulation P-value Description

ccnd1 Cyclin D1 436.1 0.000069 Promotes cell cycle progression

twist1 Twist homolog 1 (Drosophila) 38.57 0.000015 Promotes epithelial- mesenchymal transition 
(EMT), invasion, and metastasis

hgf Hepatocyte growth factor 28.86 0.008818 Promotes mitogenesis, cell motility, and matrix 
invasion

ccnd2 Cyclin D2 26.40 0.000137 Promotes cell cycle progression

fgf2 Fibroblast growth factor 2 19.88 0.001753 Promotes angiogenesis

angpt1 Angiopoietin 1 12.25 0.003952 Promotes angiogenesis

abcg2 ATP-binding cassette, subfamily G 
(WHITE), member 2

6.385 0.000792 Mediates multidrug resistance

muc1 Mucin 1, cell surface associated 4.884 0.000030 Inhibits p53-mediated apoptosis, and promotes 
EMT through β-catenin stabilization

vegfa Vascular endothelial growth factor A 4.816 0.000115 Promotes angiogenesis

serpine1 Serpin peptidase inhibitor, clade E (nexin, 
plasminogen activator inhibitor type 1), 
member 1

4.661 0.000027 Promotes invasion and metastasis
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Table 2

Tumor suppressors downregulated in ΔIgTrkB NCM-1 cells

Symbol Gene Fold Regulation P-value Description

thbs1 Thrombospondin 1 −2.118 0.000563 Promotes cell adhesion

pik3r1 Phosphoinositide-3-kinase, regulatory subunit 1 (alpha) −1.913 0.000261 Inhibitor of PI3K signaling

rb1 Retinoblastoma 1 −1.771 0.000464 Inhibits cell cycle progression

tgfbr1 Transforming growth factor, beta receptor 1 −1.755 0.001248 Inhibits cell growth

pten Phosphatase and tensin homolog −1.710 0.000285 Inhibits cell proliferation

bad BCL2-associated agonist of cell death −1.572 0.004340 Promotes apoptosis

cdkn1a Cyclin-dependent kinase inhibitor 1A −1.514 0.000064 Inhibits cell cycle progression
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