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Changes in transcriptional regulatory networks can significantly alter cell fate. To gain insight into transcriptional dynamics,

several studies have profiled bulkmulti-omic data sets with parallel transcriptomic and epigenomicmeasurements at different

stages of a developmental process. However, integrating these data to infer cell type–specific regulatory networks is a major

challenge. We present dynamic regulatory module networks (DRMNs), a novel approach to infer cell type–specific cis-reg-
ulatory networks and their dynamics. DRMN integrates expression, chromatin state, and accessibility to predict cis-regulators
of context-specific expression, where context can be cell type, developmental stage, or time point, and uses multitask learning

to capture network dynamics across linearly and hierarchically related contexts. We applied DRMNs to study regulatory

network dynamics in three developmental processes, each showing different temporal relationships and measuring a differ-

ent combination of regulatory genomic data sets: cellular reprogramming, liver dedifferentiation, and forward differentia-

tion. DRMN identified known and novel regulators driving cell type–specific expression patterns, showing its broad

applicability to examine dynamics of gene regulatory networks from linearly and hierarchically related multi-omic data sets.

[Supplemental material is available for this article.]

Transcriptional regulatory networks connect regulators such as
transcription factors to target genes and specify the context-specif-
ic patterns of gene expression, where context can be different cell
types, cell states, developmental stages, or time points. In develop-
mental systems, changes in regulatory networks can significantly
alter the type or state of a cell, which can affect both normal and
disease processes. The regulatory interaction between a transcrip-
tion factor (TF) and a target gene’s promoter is dependent upon
TF binding activity, histone modifications, and open chromatin,
which have all been associated with cell type–specific expression
(Young 2011; Lee and Young 2013; González et al. 2015;
Osmanbeyoglu et al. 2019). To probe the dynamic and cell type–
specific nature of mammalian regulatory networks, several re-
search groups have generated matched transcriptomic and epige-
nomic data from short time courses or for cell types related by a
branching lineage (Wamstad et al. 2012; Lara-Astiaso et al. 2014;
Chronis et al. 2017). However, integrating these data sets to infer
cell type–specific regulatory networks is an open challenge.

Existing computational methods to infer cell type–specific
networks while integrating different types of measurements can
be grouped into twomain categories: (1) regression-basedmethods
and (2) statistical models for networks. Regression-based methods

use linear and nonlinear regression to predict mRNA levels as a
function of chromatin marks (do Rego et al. 2012; Dong et al.
2012) and/or TF occupancies (do Rego et al. 2012) and can infer
a predictive model of mRNA for a single condition (time point or
cell type). These regression approaches are applied to each context,
such as a cell type, individually and have not been extended to
model multiple related time points or cell types, which is impor-
tant to study network transitions between different time points
and cell states. Statistical models of networks constitute a large
family of methods, including probabilistic graphical models
(Ernst et al. 2007; Parikh et al. 2011; Roy et al. 2011; Jojic et al.
2013; Gong et al. 2015; Pierson et al. 2015; Koch et al. 2017), cor-
relation-based methods (Langfelder and Horvath 2008), and
Boolean networks (Schwab et al. 2020), used to represent molecu-
lar networks. The vast majority of these methods (Parikh et al.
2011; Roy et al. 2011; Jojic et al. 2013; Gong et al. 2015; Pierson
et al. 2015; Koch et al. 2017) are based onmRNA levels and require
a sufficiently large number of mRNA samples for each time point
or cell type to reliably estimate the statistical dependency struc-
ture. A few methods based on dynamic Bayesian networks
(DBNs), including input-output hidden Markov models (Ernst
et al. 2007) and time-varying DBNs (Gong et al. 2015), have
been developed to examine gene expression dynamics with static
ChIP-seq data sets. However, both of these approaches are suited
for time courses only and do not accommodate branching struc-
ture of cell lineages.
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To systematically integrate parallel transcriptomic and epige-
nomic data sets to predict cell type–specific regulatory networks,
wehave developed a novel dynamic network reconstructionmeth-
od, dynamic regulatory module networks (DRMNs). DRMNsmod-
el regulatory networks in a cell type–specific manner by leveraging
their relatedness, for example, by time or a lineage. DRMNs repre-
sent the cell type–specific regulatory network by a concise set of
gene expression modules, defined by groups of genes with similar
expression levels, and their associated regulatory programs (regula-
tors predicted for that module and parameters capturing the
strength and type of regulation). We applied DRMNs to four data
sets measuring transcriptomic and epigenomic profiles from dif-
ferent cellular reprogramming and differentiation studies (Xie
et al. 2013; Chronis et al. 2017; Roy and Sridharan 2017; Seirup
et al. 2022) to link upstream regulatory programs to gene expres-
sion states associated with changes in cell state.

Results

DRMN for integrating diverse regulatory genomic measurements

to infer regulatory networks on cell lineages

We developed DRMN to represent and learn context-specific regu-
latory networks, where contexts can be cell types, time points, or
cell states. We describe DRMNs with cell types as contexts; howev-
er, our description applies to other types of contexts as well.We as-
sume that each context has a small number of samples (e.g., one or
two) but has several types of measurements, such as RNA-seq,
ChIP-seq, and ATAC-seq. DRMN is based on amodule-based repre-
sentation of a regulatory network, in which genes are grouped into

modules and regulators are learned for each gene module. Each
module, in turn, represents a discrete state of expression of the
genes in the module, for example, high or low expression (Fig.
1). The module-based representation of the regulatory network
of a cell type is implemented with a mixture model, each mixture
component defining a genemodule and a set of expression-predic-
tive features. The predictive features define the “regulatory pro-
gram” for that expression state, specifying the probability of a
gene to belong to that expression state based on regulatory signals
on a gene’s promoter, such as sequence motifs, TF binding, and
epigenomic signals. The module-based representation (Segal
et al. 2003; Kundaje et al. 2007; Lee et al. 2009) enables DRMN
to pool information from multiple genes to learn a predictive reg-
ulatory program and is appropriate when the number of samples
per condition are too few to perform a conventional gene regulato-
ry network inference of estimating the regulators of individual
genes. DRMN uses a multitask learning framework of mixture
models, one mixture model per task, which in turn corresponds
to one cell type. Themultitask learning framework of DRMN lever-
ages the relationship between cell types, for example, on a lineage,
to encourage similarity between the models learned for related
contexts. DRMN produces two outputs: (1) a set of modules and
regulators (e.g., TFs and histone marks) for each cell type, where
the regulators are predictive of the expression levels of genes in a
module, and (2) “transitioning gene sets” comprising genes that
change their module assignment across cell types and their regula-
tors that predict their expression levels across the cell types (Fig. 1).
Using either output, we can infer a coarse regulatory network by
adding edges between a regulator and genes in a module or transi-
tioning gene set to which the regulator is connected (Methods).

Figure 1. Overview of dynamic regulatory module networks (DRMNs). Inputs are a lineage tree over the cell types, cell type–specific expression levels, a
motif-based network, and optionally, cell type–specific features such as histonemodificationmarks or chromatin accessibility signal. The output is a learned
DRMN, which consists of cell type–specific expression state modules, their regulatory programs, and transition matrices (white–black matrices) describing
the dynamics between the cell types. Expression states of individual genes can be traced on the tree to identify “dynamic” or “transitioning” genes.
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DRMN offers a flexible framework to integrate diverse regula-
tory genomic measurements as predictive features, such as se-
quence-based motif strength, accessibility, and histone marks to
examine their relative contribution for explaining variation in ex-
pression. In its simplest form, DRMNuses sequencemotifs and ex-
pression only. Addition of accessibility andhistonemarks canhelp
capture more variation in the expression levels (Supplemental
Methods; Supplemental Fig. S1). We found accessibility to be
most informative when it was used together with sequence motifs
(Supplemental Fig. S2).

Multitask learning is beneficial for learning cell type–specific

expression patterns

We assessed the utility of DRMN’s multitask learning framework
by comparing against a baseline model, regulatory module net-
work (RMN), which learned a mixture model for each context in-
dependently. We implemented two ways of multitask learning:
regularized regression (DRMN-Fused) and graph structure prior
(DRMN-ST) (see Methods). DRMN-ST is based on greedy structure
learning of networks, whereas DRMN-Fused is nongreedy and uses
regularized regression. We compared DRMN-ST to RMN-ST and
DRMN-Fused to RMN-Fused. We used an array (Roy and
Sridharan 2017) and a sequencing data set (Chronis et al. 2017),
both studying mouse cellular reprogramming, each measuring
multiple histonemarks, in addition to expression and accessibility
(sequencing data set only).

We learnedDRMN and RMNmodels using different regulato-
ry feature sets (Fig. 2; Supplemental Fig. S1): Motif alone (Motif),
Histone marks alone (Histone), and combiningMotif and Histone
marks (Histone+Motif). We assessed their ability to model expres-
sion using the average Pearson’s correlation of true and the gener-
ated expression of test genes based on their module, using
threefold cross validation (CV) (Methods; Fig. 2A). Note that the
generated expression from the model requires the actual data to
determine the mixture component and therefore should be inter-
preted as a model fit of the observed expression (see Methods).
When comparing DRMNs to RMNs on array data, both versions
of DRMN outperform corresponding RMN versions on Histone
and Histone+Motif features (Fig. 2B,C,E,F; blue for RMN and red
for DRMN). Onmotifs, the difference between the models was de-
pendent upon the cell line and the number of modules, k (Fig. 2D,
G). In particular, both DRMN-Fused and DRMN-ST outperformed
RMN on the induced pluripotent stem cell (iPSC)/embryonic stem
cell (ESC) state andwas similar for partially reprogrammed induced
pluripotent stem cells (pre-iPSCs) and mouse embryonic fibro-
blasts (MEFs) when comparing across different k. On sequencing
data (Fig. 2H–M), both DRMN-Fused and DRMN-ST were better
than RMNs for most k in ESCs and pre-IPSCs when considering
Histone and Histone+Motifs. When using motifs, the perfor-
mance depended upon the DRMN implementation and k (Fig.
2J,M). In particular, DRMN-Fused was better than RMN for ESCs,
on par for pre-iPSCs and MEF-48, and worse for MEF. DRMN-ST
was on par or better than RMN-ST for k= 3, 5; however, we ob-
served a decrease in performance in the MEF and 48 h after start
of the reprogramming process (MEF48) cell lines for higher k (k=
7, 9, 11). Across all cell states, DRMN-ST and DRMN-Fused are bet-
ter than or comparable to the RMN versions, with greater benefits
for the array data (Supplemental Table S1), suggesting that multi-
task learning helps to improve the predictive power of these mod-
els. Between DRMN-Fused and DRMN-ST, DRMN-Fused was able
to generally outperform DRMN-ST on different feature types and

data sets (Supplemental Fig. S3) likely because it learns a sparser
model (Supplemental Fig. S4). Hence, we report results of
DRMN-Fused application on different data sets.

We next compared DRMNs and RMNs to three baseline ex-
pression-based clustering methods: (1) GMM-Merged, which ap-
plies a single Gaussian mixture model (GMM) to a merged
matrix of expression values; (2) GMM-Indep, which applies
Gaussian mixture modeling per time point; and (3) ESCAROLE
(Chasman et al. 2019), a nonstationary probabilistic model for
expression clustering suitable for time series, which was shown
to better capture expression dynamics compared to standard clus-
tering methods (Chasman et al. 2019). We used two metrics for
comparison: (1) overall correlation computed using the predicted
and true expression of all genes and (2) per module average cor-
relation computed from the correlation of true and predicted ex-
pression per module. When using overall correlation, DRMNs,
RMNs, GMM-Indep, and ESCAROLE vastly outperform GMM-
Merged (Supplemental Fig. S5A–F). This suggests that the gene
partitions are likely different between the different cell types
and that imposing a single structure for all genes, as done in
GMM-Merged, misses out on the cell type–specific aspects of
the data. DRMN models performed on par with RMN and
GMM-Indep for most cases when using overall correlation
(Supplemental Fig. S5A–F). Based on per-module correlation,
DRMN and RMN models outperform the expression-based clus-
tering methods, which is expected as these methods do not mod-
el variation in expression within each module. These results
show the advantage of modeling expression as a function of up-
stream features in DRMN/RMN over an expression-alone ap-
proach as the learned models capture a more fine-tuned model
of expression variation as a function of cis-regulatory features
(Supplemental Fig. S5G–L).

DRMN accurately ranks regulators and regulatory network

components across diverse developmental processes

Wenext comparedDRMN’s ability to predict regulators and coarse
regulatory connections against multiple methods. For regulator
prediction, we compared DRMN to DREM (Schulz et al. 2012)
and regulators predicted based on motif enrichment of DRMN
modules, as well as ESCAROLE modules (Fig. 3A). DREM (Schulz
et al. 2012) is an input/output HMMmodel that also models tem-
poral expression profile as a function of regulatory signals such as
histone marks and TF binding site. We considered three dynamic
processes for regulator prediction: cellular reprogramming
(Chronis et al. 2017), hepatocyte dedifferentiation (Seirup et al.
2022), and early lineage specification from the ESC state (Xie
et al. 2013) (Fig. 3; Methods). As gold standards, we used a litera-
ture-curated set of regulators of ESC states for the Chronis and
Xie data sets and a literature-curated set of hepatocyte regulators
for the Seirup data set (Methods). Note that for DREM, we did
not have the cell stage–specific regulators from the command
line interface, although this functionality may be available in
the graphical user interface. For each method, we computed the
F-score comparing the predicted regulators to the gold standards.
DRMN had the highest F-score (Fig. 3A) compared to other meth-
ods. We also used area under the precision recall (AUPR) curve on
the ranking of the regulators from each method. DRMN is better
than enrichment across all data sets. DRMN andDREM are compa-
rable with DRMN outperforming DREM on the Chronis data set
and DREM outperforming DRMN on the Seirup data set
(Supplemental Fig. S6A).

Dynamic regulatory module networks
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Figure 2. Comparing DRMN versus RMN models. (A) Predicted (generated) expression from a module versus measured (actual) expression, for iPSC/
ESC, for (i) DRMN-ST on array data set, (ii) DRMN-ST on sequencing data set, (iii) DRMN-Fused on array data set, and (iv) DRMN-Fused on sequencing
data set. Colors correspond to different modules. The values reported in the legend correspond to per-module correlation. (B–M ) Average per-module
correlation for individual cell lines as a function of different number of modules for single-task andmultitask versions of the method, for DRMN-ST on array
data set (B–D), DRMN-Fused on array data set (E–G), DRMN-ST on sequencing data set (H–J), and DRMN-Fused on sequencing data set (K–M). Each shape
corresponds to a cell state, and each color corresponds to a different method. Note that for expression prediction, the generative models need the infor-
mation about the observed expression.
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Figure 3. Performance of regulator ranking and inferred networks of DRMN. (A) The F-score of regulator ranking with different strategies for cellular re-
programming, mouse hepatocyte dedifferentiation, and H1ESC differentiation. Each plot shows regulator enrichment of expression-basedmodules (Exp +
Enr), regulator enrichment of DRMN modules (DRMN+Enr), regulator ranking based on inferred DRMN networks (DRMN), and regulator ranking from
DREM (when applicable). (B) F-score-based performance of inferred networks and baseline networks for cellular reprogramming, when compared to ChIP-
based, perturbation-based, and intersection of the ChIP and perturbation-based gold standards in mESCs. (C) F-score-based performance of inferred net-
works and baseline networks for H1ESC differentiation, when compared to ChIP-based, perturbation-based, and intersection of the ChIP- and perturba-
tion-based gold standards in hESCs. (D) F-score-based performance of inferred networks and baseline networks for mouse hepatocyte dedifferentiation,
when compared to ChIP-based, perturbation-based, and intersection of the ChIP- and perturbation-based gold standards for mESCs, as well as the ChIP-
based gold standard from the HepG2 cell line. In each panel, we show the baseline networks from regulator enrichment of expression-based modules (Exp
+ Enr), regulator enrichment of DRMNmodules (DRMN+Enr), and inferred networks with edges scored by input featuremultiplied by estimated regression
coefficients (DRMN).

Dynamic regulatory module networks

Genome Research 1371
www.genome.org



We next compared the regulatory relationships between TFs
and target genes from DRMN and several base line methods that
inferred regulator–target relationships based on the enriched regu-
lators in each module (Exp+Enr, DRMN+Enr; Methods). DREM’s
output was not amenable for this comparison. For DRMN, regula-
tor–target relationshipswereweighted by the product of the regres-
sion weight of a regulator and the feature value (Methods). For
Chronis and Xie, we used the ESC regulatory network downloaded
from the ESCAPE database (Xu et al. 2013), which has both
perturbation (regulator knockouts or knockdowns) and ChIP-
based regulator–target relationships. For Seirup, we additionally
used ChIP-seq data sets in the HepG2 cell line from The ENCODE
Project Consortium to derive regulatory interactionsmore relevant
to hepatocytes (Fig. 3B–D; Supplemental Fig. S6B–D). Based on the
F-score, computed on the top 50K edges, enrichment-based
networks were generally worse for the perturbation and perturba-
tion+ChIP gold standards for Chronis (Fig. 3B). The enrichment-
based networks were better on the ChIP-based gold standards. A
similar trend held for the Xie data set, although the difference
on the perturbation networks was greater (Fig. 3C). We observed
similar trends on AUPR as well (Supplemental Fig. S6B,C). For
the Seirup data set, DRMN again performed better than other
methods when examining the F-score on perturbation alone or
perturbation+ChIP networks. Additionally, DRMN networks
showed greater variation across time, which is indicative of con-
text specificity. On HepG2, the results were similar to the ESC
ChIP-based network (Fig. 3D). When using AUPR, we observed
similar trends; however, the difference across methods was smaller
(Supplemental Fig. S6D). These results suggest DRMN generates
meaningful TF–target relationships that more accurately recapitu-
late perturbation-based regulatory relationships and often capture
greater context-specificity than simpler enrichment-based
analyses.

DRMNpredicts key regulatory network components indicative of

efficiency in cellular reprogramming

Cellular reprogramming is the process of converting a somatic cell
type into a pluripotent cell type (Sridharan and Plath 2008).
However, this process is inefficient, as a small proportion of cells
reprogram into the final pluripotency state. One hypothesis for
low efficiency is the incomplete suppression of the somatic regula-
tory program (Chronis et al. 2017). To gain mechanistic insight
into the regulatory programdynamics, a number of histonemarks,
select transcription factor (TF) binding, accessibility, and RNA-seq
measurements were profiled at four stages of reprogramming from
MEFs to iPSCs. We applied DRMN to examine how TFs interact
with chromatin state to drive different expression states during
this process.

We first described the global transcriptome state using seven
DRMNmodules (1–7), each corresponding to a distinct level of ex-
pression in each of the four reprogramming stages (Fig. 4A). The
modules were on average 30%–90% similar in gene content, show-
ing the lowest similarity between MEF48 and pre-iPSC and the
highest between MEF and MEF48 (Supplemental Fig. S7). This
agrees with the pre-iPSC state showing a major change in tran-
scriptional status during reprogramming. The repressed modules
1, 2, and 3 were less conserved across all cell types compared to
the more highly expressed modules. Modules with high expres-
sion also showed more conserved enrichment of Gene Ontology
(GO) processes compared to the repressed modules (Supplemental
Table S2) and included housekeeping functions such as ribosome

biogenesis and general metabolic processes. Processes that were
specifically up-regulated in the iPSC and pre-iPSC stages included
cell cycle, whereasmuscle development and cell adhesion process-
es were associated with MEF and MEF48. The enrichment of up-
regulated cell cycle processes in the ESC/pre-iPSC andmuscle-relat-
ed processes in MEF/MEF48 supports the biological relevance of
our expression states.

We examined the regulators for the three modules associated
with highest expression (5, 6, and 7) (Fig. 4B). Histone marks
(H3K79me2 and H3K4me1) and accessibility were selected as pre-
dictive features for all four cellular stages. In contrast, the TFs were
selected in a more stage-specific manner with a few exceptions
(e.g., INSM1 and BHLHE40), suggesting that TFs are important
for the specificity of transcriptional programs. Several TFs that
were predicted significant in a specific stage have known roles in
that stage, for example, NFE2L2 in the ESC and pre-IPSC module
6, which is known to play an important role in the ESC state
(Dai et al. 2020), and MYCN and ESRRB in the pre-IPSC module
6, which are both known to be important for early embryonic stag-
es. ESRRB has also been shown to be important for suppressing the
MEF program during reprogramming (Chronis et al. 2017). SOX17
association with ESCs was surprising because SOX17 is lowly ex-
pressed in ESCs; however, SOX17 shares motif affinity with
SOX2, which could explain this association (Supplemental Fig.
S8). We also found several muscle and mesodermal factors associ-
ated with MEF (FOXL1 [Miyashita et al. 2020], MTF1 [Tavera-
Montañez et al. 2019] in module 6), MEF48 (OSR1 [Vallecillo-
García et al. 2017], LEFTY1 [Phan et al. 2020] in module 5), and
both MEF and MEF48 (SOX5 in module 5) (Ikeda et al. 2002).
The regulators were expressed in the cell states they were selected
for prediction with the exception of FOXI1 (Supplemental Fig.
S9A). For FOXI1, we found other members of the Forkhead box
family to be expressed (Supplemental Fig. S9B).

Finally, we leveraged the DRMN modules to identify transi-
tioning gene sets and their regulators, which can inform us about
specific pluripotency and somatic expression programs that
change during reprogramming (Methods). In total, we identified
85 gene sets with their predicted regulators (see Methods; Supple-
mental Table S3; Supplemental File S1).We focused on42 gene sets
with transitions into the high expression modules 5, 6, or 7, as
these indicate the strongest up-regulated expression states during
reprogramming (Fig. 4C). These gene sets showed two main types
of dynamics (Fig. 4C; Supplemental Fig. S10): (1) repressed inMEF/
MEF48 and induced in ESC/iPSC (C216, Fig. 4D) and (2) induced
in MEF/MEF48 and repressed in ESC/iPSC (e.g., C101, C220) (Sup-
plemental Fig. S10A,B). The majority of these gene sets were pre-
dicted to be regulated by a combination of TFs and histone
marks. Notably, nine gene sets (C186, C191, C200, C210, C182,
C209, C203, C214, C212) (Fig. 4C, red arrows) showed repressed
expression in all but ESCs (e.g., C191, C200, C203) (Supplemental
Fig. S10C,D,G). In contrast, there were only two gene sets, C225
and C186 (Supplemental Fig. S10E,F), that showed an opposite ex-
pression signature of repressed in ESCs and induced in the other
cell stages. Although these gene sets showed a similar trend of ex-
pression, they were associated with different sets of regulators,
which include a combination of elongation, promoter and repres-
sivemarks, and distinct TFs (e.g., PLAG1 in C191, ZFP281 in C200,
BCL6B in C203). Several of the regulators have known regulatory
roles in pluripotency and development, for example, ZFP281
(Fidalgo et al. 2011); PLAG1, which is involved in cancer and
growth processes andwas shown to effect embryonic development
(Madissoon et al. 2019); and BCL6B, which reduces
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Figure 4. Application of DRMNs to the cellular reprogramming sequencing data set using histonemarks, accessibility, and Q-motifs. (A) Shown are gene
expression (log 1 + TPM) patterns of the k=7 modules for each cell state (major row). The number above the heatmap is the number of genes in that mod-
ule. The color corresponds to the level of expression, with more red denoting high expression and more blue denoting low expression. (B) Inferred reg-
ulators for each module across time. Only modules with highest expression and that had TFs as regulators (5, 6, and 7) are shown. The red intensity is
proportional to the z-score significance of the regression weight of a regulator. For all values, see Supplemental Table S6. (C) Transitioning gene sets show-
ing changes into the high expressionmodules (5, 6, 7). Shown are themean expression levels of genes in the gene set (left; red–blue heatmap), themodule
assignment (second), the number of genes in eachmodule (third), and the set of regulators for each gene set (white–red heatmap). Red arrows depict gene
sets discussed in the text. (D) Selected transitioning gene set C216 in the cellular reprogramming data set. The panel shows the member genes of the tran-
sitioning gene set. The columns show the module assignment of each gene, followed by its expression level in each cell state (Expression). The subsequent
groups of columns are the levels of the regulator on the gene promoters. The name of the regulator is specified at the bottom of the heatmap.
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reprogramming efficiency (Zhang et al. 2018). These gene sets can
also provide clues into factors governing reprogramming efficien-
cy as they retain a somatic MEF-like state in the pre-iPSC stage.

Using DRMN to gain insight into regulatory program dynamics

across a long time course

The reprogramming study showed DRMN application to a short
time course (three to four time points). We next tested the ability
of DRMN to analyze temporal dynamics of a longer 16 time point
data set measuring transcriptomic and accessibility profiles during
hepatocyte dedifferentiation (Seirup et al. 2022). This data set also
showed DRMN application when only accessibility and gene ex-
pression are measured. Dedifferentiation of primary cells such as
liver hepatocytes is a major challenge in studying normal liver
function, as well as for liver-related diseases (Elaut et al. 2006).
Dedifferentiation could be due to the changes in the regulatory
program over time; however, little is known about the transcrip-
tional and epigenetic changes during this process. We applied
DRMN to this data set to characterize the transcriptional dynamics
and predict regulators associated with major changes in
expression.

Using DRMN, we partitioned the genes into five levels of ex-
pression (1–5) at all time points (Fig. 5A). Comparison of module
assignments across time showed that module 1, associated with
lowest expression was most conserved across time points, whereas
modules 2, 3, and 4, showed transitions happening between 4 and
6 h and 14 and 16 h (Supplemental Fig. S11). The relatively high
conservation of the repressed module 1 was in contrast to DRMN
modules from the reprogramming study, where it was least con-
served. The repressed state was enriched for developmental pro-
cesses (Supplemental Table S2), whereas the other modules were
enriched for diverse metabolic processes. Modules 4 and 5, which
are associated with induced expression, are enriched for more liv-
er-specific metabolic function such as coenzyme metabolism and
acetyl CoAmetabolism, andmodules 2 and 3were enriched for ge-
neral housekeeping function such as nucleic acid metabolism.We
next examined the regulators associatedwith eachmodule predict-
ed by DRMN (Fig. 5B), which we previously showed to bemore rel-
evant to liver state than simpler enrichment-based methods (Fig.
3A). Focusing on the highly expressed modules (3, 4), we found
several liver factors, for example, NFKB (Luedde and Schwabe
2011), FOXK1, FOXK2 (Le Lay and Kaestner 2010; Sakaguchi
et al. 2019), ONECUT2 (Clotman et al. 2005; Laudadio et al.
2012), and LHX9 (Rétaux et al. 1999), that are likely important
for maintenance of the hepatocyte state (Fig. 5B). In addition,
we found several regulators involved in cell fate decision making,
for example, TCF3 (Cole et al. 2008) and SMAD2 (Uemura et al.
2005). The cell fate regulators are enriched in the later part of
the time course, indicating their potential roles in dedifferentia-
tion. As before, we verified that the regulators were expressed in
the time point they were selected; in several cases, one or more
members of the same family for the motif were expressed
(Supplemental Fig. S12).

To gain insight into fine-grained transition dynamics and the
regulators driving these dynamics, we again used the DRMNmod-
ule assignments to identify genes that transition from onemodule
to another as a function of time. We identified 84 gene sets with
predicted regulators at ≥60% confidence (Methods; Supplemental
File S1). We focused on those gene sets with a transition intomod-
ules 3, 4, and 5 and identified a total of 25 gene sets with varying
types of transitions (Fig. 5C).Manyof the transitionswere between

modules that are adjacent to each other based on expression levels,
suggesting that the majority of the dynamic transitions are subtle
(e.g., module 4 and 5). Several of these gene sets showed a gradual
up-regulation of expression, for example, C444 (Fig. 5D), C380,
C539, C403, and C460 (Supplemental Fig. S11B–E), exhibiting
transitions at 4 and 6 h, which coincided with the largest changes
in module assignment. Regulators associated with these gene sets
included liver-specific (JUN [C444], STAT5A and STAT5B [C380])
or developmental regulators (IRX1 [C380, C444] [Yu et al. 2017],
SIX6 [C444] [Diacou et al. 2018], and KLF family [C380]). We
also identified gene sets with down-regulation of expression, for
example, C437 (Fig. 5E) and C383 (Supplemental Fig. S11F). Key
regulators included hepatocyte nuclear factors, HBF4G, HNF4A,
CEBPA (C437), the EGR family, as well as several components of
Wnt NF-kB signaling pathways (C383). Early growth response
(EGR) factors have been shown to play important roles in different
liver-related functions including repair and injury (Magee and
Zhang 2017) that have been implicated in liver-specific function
(Rudraiah et al. 2016). To summarize, liver-related regulators
were associated with both up- and down-regulated genes;
however, up-regulated genes were additionally associated with
developmental regulators. These predictions implicate relevant
regulators in liver cell fatemaintenance and offer avenues for func-
tional validation studies to understand dedifferentiation.

DRMN application to find regulators of lineage-specific

expression on hierarchical lineages

To show the utility of DRMNonhierarchically related cell lineages,
we considered a data set profiling early differentiation of human
embryonic stem cells (hEMSCs; H1) into four lineages: mesendo-
derm, mesenchymal, neural progenitors, and trophoblast (Xie
et al. 2013). In addition to accessibility, this data set measured
eight different histone marks: H3K4me1, H3K4me2, H3K4me3,
H3K27ac, H3K9ac, H3K79me2, H3K36me3, and H3K27me3. We
applied DRMN to this data set and identified genes at five major
levels of expression, 1–5, with 1 representing the lowest expression
and 5 the highest (Fig. 6A). The extent of gene conservation de-
pended on the expression level, with states 1 and 2 showing low
conservation and modules 3 and 4 showing high conservation
(Fig. 6B). The low conservation of states 1 and 2 is consistent
with our observations in the reprogramming study.GOprocess en-
richment showed that the repressed module is enriched for devel-
opmental- and lineage-specific functions, whereas the induced
modules tended to be enriched for cell cycle– and translation-relat-
ed processes (Supplemental Table S2). The most repressed genes
showed the largest extent of cell type–specific enrichments, where-
as the induced state was enriched for similar processes.

Wenext examined the regulators selected byDRMN, focusing
on the two highly expressed modules, 3 and 4 (5 was associated
only with histone marks). We verified that the regulators were ex-
pressed in the corresponding lineage they were selected; in several
cases, one or more members of the same family were expressed
(Supplemental Fig. S13). Similar to the reprogramming study, his-
tonemark associations were more conserved across cell types than
TFs, with the elongation mark, H3K36me3, and repressive mark,
H3K27me3, being among the most conserved marks across cell
types. Among the TFs associated with each module, several have
known lineage-specific roles (Fig. 6C). For example, we found sev-
eral neuronal lineage regulators including FOX (Ferri et al. 2007)
andMYB (Malaterre et al. 2008) proteins inmodule 3 of the neural
progenitor cell type, and VSX1 (Francius et al. 2016) and SHOX2
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Figure 5. Application of DRMNs to the hepatocyte dedifferentiation data set using accessibility and Q-motifs. (A) Shown are gene expression (log 1 +
TPM) patterns of the k=5 modules for each time point (major row). The number above the heatmap is the number of genes in that module. The color
corresponds to the level of expression, with more red denoting high expression and more blue denoting low expression. (B) Inferred regulators for
each module across time. Only modules with highest expression and that had TFs as regulators (3 and 4) are shown. The red intensity is proportional
to the z-score significance of the regression weight of a regulator. For all values, see Supplemental Table S6. Bolded names are those discussed in the
text. (C) Transitioning gene sets showing changes into the high expression modules (3, 4, 5). Shown are the mean expression levels of genes in the
gene set (left; red–blue heatmap), the module assignment (second), the number of genes in each module (third), and the set of regulators for each
gene set (white–red heatmap). Red arrows depict gene sets discussed in the text. Some of the regulator names were shortened for space; the full names
are available in Supplemental File S7. (D,E) Selected transitioning gene sets in the hepatocyte dedifferentiation data set. Each panel shows the member
genes of a transitioning gene set (label on top). The columns show the module assignment of each gene, followed by its expression level in each cell
type (Expression). The subsequent groups of columns are the levels of the regulator on the gene promoters. The name of the regulator is specified at
the top of the heatmap. All significant regulators are shown.
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(Scott et al. 2011) in mesendoderm module 4. Similarly, TEAD4, a
regulator important for trophoblast self-renewal (Saha et al. 2020),
was associated with Trophoblast module 4.

We used the DRMN results to examine fine-grained regulato-
ry dynamics of early lineage specification. We focused on 72 gene
sets transitioning into the high expressionmodules, 3, 4, and 5 for

A

B D

C

Figure 6. Application of DRMNs to ESC differentiation data set using histone marks, accessibility, and Q-motifs. (A) Shown are gene expression (log 1 +
TPM) patterns of the k=5 modules for each lineage (major row). The number above the heatmap is the number of genes in that module. The color cor-
responds to the level of expression, with more red denoting high expression and more blue denoting low expression. (B) Similarity of modules across lin-
eages as measured by Jaccard index. The color intensity is proportional to the module match. (C) Inferred regulators for each module across time. Only
modules with highest expression (3 and 4) and that had TFs as regulators are shown. The red intensity is proportional to the z-score significance of the
regression weight of a regulator. For all values, see Supplemental Table S6. (D) Selected transitioning gene set profiles showing changes into the high ex-
pression modules (3, 4, 5). Shown are the mean expression levels of genes in the gene set (left; red–blue heatmap), the module assignment (second), the
number of genes in eachmodule (third), the set of regulators for each gene set (white–red heatmap), and enrichment in lineage-specific gene sets fromXie
et al. (2013). The complete transitioning gene set is shown in Supplemental Figure S14. Some of the regulator names were shortened for space; the full
names are available in Supplemental File S7. Bolded names are those discussed in the text.
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whichwe could predict regulators with high confidence (Methods;
Fig. 6D; Supplemental Fig. S14). These gene sets showed up-regula-
tion in a single lineage (C74, C131) (Supplemental Fig. S15A,B), as
well as in multiple lineages (C112 and C138) (Supplemental Fig.
S15C,D). Xie et al. (2013) independently identified lineage-specific
genes basedonmRNA levels. Themajorityof our gene setswith lin-
eage-specific expression pattern have a significant overlapwith the
Xie et al. (2013) gene sets. For example, gene sets C74, C218 (Sup-
plemental Fig. S15A,E), andC235 (Supplemental Fig. S15F) includ-
ed genes that were repressed in all but the mesenchymal state and
were enriched for Xie et al. (2013) lineage-specific genes for the
mesenchymal state (Supplemental Fig. S14). We see similar results
for gene setswith trophoblast (C226) (Supplemental Fig. S16A) and
neural progenitor up-regulation (C131, C116) (Supplemental Figs.
S15B, S16B). The enrichment in the lineage-specific gene sets from
Xie et al. (2013)wasauseful corroborationofour study; inaddition,
we predicted TFs for several of these gene sets. In particular, gene
sets associated with the neural progenitor cell state were predicted
to be regulated by relevant regulators such as INSM1 (C116), ZIC5
(C131), NFIX (Heng et al. 2014), HOXA2, HOXB2 (Davenne et al.
1999), and TCF4 (all associated with C252) (Fig. 6D; Wittmann
and Häberle 2018). Similarly for the trophoblast-associated gene
sets, we predicted TEAD1 (C118), GMEB1 (C217), SNAI2 (C119),
and NR3C2 (C126), as among the regulators (Fig. 6D). TEAD1,
which is a member of the Hippo signaling pathway, is expressed
in placental cells (Soncin and Parast 2020). GMEB1 and NR3C2
are involved in glucocorticoid signaling, which is implicated in
the development of the placenta (Kisanga et al. 2018). SNAI2 is a
regulator of the epithelial–mesenchymal transition (EMT), which
is a key process in trophoblast development. Finally, we examined
regulators of gene sets showing up-regulation in multiple lineages
(e.g., C120, C140) (Supplemental Fig. S16C,D) and found these
regulators are involved in multiple developmental lineages (e.g.,
GLI1) (Hui and Angers 2011). Taken together, DRMN predicted
key TFs associated with lineage-specific patterns of expression,
expanding on the Xie et al. (2013) study which focused primarily
on histone modifications. Several of these regulators are known
to be involved in these specific lineages, whereas others are novel
predictions participating in relevant pathways that canbe followed
with future functional studies.

Discussion

Cell type–specific gene expression patterns are established by a
complex interplay ofmultiple regulatory levels, including TF bind-
ing, genome accessibility, and histone modifications. To gain in-
sight into regulatory network dynamics associated with cell
type–specific expression patterns, time course and lineage-aware
data sets measuring transcriptomes and epigenomes of a dynamic
process are becoming increasingly available (Wamstad et al. 2012;
Xie et al. 2013; Lara-Astiaso et al. 2014; Chronis et al. 2017; Bunina
et al. 2020). Analyzing these data sets to identify the underlying
gene regulatory network dynamics that drive context-specific ex-
pression changes is a major challenge. This is because of the large
number of variables measured in each context (time point or cell
type), but low sample size for each context. In this work, we devel-
oped DRMN, which simplifies genome-scale regulatory networks
from individual genes to gene modules and infers regulatory pro-
gram for each module in all the input conditions. DRMN offers a
flexible framework to integrate a variety of regulatory genomic sig-
nals. In its simplest form, DRMN can be applied to expression data
sets with sequence-specific motifs to learn a predictive regulatory

model. In its more general form, DRMN can integrate a variety of
regulatory signals such as genome-wide chromatin accessibility,
histone modification, and TF profiles measured using sequencing
and array technologies. Furthermore, DRMN is applicable to data
sets of different experimental designs such as short time series
(e.g., the reprogramming study), long time series (e.g., the hepato-
cyte dedifferentiation study), and hierarchically related cell types
on lineages (e.g., in the cellular differentiation study).

Central to DRMN’s modeling framework is joint learning of
predictive regulatory programs for each cell type or time point by
usingmultitask learning. Using two different approaches tomulti-
task learning, we show that joint learning of regulatory programs is
advantageous compared to an approach of learning regulatory
programs independently per condition. Although a few models
handlemultiple regulatory signals over time, they are based entire-
ly on clustering of multiple signals in given loci (Ernst et al. 2011;
Roy and Sridharan 2017). Predictive modeling of expression that
also clusters genes into expression groups is more powerful than
clustering expression alone, including approaches that explicitly
model temporal and hierarchical relationships across data sets.
Such models are able to capture fine-grained expression variation
as a function of the upstream regulatory state of a gene.

WeappliedDRMNstodistinct typesofdynamicprocesses that
involved cell fate transitions: mouse reprogramming from a differ-
entiated fibroblast cell state to a pluripotent state (three to four cell
states), hepatocyte dedifferentiation (16 time points), and forward
differentiationofhESCs todifferent lineages (five cell types).When
compared across processes, the repressed modules were least con-
served in the reprogramming and differentiation study, whereas
it was most conserved in the dedifferentiation study. Accordingly,
biological processes were repressed in a cell state–specific manner
in the reprogramming and forward differentiation study, whereas
we saw a common down-regulation of developmental processes
in the hepatocyte dedifferentiation data set. Furthermore, there
were greater changes in expression in the reprogramming time
course compared to dedifferentiation, indicating the difference in
magnitude of change in the two processes. Using DRMN transi-
tioning gene sets, we asked specific questions tailored to the
process under study. In the reprogramming study, we investigated
transitioning genes that could inform us about the incomplete re-
pression of the somatic program (Sridharan and Plath 2008;
Chronis et al. 2017), which is considered a major barrier in repro-
gramming efficiency and identified previously implicated, as well
as novel, TFs that can be followed up with perturbation studies.
In the dedifferentiation study, we predicted a combination of
developmental- and liver-specific regulators associated with genes
induced or repressed as a function of time. Finally, in the forward
differentiation study, we identified lineage-specific genes, many
of which had significant overlap with the original study (Xie
et al. 2013) and predicted several TFs in addition to histone modi-
fications as important regulators for theneural and trophoblast lin-
eages. By identifying TFs associated with different trends of
expression, we expanded on these previous studies which largely
focused on the epigenome dynamics. These predictions offer test-
able hypothesis of regulators driving expression dynamics in cell
fate transitions.

The DRMNmodel can be extended in several directions. One
direction of future work would be to incorporate ATAC-seq signal
frommore distal regions by using genome-wide chromosome con-
formation capture assays (de Wit and de Laat 2012; Gorkin et al.
2014; Fraser et al. 2015), as well as computational long-range pre-
dictions (Whalen et al. 2016; Zhang et al. 2019). Another direction
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would be to use more generic sequence features, such as k-mers
(Setty and Leslie 2015) or deep learning models (Avsec et al.
2021), to enable the discovery of novel regulatory elements and of-
fer great flexibility in capturing sequence specificity and its role in
predictive models of expression. DRMN’s predictive model often
selected elongation marks such H3K36me3 as good predictors of
expression. However, these could represent downstream transcrip-
tional processes rather than upstream regulatory processes.
Explicit modeling of the dependency structure among the regula-
tory features could assist with discriminating regulatory signals
that are upstream of versus downstream from expression. DRMN
relies solely on the sequence specificity of a TF when linking to a
module, which might not be sufficient to distinguish between
paralogous TFs. Incorporation of the TF’s expression level might
be beneficial to distinguish between multiple TFs with similar se-
quence specificities.

In conclusion, DRMN offers a powerful and flexible frame-
work to define context-specific gene regulatory programs from
time series and hierarchically related regulatory genomic data
sets. As additional data sets that profile epigenomic and transcrip-
tomic dynamics of specific processes become available, methods
like DRMN will become increasingly useful to examine regulatory
network dynamics underlying context-specific expression.

Methods

DRMN model description

We define a RMN as the set of modules and their regulators of any
one condition (e.g., cell types, time points). DRMN is a collection
of RMNs, one for each condition related by time or a lineage tree.
In our description below, we assume we have a set of related cell
types; however, the same description applies to multiple time
points or related conditions.

RMN

An RMN Rc for cell type c is denoted by the tuple 〈Gc, Θ c〉. Gc is a
bipartite graph specifying the edges between F features andKmod-
ules, and Θ c are the parameters of the regulator programs for each
module that relate the selected regulatory features to the expres-
sion of genes in themodule. In RMN, each cell type’s data aremod-
eled independently, and we optimize the posterior probability of
each cell type c’s model, defined as P(Rc|Xc, Yc), which is propor-
tional to P(Xc|Yc, Rc)P(Rc). Here Xc is the expression data for cell
type c, Yc is an N× F matrix, with the gth row Yc(g, :) specifying
the values of F features for gene g. RMN models each gene g’s ex-
pression in c, Xcg, as a mixture model as follows:

P(Xcg |Mgc, Rc, Y(i)
c (g, :)) � N

∑

f[{0···Fci}
uci(f )Y(i)

c (g, f ), Sx|Y (i)
cg

⎛

⎝

⎞

⎠. (1)

Here, Mcg= i denotes the module/mixture component, f=0
corresponds to the bias term, Y(i)

c are the features
associated with component i, and Fci denotes the number of
columns of Y(i)

c . The data likelihood for each cell type c
is

∏
g
∑

Mcg
P(Xcg |Mcg , Rc, Yc(g, :))P(Mcg )|Rc). For details, see

Supplemental Methods.

DRMN

The DRMN model is defined by a set of RMNs, R= {R1, · · · , RC},
linked via the lineage tree τ over C cell types. The poste-

rior probability of the model given the data is
P(R1, · · · , RC|X1, · · · , XC, Y1, · · · , YC, t). Based on the Bayes rule,
this can be rewritten as P(X1, · · · , XC|R1, · · · , RC, Y1, · · · , YC)P(R1,
· · · , RC). In DRMN, we model the expression of a gene g across
all cell types together. The data likelihood is defined as

∏

g

[
P(X1g , · · · , XCg |M1g , · · · , MCg , R, Y1, · · · , YC)

P(M1g , · · · , MCg |R, t)
]
P(R|t). (2)

Given the module assignments, Mcg, the gene expressions
across cell types are independent of each other. Hence the proba-
bility of g’s expression across all cell types is

∏

c

P(Xcg |Mcg , Rc, Yc(g, :))

( )
P(M1g , · · · , MCg |t)P(R|t).

Using the tree structure, we assume that the module assign-
ment in a cell type c, Mcg is independent of everything else, given
its parent pa(c) = c

′
in τ, which allows efficient computation of P

(M1g, · · · , MCg|τ) using pairwise conditional distributions,
P(Mcg |Mc′g ). P(Xcg|Mcg, Rc, Yc(g, :)) is computed in the same way as
Equation 1. P(Mcg |Mc′g ) is obtained from the transition probabili-
ties. P(R|τ), specifies a prior over the structure/feature sets in each
of the cell type–specific RMN models, Rc. The former controls
what sets of features get associated with each module i, and how
they change over time. We used two formulations for the former
to enable sharing information: DRMN-ST defines a structure prior
over the graph structures P(G1,…, GC), whereas DRMN-Fused uses
a regularized regression framework and implicitly defines priors on
P(Θ 1, · · · ,Θ C). In both frameworks, we share information between
the cell types/conditions to learn the regulatory programs of each
cell type/condition. For details, see Supplemental Methods.

DRMN learning

DRMNs are learned by optimizing the overall DRMN likelihood
(Equation 2), using an expectation maximization (EM) style algo-
rithm that searches over the space of possible graphs for a local
optimum (Algorithm 1) (Supplemental Methods). In the maximi-
zation (M) step, we estimate transition parameters (M1 step) and
the regulatory program structure (M2 step). In the expectation
(E) step, we compute the expected probability of a gene’s expres-
sion profile to be generated by one of the regulatory programs.
TheM2 step uses multitask learning to jointly learn the regulatory
programs for all cell types using either the framework of DRMN-ST
or DRMN-Fused. DRMN typically converges between the first 15–
20 iterations (Supplemental Fig. S17).

Identification of transitioning gene sets and their regulators

A transitioning gene is a gene whose module assignment changes
in at least one time point/cell type. We grouped the genes into
transitioning gene sets using a hierarchical clustering approach
with city block as a distance metric and 0.05 as a distance thresh-
old. We developed two strategies for selecting regulators for transi-
tioning gene sets: simple linear regression for short time courses
(with five or fewer time points or conditions) and multitask group
LASSO (MTG-LASSO), which is suitable for longer time courses.
Both approaches take as input a list of genes from a transitioning
set and predict the regulators that explain the variation in expres-
sion over time. The simple linear regression approach used the
MERLIN algorithm (Roy et al. 2013) to find regulators that can ex-
plain the overall variation in the expression of genes in the set. The
MTG-LASSO approach used a multitask regression framework that
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performs multiple regression tasks, one for each gene in the set, to
select regulatory features as predictors for each gene’s expression
levels. Once regulators were selected using either approach, we fil-
tered the predicted regulators per gene set by assessing the correla-
tion of the regulator/feature with the gene expression of a gene
across the conditions and included a regulator if it was correlated
to at least five genes with a Pearson’s correlation of 0.6 or higher.
For more details, see Supplemental Methods, “Predicting regula-
tors for transitioning gene sets” section.

Evaluating the ability to model expression

Weassessed the ability of DRMN tomodel expression based on the
ability to capture variation in expression compared to previous ex-
pression clustering methods: simple expression clustering (GMM-
Indep, GMM-merged), time point aware expression clustering
(ESCAROLE) (Chasman et al. 2019), and single-task learningmeth-
ods (RMN-ST and RMN-Fused). We compared the methods using
threefold cross validation (CV). Briefly, we split the data
set along the gene dimension into three parts, each part compris-
ing the expression data and features across conditions for genes in
that part.We used each part as a test set and trained amodel on the
remaining two parts. We used the trained model to generate pre-
dictions on the test set as follows. Let h denote the index of a
test gene in cell type c with measured expression value Xhc, and
let Yc(h, :) be its feature values. As the DRMN, RMN, and GMM
models are all based on a mixture model, we do not know which
component of the mixture generated the expression. Therefore,
we instead first obtain the mixture component with the highest
likelihood of generating the expression:

j = argmax
i

P(Xhc|R(i)
c , Yc(h, :)).

Next, we predict the expression X̂hc from the corresponding condi-
tional mean of the selected component based on the feature
values as

X̂hc = uciYc(h, :),

where Yc(h, :) is augmented with the first column of all ones. To as-
sess amodel’s ability to capture variation, we computed prediction
error betweenXhc and X̂hc. Note that, as inmixturemodels used for
clustering, the prediction models need the knowledge of the ob-
served expression to determine themodel component that should
generate the data and should be interpreted in a way similar to test
data likelihood. In the case of DRMN-Fused, which requires hyper-
parameter tuning, we performed an internal threefold CV on the
training set to select the best hyperparameter settings from a grid
search on ρ1∈ {30, 50, 70, 90, 110, 130, 150}, ρ2∈ {0, 10, 30, 50,
70}, and ρ3 = {0, 10, 30, 50, 70}. This way, we select the hyperpara-
meter setting with the best performance on that training set and
used themodel with that hyperparameter setting to assess the pre-
dictive power of the model on the corresponding test set. As a re-
sult, different hyperparameter settings can be selected for each
test set in the outer loop of CV. For selecting the hyperparameters
for running the algorithm on the full data set, we used a simple
threefold CV without internal CV (for details of how parameters
were selected, see “Application of DRMN to different data sets”
section).

Evaluation of predicted regulators and TF–target gene networks

We evaluated DRMN outputs of regulators and TF–target relation-
ships against multiple baseline methods (Fig. 3; Supplemental Fig.
S6). For regulator prediction comparison, we examined two en-
richment-based approaches (regulator enrichment on ESCAROLE

modules and DRMN modules), and DREM 2.0 (v2.0.3) (Schulz
et al. 2012), which infers regulatory models of gene regulation
from time-series data using an input/output HMM approach. To
rank DRMN regulators, we computed change in prediction error
after removing a regulator and used this as a score for the impor-
tance of the regulators. For each module, we performed fivefold
CV to predict the expression of the module as a linear function
of regulators selected for that module. Next, we recalculated the
prediction error after removing a regulator. The total change in
prediction error of each regulator across all modules was used for
ranking the regulators. For the enrichment baseline approaches,
we tested modules from DRMN or ESCAROLE for enrichment of
motif instances and used −log of FDR-corrected P-values of a hy-
pergeometric test (summed over modules) as a score for ranking
regulators. These approaches were applied to the Chronis et al.
(2017) reprogramming, Xie et al. (2013) forward differentiation,
and Seirup et al. (2022) hepatocyte dedifferentiation data sets.

To rank DREM regulators, we first applied DREM to the
Chronis et al. (2017) reprogramming and the Seirup et al. (2022)
hepatocyte dedifferentiation data sets because of their temporal
nature. For both data sets we gave DREM as input: (1) normalized
and log-transformed gene expressionmatrices and (2) binarizedQ-
motif feature data in the required input format forDREM. To binar-
ize the features, values above the genome-wide average were set to
one and values below set to zero. DREM was applied to these data
sets with recommended default settings from the command line.
To obtain a ranking of features, we used the absolute value of the
regression weights of the features provided in the output regulato-
ry state model of DREM; if a feature was selected more than once,
we used the sum of the absolute value. The ranking was used for
computing the AUPR curve. In addition, we also selected a subset
of regulatory features with a coefficient of magnitude >0.001 in at
least one inferred regulatory statemodel and used this set for the F-
score (Fig. 3; Supplemental Fig. S6). Note, we did not have the in-
formation of which regulatory state model is associated with
which cell stage–specific regulators in v2.0.3, although this func-
tionality may be available in the graphical user interface in other
versions of DREM.

We asked how well the predicted regulators recover known
regulators associated with a specific cell type based on the F-score
and AUPR. For the reprogramming and the H1ESC differentiation
data set, we used a list of genes associated with the ESC state as a
gold standard (Supplemental Table S4; Supplemental File S2).
This list was created using genes assigned to the GO terms “regula-
tion of embryonic development” and “embryonic organ develop-
ment” and gene lists from Müller et al. (2008) and Wong et al.
(2008) listed inMSigDB (Subramanian et al. 2005). For the hepato-
cyte dedifferentiation data set, we used a list of important regula-
tors collected from literature (Kyrmizi et al. 2006; Odom et al.
2006; Sheaffer and Kaestner 2012; Wangensteen et al. 2015;
Velazquez et al. 2021). Note that in the Sierup et al. (2022) and
Xie et al. (2013) data sets, Q-motif features were named with Cis-
BP (Weirauch et al. 2014) motif IDs. Before comparison with the
gold standard regulators, these IDs were converted to common
names of the TFs. The Q-motif features for the Chronis et al.
(2017) data were already mapped to common regulator names.
We used the AUCCalculator Java package to calculate AUPR
(Davis and Goadrich 2006).

For regulator–target network comparison, we compared
DRMN to two baseline approaches: enrichment of regulators in
ESCAROLEmodules and enrichment of regulators in DRMNmod-
ules (Supplemental Table S5). For the enrichmentmethods, we cre-
ated a network by mapping regulators associated with a module
(by enrichment) to all genes in the module and scored edges by
the feature values. For DRMN, we scored edges by the input Q-
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motif value multiplied by estimated regression coefficients. As
gold standards, we used ChIP and regulator perturbation-based
(knockdown and knockout of regulators) interactions from the
ESCAPE database (Xu et al. 2013), which provides these interac-
tions in hESCs andmESCs.We also added ChIP-based interactions
identified in mESCs and hESCs from The ENCODE Project
Consortium (The ENCODE Project Consortium 2012), as well as
additional regulator–perturbation interactions identified in
Nishiyama et al. (2009, 2013) and Correa-Cerro et al. (2011). For
mouse hepatocyte dedifferentiation, we additionally used ChIP-
based interactions from the HepG2 cell line from The ENCODE
Project Consortium. We compared the networks based on AUPR
and F-score on the top 50K edges from each approach. The gold
standard regulators and networks are available as Supplemental
File S2.

Application of DRMN to different data sets

We applied DRMN to four different data sets profiling three dy-
namic processes: (a) amicroarray time course data set of cellular re-
programming from MEFs to iPSCs, (b) a sequencing time course
data set using the same system as (a), (c) a sequencing time course
data set profiling dedifferentation of hepatocyte cells, and (d) dif-
ferentiation of H1ESC cells to different lineages. Below, we
describe the data set processing, feature generation, hyperpara-
meter selection, and analysis of transitioning gene sets.

Reprogramming array data

This data set measures gene expression and eight chromatinmarks
in three cellular stages: MEFs, pre-iPSCs, and iPSCs collected from
multiple publications (Maherali et al. 2007; Sridharan et al. 2009,
2013; Roy and Sridharan 2017) (NCBI Gene Expression Omnibus
[GEO; https://www.ncbi.nlm.nih.gov/geo/] accession number
GSE97222). The expression values of 15,982 genes were measured
by microarray. Eight chromatin marks were measured by chroma-
tin immunoprecipitation followed by promoter microarray (ChIP-
on-chip). For each gene promoter, each mark’s value was averaged
across an 8000-bp region associated with the promoter. The chro-
matin marks included those associated with active transcription
(H3K4me3, H3K9ac, H3K14ac, and H3K18ac), repression
(H3K9me2, H3K9me3, H3K27me3), and transcription elongation
(H3K79me2). We considered the following set of features: Motif,
Histone, and Histone+Motif. We used the motif collection avail-
able with the PIQ software (Sherwood et al. 2014) from https://
bitbucket.org/thashim/piq-single/src/master/, which was sourced
from multiple databases (Matys et al. 2003; Sandelin et al. 2004;
Berger et al. 2006). From the full motif list, we used only those an-
notated with TF proteins (Ravasi et al. 2010), resulting in a total of
353 TFs. We used FIMO to find motif instances using the mm9
mouse genome (Grant et al. 2011). Motif instances for the same
TF were further aggregated into a single feature per gene by select-
ing the most significant motif instance based on P-value. This re-
sulted in a total of 353 dimensions for the Motif feature.

To determine suitable range of the number of modules we
used a visual inspection of the modules, the silhouette index,
and overall predictive power. We computed the silhouette index
on expression-alone modules from ESCAROLE runs, visualized
the expression heatmaps to assess the overall expression states,
and found k= 5 or k=7 to be most appropriate (Supplemental
Fig. S18). To determine the hyperparameter settings, we performed
a grid search with threefold CV on a range of values for ρ1 (sparsity
in each task), ρ2 (selection of similar features for closely related cell
types), and ρ3 (selection of similar features for all cell types): ρ1∈
{0.5, 1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120,

130}, ρ2∈ {0, 10, 20, 30, 40, 50}, and ρ3 = {0, 10, 20, 30, 40, 50}
(Supplemental Fig. S19; Supplemental Methods). We focused on
k=7 as it gave visually distinct patterns of expression
(Supplemental Fig. S20) and had a comparable predictive power
to k=5. The top five hyperparameter configurations were {(50,
50, 30), (50, 10, 30), (90, 10, 0), (40, 40, 50), (30, 50, 50)}.
Inspection of the heatmaps of DRMNmodules showed that the re-
sults were similar across these configurations; hence, we selected
the first configuration (50, 50, 30) for DRMN application on the
full data set. DRMN modules were interpreted using GO enrich-
ment using a hypergeometric test with FDR to control for multiple
hypothesis correction and transitioning gene set analysis
(Supplemental Tables S2, S3).

Reprogramming sequencing data

This data set generated by Chronis et al. (2017), assayed gene ex-
pression with RNA-seq, nine chromatin marks with ChIP-seq,
and chromatin accessibilitywithATAC-seq in different stages of re-
programming (MEF, MEF48, pre-iPSC, and ESC) (GEO accession
number GSE90895). The chromatin marks included H3K27ac,
H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3,
H3K79me2, H3K9ac, and H3K9me3. We aligned all sequencing
reads to the mouse mm9 reference genome using Bowtie 2
(Langmead and Salzberg 2012). For RNA-seq data, we quantified
expression to TPMs using RSEM (Li and Dewey 2011) and applied
a log transform. After removing unexpressed genes (TPM<1), we
had 17,358 genes. For the ChIP-seq and ATAC-seq data sets, we ob-
tained per-base-pair read coverage using BEDTools (Quinlan and
Hall 2010), aggregated counts within ±2500 bps of a gene’s tran-
scription start site (TSS), and applied log transformation. Q-motif
features were generated using the motif collection available with
the PIQ software (see Supplemental Methods; Sherwood et al.
2014).

To determine the number of modules, we used the silhouette
index of ESCAROLE clusters (Supplemental Fig. S18) and found
both k=5 and 7 to be appropriate. We used k=7 as this gave visu-
ally distinct patterns of expression (Fig. 4). For hyperparameter de-
termination, we used a threefold CV mode with grid search
(similar to the array data set) (Supplemental Figs. S21–S23) and de-
termined the top five configurations of hyperparameters ρ1, ρ2, ρ3,
as {(10,50,40), (20,50,40), (10,50,10), (40,50,0), (10,50,0)}. As the
DRMN modules were largely similar, we present results for one
of the configurations: ρ1 = 10, ρ2 = 50, ρ3 = 40. The final results for
this data set are obtained by applying DRMN-Fused to the
Histone+Accessibility +Q-Motif feature set with k=7 modules.
We tested themodules for GO enrichment and defined transition-
ing gene sets based on genes that change their module assign-
ments (Supplemental Tables S2, S3). Of the 17,358 genes, 11,152
genes changed their module assignments. We clustered them
into sets of five ormore genes and defined 111 gene sets consisting
of 10,194 genes (the remaining were singleton or genes with sim-
ilarity to four or fewer genes) (Supplemental Table S3). We next
used a simple regression model to predict regulators for each
gene set (see “Identification of transitioning gene sets and their
regulators” section).

Hepatocyte dedifferentiation time course data

The dedifferentiation time course consisted of samples extracted
from adult mouse liver followed by RNA-seq and ATAC-seq analy-
sis at 0, 0.5, 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, and 36 h (16
time points in total) (Seirup et al. 2022). Sequencing reads were
aligned to the mouse mm10 reference genome using Bowtie 2
(Langmead and Salzberg 2012), and gene expression was
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quantified using RSEM (Li andDewey 2011). Any genewith TPM=
0 in all time points was removed, resulting in 14,794 genes with a
measurement in at least one time point. Per-base-pair read cover-
age for ATAC-seq was obtained using BEDTools (Quinlan and
Hall 2010), and counts were aggregated within ±2500 bp of a
gene’s TSS. Both gene expression and accessibility data were quan-
tile-normalized across 16 time points and then log-transformed.

We examined the silhouette index of the ESCAROLE expres-
sionmodules and found k=5 to be appropriate (Supplemental Fig.
S18). Furthermore, as both k=5 and k=7 were reasonable for the
reprogramming sequencing data set, we used k=5 as it was compu-
tationally faster. We applied DRMN-Fused with Accessibility and
Q-Motif as the feature set with k=5 modules. Q-Motif features
were generated similar to the Chronis et al. (2017) data set using
PWMs fromCis-BP database (Weirauch et al. 2014). Motif instanc-
es were scored by the ATAC-seq signal, resulting in a total of 2856
features. The Q-Motif features were quantile-normalized and log-
transformed across the 16 time points. To determine the appropri-
ate settings for the hyperparameters for DRMN-Fused, we scanned
the following range of values: ρ1∈ {30, 50, 70, 90, 110, 130, 150}, ρ2
∈ {0, 10, 30, 50, 70}, and ρ3 = {0, 10, 30, 50, 70} within a threefold
CV setting (Supplemental Fig. S24) and picked the setting with
the lowest overall prediction error. The top five parameter con-
figurations were {(70,10,70), (70,0,70), (90,0,50), (70,30,50),
(70,50,30)}. We finally did a full run of DRMN-Fused with (ρ1 =
70, ρ2 = 10, ρ3 = 70), which had the best prediction error. The
DRMN modules were interpreted with GO enrichment analysis.
We defined transitioning gene sets from the DRMN modules. Of
the 14,793 genes, there were 5762 genes that change their module
assignments, which were grouped into a total of 150 transitioning
gene sets of at least five genes, spanning a total of 5636 genes
(Supplemental Table S3). We next predicted regulators for these
transitioning gene sets using a regularized Group LASSO model,
multitask group LASSO (for more details, see “Identification of
transitioning gene sets and their regulators” section).

H1ESC differentiation into different lineages

The differentiation data set fromXie et al. (2013) profiled gene ex-
pression, accessibility, and histone modifications in hESCs and
four lineages derived from hESCs: mesendoderm, neural progeni-
tor, trophoblast-like, and mesenchymal stem cells (NCBI
Sequence Read Archive [SRA; https://www.ncbi.nlm.nih.gov/sra]
accessionnumber SRP000941). The data set included eight histone
modification marks: H3K27ac, H3K27me3, H3K36me3,
H3K4me1, H3K4me2, H3K4me3, H3K79me1, and H3K9ac. Gene
expression was measured with RNA-seq; histone modifications
were measured with ChIP-seq; and chromatin accessibility with
DNase-seq. We aligned all sequencing reads to the human hg19
reference genome using Bowtie 2 (Langmead and Salzberg 2012).
We do not expect our results to change if we use GRCh38 because
most of the analysis is for protein-coding genes and promoter
proximal regions. We additionally realigned the RNA-seq data to
GRCh38 and observe a correlation of 0.93–0.99 across the cell
lines. RNA-seq data were quantified to TPMs using RSEM (Li and
Dewey 2011), quantile-normalized across cell lines, and log-trans-
formed, resulting in 17,899 genes with expression across all cell
lines. For both the ChIP-seq (chromatin marks) and DNase-seq
data, we obtained per-base pair read coverage using BEDTools
(Quinlan and Hall 2010) and aggregated counts within ±2500 bp
of a gene’s TSS.

DRMNwas applied using the full set of features, Accessibility,
Q-Motif, Histone with k=5 modules. The number of modules was
set following a similar approach as the hepatocyte dedifferentia-
tion data set. Q-Motif features were obtained using Cis-BP human

motif PWM collection by applying utility tools from the PIQ soft-
ware package (Sherwood et al. 2014) on ±2500 bp around a gene
TSS. Each motif instance was scored with the DNase-seq signal, re-
sulting in a total of 2998 features. These features were quantile-
normalized and log-transformed across the cell lines. To determine
the appropriate settings of the hyperparameters, we performed
threefold CV with hyperparameter values in the following ranges:
ρ1∈ {30, 50, 70, 90, 110, 130, 150}, ρ2∈ {0, 10, 30, 50, 70}, and
ρ3∈ {0, 10, 30, 50, 70} (Supplemental Fig. S25). The top five con-
figurations were {(150,0,30), (30,0,0), (150,0,10), (30,0,10),
(130,0,30)} with similar results. The results reported here were gen-
erated by applying DRMN on the full data set with ρ1 = 150, ρ2 = 0,
ρ3 = 30. We note that for this data set, as the relationships between
the cell types are captured by a two-level tree, the ρ2 parameter like-
ly does not have a large effect, and most of the task sharing is suf-
ficiently captured by the global ρ3 parameter. Once modules were
defined, we analyzed them as above and generated transitioning
gene sets. We identified a total of 6988 (of 17,904) transitioning
genes that changed their expression state. We grouped these into
122 gene sets of at least five genes and included 6730 genes
(Supplemental Table S3). We identified regulators for the transi-
tioning gene sets using our simple regression-based approach
(for more details, see “Identification of transitioning gene sets
and their regulators” section).

Data access

The DRMN code is available at GitHub (https://github.com/Roy-
lab/drmn) along with usage instructions and is also available as
Supplemental File S3. Data preprocessing and feature generation
scripts are available at GitHub (https://github.com/Roy-lab/
drmn_utils) and as Supplemental File S4. DRMN input files have
been uploaded to Zenodo and are available at https://zenodo
.org/record/6461721 and as Supplemental File S5. DRMN outputs
have been provided as Supplemental File S6. The necessary map-
ping between motif names and TF names is available in
Supplemental File S7.
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