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Abstract

The identification of deregulated modules (such as induced by oncogenes) is a crucial step for exploring the pathogenic
process of complex diseases. Most of the existing methods focus on deregulation of genes rather than the links of the path
among them. In this study, we emphasize on the detection of deregulated links, and develop a novel and effective
regulatory path-based approach in finding deregulated modules. Observing that a regulatory pathway between two genes
might involve in multiple rather than a single path, we identify condition-specific core regulatory path (CCRP) to detect the
significant deregulation of regulatory links. Using time-series gene expression, we define the regulatory strength within
each gene pair based on statistical dependence analysis. The CCRPs in regulatory networks can then be identified using the
shortest path algorithm. Finally, we derive the deregulated modules by integrating the differential edges (as deregulated
links) of the CCRPs between the case and the control group. To demonstrate the effectiveness of our approach, we apply
the method to expression data associated with different states of Human Epidermal Growth Factor Receptor 2 (HER2). The
experimental results show that the genes as well as the links in the deregulated modules are significantly enriched in
multiple KEGG pathways and GO biological processes, most of which can be validated to suffer from impact of this
oncogene based on previous studies. Additionally, we find the regulatory mechanism associated with the crucial gene
SNAI1 significantly deregulated resulting from the activation of HER2. Hence, our method provides not only a strategy for
detecting the deregulated links in regulatory networks, but also a way to identify concerning deregulated modules, thus
contributing to the target selection of edgetic drugs.
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Introduction

Revealing the mechanisms of oncogenes is a major challenge in

the study of complex diseases, while detecting deregulated modules

induced by oncogenes brings a solution for such issue. Many

previous studies devote to identifying deregulated or mutated

pathways and subnetworks, which provide a way to elucidate the

molecular mechanisms in the pathogenic process. Ideker et al. [1]

present a network-based approach to search for the ‘active’

connected subnetworks by integrating protein-protein, protein-

DNA interaction network with gene expression. The genes

considered in these subnetworks are significantly differentially

expressed. Based on this seminal work, Nacu et al. [2] improve the

scoring function and algorithm considering the correlation among

genes. The results are more biologically interpretable. Ulitsky et al.

[3] give a method for identifying deregulated connected subnet-

works in protein-protein interaction network by analyzing the

deregulation of genes using clinical expression profiles. Based on

gene set enrichment analysis, a dynamic programming algorithm

is presented for finding significantly deregulated paths in tumor

cells by Keller et al. [4]. Recently, Backes and coworkers [5]

propose an integer linear programming method for identifying

deregulated modules and molecular key players, which are

responsible for deregulation. Liu et al. [6] propose a method for

detecting deregulated pathways from derived pathway interaction

network. They formulate the detection as a feature selection

problem based on defining activity scores for each pathway.

Besides these methods for detecting deregulated modules, there

exist several approaches for identifying diverse characteristic

subnetworks, such as response subnetworks after drug treatment

[7], functional modules [8], signal transduction networks [9], and

optimally discriminative subnetworks for classification [10]. Most

of these network-based approaches can be modeled as an

optimization problem by defining adequate scoring functions for

nodes (genes) [1–5], [8], [10]. Especially for detecting deregulated

modules, a typical strategy is that fold change or t-statistical test of

gene expression is used as the measurement for deregulation of

genes under two different cell states. Optimal connected subnet-

works are then identified using different searching algorithms [1],

[3], [5]. As comparison, Vandin et al. [11] define an influence

measure between pairs of genes rather than their scores to identify

mutated subnetworks using a diffusion process. To our knowledge,

most of the existing methods are not originally designed for

directed networks [1–3], [11]. They focus on the deregulation of

genes rather than the links among them [1–5]. Thus, the

regulatory information carried by directed networks is not well
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utilized. However, as the development of edgetic drugs (or drugs

targeting network edges) is on the rise, little attention has been

focused on the gene regulatory networks in this field [12]. We

propose here a promising new direction to study the deregulation

of links in the regulatory network, and provide candidate targets

for the development of edgetic drugs.

In this paper, we develop a novel and effective regulatory path-

based approach for the detection of deregulated modules when

induced by oncogenes. Different from existing works, we not only

consider the deregulation of the genes themselves by constructing

a differentially regulated network, but also provide a strategy for

detecting the deregulated links in regulatory networks. Observing

that a regulatory pathway between two genes might involve in

multiple rather than a single path [13], we design a method to

identify the condition-specific core regulatory path (CCRP) from

the upstream gene to the downstream gene. The regulatory effect

of the CCRPs plays an important role in the regulatory

mechanism. From the same upstream to the downstream gene,

the CCRP may be switched due to the state change of the proto-

oncogenes, reflecting the significant deregulation of the regulatory

links. Our method consists mainly of three key steps: 1) First, given

the time-series gene expression datasets of the case and the control

group, the regulatory strength within each regulator-target gene

pair is measured. For accuracy, we use the log marginal likelihood

scoring method, taking into account the transcriptional time lags

[14]. 2) Second, the shortest path from the upstream to the

downstream gene is used to depict the selected CCRP. As

attempting to detect significant switch of the CCRPs, we select

deregulated pivot genes as seeds to analyze their associated links.

Considering the impact of oncogenes on the regulatory mecha-

nism associated with known crucial genes, such genes can be taken

as seeds. 3) Finally, we derive the deregulated modules by

integrating the differential edges of the CCRPs in the regulatory

subsystems centered on the seed genes between the case and the

control group.

To evaluate our approach, we experiment on the detection of

deregulated modules induced by the Human Epidermal Growth

Factor Receptor 2 (or HER2) oncogene, which is expressed in

approximately 25% of human breast cancers. In our work, the

KEGG human regulatory network [5] and two time-series gene

expression datasets are integrated and analyzed to generate the

deregulated modules. The two datasets are respectively measured

from the breast epithelial cell lines with insulin-independent

transformed phenotype (resulting from the HER2 oncogene

overexpression) and with insulin-dependent non-transformed

phenotype (or HER2 as a proto-oncogene). Using the same

network and the expression datasets, we make comparisons

between our method and the approach presented by Backes et

al. [5], which is primarily designed for directed networks. In

summary, we focus on the detection of deregulated links by

analyzing the CCRPs in regulatory networks. The effectiveness of

our method is demonstrated by the functional enrichment analysis

and the literature evidence. Since evenly spaced time-series gene

expression data with large number of time points are still scarce,

we focus on analyzing this group of expression datasets in this

paper, but further studies on other types of data will extend our

understanding of this approach in the future.

Materials and Methods

Overview
As a brief introduction to our approach, our method

considers a gene regulatory network using two time-series

expression datasets corresponding to the case (when the proto-

oncogene is activated) and the control group (when the proto-

oncogene is in a normal state). We screen out the deregulated

genes in constructing a differentially regulated network. The

regulatory strength of the case and the control group is then

computed as weights to this network. Centered on each seed

gene, two regulatory subsystems are constructed. Finally, we

derive deregulated modules by integrating the differential edges

of the CCRPs, which are identified using a shortest path

algorithm. The workflow of our approach is shown in Figure 1.

Construction of Differentially Regulated Network
We identify differentially expressed genes using SAM

(Significance Analysis of Microarrays) [15] as deregulated genes

in constructing a differentially regulated network. Using time-

series expression datasets of the case and the control group, a

differentially expressed score of each gene is calculated (using

SAM). We screen out deregulated genes using a cutoff which is

determined using statistical analysis. These genes are then

mapped to the nodes of the KEGG human regulatory network

(denoted as G) constructed using the method by Backes et al.

[5]. The procedure integrates all the KEGG regulatory

pathways including the KEGG cancer pathways into a network,

which consists of 2004 nodes (genes) and 10147 directed edges

(as regulatory links). Allowing for the integrity of the links

among genes, the mapping is that if one of the associated nodes

of an edge in the network G can be found among the

deregulated genes, the edge will be reserved. Additionally, all

the reserved nodes should have their corresponding expression

used for the computation of regulatory strength. Otherwise, the

edge will be removed. In the following, we denote this network

as the differentially regulated network DG~(V ,E), where V is

the set of nodes, and E is the set of directed edges.

Scoring for Regulatory Strength
For identification of the CCRPs, we define the regulatory

strength within each regulator-target gene pair as the statistically

dependent degree of a target on its regulator.

We use the log marginal likelihood scoring as the regulatory

strength between a regulator and its target, considering the

transcriptional time lag. The scoring scheme is provided by Zou et

al. [14], which requires evenly spaced time-series gene expression

as input. The transcriptional time lag between each regulator and

its target is estimated using the gene expression of the control

group. Then, with the time lag taken into account, the two log

marginal likelihood scores of each gene pair are computed under

the case and the control group, respectively. The score reflects the

fitting degree of a gene pair expression on their link. Therefore, a

high score indicates that the target is strongly dependent on its

regulator, reflecting a high regulatory strength within the gene

pair.

The scoring method is explained as follows. Estimating the

transcriptional time lag of each gene pair, we determine the time

points of the initial changes in their expression of the control

group. Here, the expression of the case group is not used for the

estimation due to the deregulation effect induced by the

oncogenes. Based on the work of Zou et al. [14], we compute

the fold changes of the gene expression at each time point

compared to the baseline expression. A 1.2 fold (up regulation) or

0.8 fold (down regulation) is used as a cutoff. For example, with

respect to the i-th gene pair Ri{Ti in the network DG, the time

points of their initial changes tp(Ri) and tp(Ti) are determined

according to the following equations:

Detection of Deregulated Modules
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where Expcontrol
Ri=Ti

(j) denotes the gene expression of Ri or Ti at time

point j in the control group. The time-series includes N evenly

spaced time points t1, t2, � � � , tN . Since most transcriptional

regulators exhibit either an earlier or simultaneous change in the

expression when compared to their targets [16], we only consider

the time from tp(Ri) to tN when computing the initial change time

point of target Ti. The difference, tp(Ti){tp(Ri), is defined as the

transcriptional time lag. As an example, we use the expression of a

regulator Ra and its target Ta and is shown in Figure 2.

Next, we discretize the expression of each gene into two levels as

a simplification for the statistical analysis. More levels can be used

if necessary. For each gene, if the expression at a time point is

lower than the average expression, the level at this time point will

be discretized as ‘1’. Otherwise, it will be ‘2’. Based on Zou’s

scoring [14], we utilize the discretized expression levels of each

gene pair with its estimated transcriptional time lag to construct an

expression level matrix. The example is shown in Figure 3.

Finally, with the expression level matrices as inputs, we use the

Murphy’s Bayes Net Toolbox (BNT) (https://code.google.com/p/

bnt/) to compute the log marginal likelihood scores as regulatory

strength. In order to facilitate subsequent computation, we define

the weight of each edge in the DG by

w~10000|({scoreStrength), ð3Þ

where scoreStrength refers to the related regulatory strength (i.e. the

log marginal likelihood score). Thus the two weighted differentially

regulated networks DGcase~(V ,E,Wcase) and

DGcontrol~(V ,E,Wcontrol) are constructed.

Construction of Regulatory Subsystem Centered on a
Seed Gene

Given the regulatory strength, the relative importance of

multiple regulatory paths between two genes can be ranked. We

use the shortest path from the upstream gene to the downstream

gene in depicting the CCRP. Since the pivot genes identified based

on betweenness centrality have strong ability to control the

CCRPs among other genes, the deregulation of such genes may

cause significant switch of the CCRPs. For detecting the

significantly deregulated links, it is important to select deregulated

pivot genes as seeds.

Figure 1. Workflow of our approach. The figure shows the workflow of our approach. Given the time-series gene expression datasets of the case
and the control group, 15 deregulated genes are selected to map to the nodes of KEGG human regulatory network G. Allowing for the integrity of
links among genes, we construct the differentially regulated network DG consisting of 17 nodes and 25 directed edges. For each regulator-target
gene pair, we compute the regulatory strength of the control (colored by blue) and the case (colored by red) and the two weighted differentially
regulated network DGcontrol and DGcase are constructed. Centered on the seed gene ‘g10’, which is colored by yellow, the two regulatory subsystems
RScontrol and RScase are extracted. The deregulated module is derived by integrating the differential edges of the CCRPs. Here, the CCRP from ‘g4’ to
‘g11’ is switched. In the control group, the CCRP is ‘g4Rg7Rg10Rg11’. While in the case group, it is ‘g4Rg10Rg16Rg11’.
doi:10.1371/journal.pone.0070412.g001

Figure 2. Estimation of transcriptional time lag. The figure shows the estimation of transcriptional time lag. In this example, with respect to the
Ra-Ta gene pair, the time points of the initial changes in their expression of the control group are t3 and t6 , respectively. Thus, the transcriptional
time lag is t6{t3~3 time unit.
doi:10.1371/journal.pone.0070412.g002
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Specifically, the betweenness centrality [17] of each node in the

network DGcase and DGcontrol is computed as:

BC(i)~
X

s=i=t

sst(i)

sst

, ð4Þ

where sst is the total number of shortest paths from node s to node

t and sst(i) is the number of those paths which pass through node

i. Thus, BC(i) depicts the ability of gene i to control the CCRPs

among other genes. In other words, if the gene i gets a high

betweenness centrality, it is considered to be a pivot, playing an

important role in maintaining the normal regulatory mechanism.

After computing the betweenness centrality of all the nodes in both

DGcase and DGcontrol , we select the top ranking genes (as

deregulated pivots) as our seeds based on their statistical

distribution. From the perspective of crucial genes identified as

causing diseases (or deregulation), such genes can be taken as seeds

to evaluate the impact of oncogenes on their associated regulatory

network, which could be a very important issue in understanding

the regulatory mechanism that biologists concern.

We extract the upstream and the downstream subnetworks of a

seed gene from DGcase=control , whose combination is denoted as a

regulatory subsystem. Centered on each seed gene, two regulatory

subsystems RScase and RScontrol are thus constructed.

Detection of the Deregulated Modules
The CCRPs in the RScase and RScontrol are identified using the

shortest path algorithm [18]. From the same upstream to the

downstream gene, the differential edges of CCRPs between the

case and the control group are identified as the deregulated links.

With respect to different gene pairs, these links may have the same

parts. It is clear that the more the same parts that exist, the more

stable and significant the deregulated module will be. We then

integrate the deregulated links of all the upstream-downstream

gene pairs into a subnetwork denoted as the deregulated module.

It is worth noting that there is no deregulated link for some gene

pairs, indicating that the associated regulatory mechanism does

not suffer significant impact from the oncogenes. For different seed

genes, multiple deregulated modules can be derived.

Over-Representation Analysis on Deregulation of Genes
To evaluate our method, we perform the over-representation

analysis (ORA) on the deregulated modules with GeneTrail [19].

The genes of a module and the network G are used as test set and

reference set, respectively. The significance p-values are computed

using the False Discovery Rate (FDR) adjustment method

proposed by Benjamini and Hochberg [20].

Network Ontology Analysis from the Deregulation of
Regulatory Links

We also perform network ontology analysis (NOA) [21] from

the deregulated links. NOA is a powerful tool to capture the

function changes caused by the switch of the CCRPs, which is

induced by the activity of the oncogenes. In the deregulated

module, the edges that belong to the CCRPs in RScase and the

RScontrol are used as test set, respectively. All the edges in the

network G are used as reference set. We can then observe the

changes of enriched GO biological processes between the control

and the case group.

Results

To evaluate our proposed method, we analyze the time-series

gene expression of the breast epithelial cells with two different

metabolic phenotypes due to the state change of HER2. The

amplification or overexpression of this oncogene plays an

important role in the pathogenesis of multiple human cancers.

Time-Series Expression Datasets
Two time-series gene expression datasets are respectively

measured after the treatment of the HER2-specific inhibitor

CP724, 714 for the breast epithelial cells with insulin-independent

transformed phenotype (denoted as the ‘‘case’’ group) and with

non-transformed phenotype (denoted as the ‘‘control’’ group) [22].

Such treatment blocks HER2 kinase activity, which facilitates to

detect the differentially regulatory effects of HER2 on other genes

and their links between the activated state and the normal state. It

is the differential regulation that reflects the deregulation induced

by the oncogene. In the datasets, each time-series includes 16 time

points with even time lag and the expression profiles are retrieved

from NCBI Gene Expression Omnibus (GEO) with the accession

number of GSE23137 and GSE23138. The gene expression

profile is obtained using the Illumina humanRef-8 v2.0 expression

BeadChip with 20589 features corresponding to 18190 genes. The

signal intensity is log2 transformed and normalized using quantile

normalization with IlluminaGUI in R. Subsequently, we apply our

method to these expression datasets to identify deregulated

modules in the regulatory network G.

Deregulated Modules
We evaluate the selection of the seed genes using two different

ways. First, deregulated pivot genes are selected as the seeds to

detect significant switch of the CCRPs induced by the HER2

oncogene. Second, in order to study the impact of HER2 on the

regulatory mechanism associated with known crucial genes, we

select snai1 homolog1 (SNAI1), currently thought to be involved in

tumour invasion [23], as seed to analyze its associated CCRPs.

1) Impact on the CCRPs associated with the deregulated pivot

genes. Since the seed genes to be selected are of strong control

ability and significantly deregulated feature, we use SAM with the

differentially expressed score of 3.6 (P,0.05) as a cutoff to screen

out deregulated genes. Here, the cutoff is determined based on the

statistical distribution of differential scores of all the genes in the

microarray, which is shown in Figure 4. Then, the directed

network DG consisting of 654 nodes and 1015 edges is constructed.

After computing the regulatory strength, we use MatlabBGL

(http://dgleich.github.io/matlab-bgl/index.html), a Matlab graph

package, to compute the betweenness centrality of all the genes in

the DGcase and DGcontrol . When the top ranking genes are

selected, the value of 1000 (P,0.05) is used as a cutoff. Thus, we

obtain 20 different seed genes (including the first 19 genes of the

case group and first 20 genes of the control group), which are listed

Figure 3. Construction of expression level matrix. As is shown in
Figure 2, the transcriptional time lag between Ra and Ta is 3 time unit.
After discretizing the expression of the gene pair, we organize
ExpLevelRa

and ExpLevelTa
into the expression level matrix, where

the expression level of Ra at time point ti is aligned with the expression
level of Ta at time point tiz3 time unit.
doi:10.1371/journal.pone.0070412.g003
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in Table 1. We then derive 20 deregulated modules from the

corresponding regulatory subsystems. In particular, we find none

of these deregulated modules has a unique structure such that

eight, four and three of the 20 modules have the same structures,

respectively. The remaining modules are either the subgraphs of

the aforementioned modules or have similar structures with each

other. This observation indicates that the identified deregulated

modules are stable and significant. We denote the union of these

modules as the integrated deregulated module.

Using the visualization software Cytoscape [24], Figure 5 shows

the integrated deregulated module consisting of 49 nodes and 86

directed edges. When performing ORA on this module, we find

that many KEGG pathways associated with cancers are signifi-

cantly enriched. Remarkably, most of the enriched pathways are

verified to suffer significant impact from the HER2 oncogene (for

examples see [22], [25–35]). Ten of the strongly validated

enriched KEGG pathways with their significance adjusted p-

values are listed in Table 2. The remaining enriched pathways

include at least five genes of the integrated deregulated module

(Table S1). When performing NOA on this deregulated module

with the 43 edges belonging to the control group as test set, we

obtain a group of enriched GO biological processes. Similarly

except for setting another 43 regulatory links belonging to the case

group as test set, another result is obtained. Comparing the two

enrichment results (Table 3), we find that the functions are mainly

enriched in the ‘Regulation of biological process’, ‘Metabolic

process’, and ‘Cellular process’ in the control group. In the case

group, besides the regulation of different metabolic processes, the

functions are significantly enriched in the ‘Signal transmission via

phosphorylation event’, ‘Intracellular protein kinase cascade’, and

‘JAK-STAT cascade’. (Note in the ‘Discussion’ section, we will

further elaborate the enriched KEGG pathways and the GO

biological processes and compare our method with the approach

presented by Backes et al. [5].).

2) Influence on the CCRPs associated with known crucial genes.

Transcriptional factor SNAI1 regulates the epithelial-mesenchy-

mal transition (EMT), a process where cancer cells attain

fibroblastic features and thus invade the surrounding structures

[36–38]. Here, we focus on the deregulation of the SNAI1

associated regulatory mechanism. Since the crucial gene SNAI1 is

involved in sparse links in the network, strictly high SAM cutoff

will change the structure substantially of its associated CCRPs. We

lower the cutoff to construct a network DG with relatively large size

(1284 nodes and 3792 edges). With SNAI1 as the seed gene, we

derive a deregulated module consisting of 9 nodes and 13 edges,

shown in Figure 6. When we perform ORA on this deregulated

module, the result shows that many cancers related KEGG

pathways are significantly enriched, including ‘Colorectal cancer’,

‘Pancreatic cancer’, and ‘Renal cell carcinoma’. Moreover, we

find that ‘TGF-beta signaling pathway’ is the most significantly

deregulated (P,4.26e-8). All the enriched pathways are given in

Table S2. We also perform NOA to analyze the result. Making

comparisons between the two groups of enriched GO biological

processes (Table 4), we observe that the functions are significantly

enriched in the morphogenesis related processes and different

receptor signaling pathways in the control group. While in the case

group, the functions are significantly enriched in the process of

‘regulation of gene-specific transcription’ and ‘response to

hypoxia’. Detailed elucidation on the enriched KEGG pathways

and GO biological processes is presented in the next section.

Discussion

In this work, we propose a novel method for detecting

deregulated modules based on the regulatory path. Most of the

existing methods use optimization algorithms to search connected

subnetworks based on the deregulatory scores of genes. On the

other hand, the deregulation of the regulatory links is of much

importance in the detection, with intuitive interpretation for

edgetic drugs. To compare our method with previous approaches,

we apply the method of Backes et al. [5] to the same time-series

expression datasets, and integrate the same network in the

analysis. Based on their work, we set the size of deregulated

modules ranging from 10 to 25 nodes. Combining these 16

optimal modules, we obtain a stable union deregulated module

consisting of 33 nodes. We perform ORA with the genes of this

deregulated module as test set and the genes of the network G as

reference set. Compared with the enrichment results of our

method, we find that the KEGG pathway of ‘Ubiquitin mediated

proteolysis’, ‘Glioma’, and ‘Prostate cancer’ are significantly

deregulated in both results. These pathways can be confirmed to

be affected by the HER2 oncogene [25–27]. It is reported that

HER2 overexpression causes the down-regulation of p27 by

accelerating the ubiquitin-mediated degradation process of p27,

which is an important prognostic marker in many types of cancers

[25]. All the enriched KEGG pathways with respect to the union

deregulated module generated by Backes’ method [5] are given in

Table S3. However in our results, 24 genes in the integrated

deregulated module are most significantly enriched in the ‘Jak-

STAT signaling pathway’ (P,1.25e-15), whose deregulation can

contribute directly and indirectly to tumorigenesis [39]. Such

significant result is in agreement with the observation that the

Table 1. List of seed genes for detecting significant switch of
CCRPs.

Entrez Gene ID Gene symbol Betweenness centrality

22800 RRAS2 6511

4301 MLLT4 5357

3675 ITGA3 5089 (5139)

998 CDC42 4351 (4353)

4067 LYN 3411

6714 SRC 3089

5582 PRKCG 3079 (3420)

5908 RAP1B 3048

81607 PVRL4 3039 (2968)

1445 CSK 2970

5921 RASA1 2723

3676 ITGA4 2562

8835 SOCS2 1970

5781 PTPN11 1913

9020 MAP3K14 1507

5058 PAK1 1488

6777 STAT5B 1313 (1307)

10451 VAV3 1258

2697 GJA1 1180

7297 TYK2 1008 (966)

The table lists 20 seed genes including first 20 genes of the control group and
first 19 genes of the case group based on betweenness centrality computed by
MatlabBGL. In the third column, when betweenness centrality of a gene is
different between the two groups, the corresponding unit has two values.
Otherwise, only one value is shown.
doi:10.1371/journal.pone.0070412.t001
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HER2 oncogene induces JAK-STAT signaling [28]. This

deregulated pathway is closely associated with the insulin receptor

signaling, which is known to be significantly influenced by the

activation of HER2 [22]. Moreover, Li et al. [29] show that in the

breast cancer tissues, HER2 enhances the expression of chemokine

receptor CXCR4 which can mediate the movement of cancer

cells. Such influence may lead to significant deregulation of the

chemokine signaling pathway, in which the genes in our results are

enriched. Consistent with the observation that overexpression of

the HER2 oncogene transforms MCF10A cells into an insulin-

independent phenotype [22], we also find ‘ErbB signaling

pathway’ and ‘Insulin signaling pathway’ both significantly

enriched in the integrated deregulated module. Furthermore, the

pathway of ‘Adherens junction’ and ‘Tight junction’ are also

significantly deregulated in our results. This can be confirmed as

well since Carraway et al. [30] indicate that HER2 oncogene

disrupts tight junctions or adherens junctions in order to dissolve

interepithelial cell interactions, leading to a loss of cell polarity and

the initiation of invasion. Similar conclusion is also reported by

Muthuswamy et al. [31].

Different from Backes’ method [5], we can identify the

deregulated links by detecting the switch of the CCRPs between

the control and the case group. NOA can capture the dynamic

changes of enriched functions for the CCRPs. According to the

Figure 4. Statistical distribution of differentially expressed scores of all the genes in the microarray. SAM is used to compute the
differentially expressed score of each gene. And the score of 3.6 (P,0.05) is considered as a cutoff to select deregulated genes.
doi:10.1371/journal.pone.0070412.g004

Table 2. Significantly enriched KEGG pathways with respect to the integrated deregulated module.

Enriched KEGG pathway Expected number of genes Observed number of genes p-value (FDR adjusted)

Jak-STAT signaling pathway 3.12 24 1.2416e-15

Ubiquitin mediated proteolysis 1.11 6 0.00273782

Chemokine signaling pathway 3.25 10 0.00329205

Pathways in cancer 6.85 15 0.00545622

Glioma 1.43 6 0.00705588

Non-small cell lung cancer 1.18 5 0.0122739

Adherens junction 1.81 6 0.0168058

ErbB signaling pathway 1.94 6 0.0215711

Tight junction 2.97 7 0.0371006

Insulin signaling pathway 3.02 7 0.0388454

The table lists the results of ORA on the integrated deregulated module. Ten of the strongly validated significantly enriched KEGG pathways are presented. Their
significance p-values are calculated using the FDR adjustment method.
doi:10.1371/journal.pone.0070412.t002
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results shown in Table 3, we find that the functions in the control

group are not only enriched in the regulation of biological and

different metabolic processes, but also significantly enriched in the

process of ‘response to chemical stimulus’ (P,8.9e-9), which is

consistent with the treatment of HER2-specific inhibitor on the

cell lines. However, the process of ‘signal transmission via

phosphorylation event’ and ‘intracellular protein kinase cascade’

are significantly enriched (P,1.2e-7) in the case group, which is in

line with similar observation that there is an overall increase in

phosphorylation of many pathway proteins associated with cell

migration in human mammary epithelial cells due to HER2

overexpression [40]. Based on the finding that cytokines modulate

glucose transport and increase the expression of the glucose

transporter GLUT1 [41], which facilitates glucose transport in

insulin-independent manner, we consider that the deregulated

process of ‘cytokine-mediated signaling pathway’ is associated with

the cell phenotype of insulin-independent glucose uptake. Addi-

tionally, the process of ‘positive regulation of cell cycle’ is also

significantly enriched in the case group, which can be confirmed

by Harari et al. [42]. Harari et al. observe that HER2

overexpression can lead to dysregulation of the homeostatic

machinery of the cell cycle. Furthermore, consistent with the

enrichment results of ORA, we also find the process of ‘JAK-

STAT cascade’ significantly deregulated (P,4.6e-6) in the results

of NOA.

The integrated deregulated module is the result by selecting

seed genes from the control perspective. In our work, SNAI1, due

to its major role in tumor progression, is also selected to be the

Table 3. Significantly enriched GO biological processes with respect to the integrated deregulated module.

Control group Case Group

Negative regulation of biological process (GO: 0048519) Regulation of macromolecule metabolic process (GO: 0060255)

Regulation of developmental process (GO: 0050793) Signal transmission via phosphorylation event (GO: 0023014)

Response to chemical stimulus (GO: 0042221) Intracellular protein kinase cascade (GO: 0007243)

Response to organic substance (GO: 0010033) Regulation of metabolic process (GO: 0019222)

Positive regulation of macromolecule metabolic process (GO: 0010604) Regulation of primary metabolic process (GO: 0080090)

Positive regulation of metabolic process (GO: 0009893) Intracellular signaling pathway (GO: 0023034)

Regulation of macromolecule metabolic process (GO: 0060255) JAK-STAT cascade (GO: 0007259)

Positive regulation of cellular process (GO: 0048522) Positive regulation of cell cycle (GO: 0045787)

Positive regulation of cellular metabolic process (GO: 0031325) Regulation of cellular metabolic process (GO: 0031323)

Positive regulation of biological process (GO: 0048518) Cytokine-mediated signaling pathway (GO: 0019221)

The table lists the results of NOA on the integrated deregulated module. All the significantly enriched GO biological processes in the control and case group are
presented, respectively.
doi:10.1371/journal.pone.0070412.t003

Figure 5. Integrated deregulated module. The figure shows the integrated deregulated module consisting of 49 gene nodes and 86 directed
edges, which include both 43 edges belonging respectively to the control (colored by blue) and the case group (colored by red). The seed genes are
colored by yellow. Note that not all the 20 seed genes appear in the deregulated module.
doi:10.1371/journal.pone.0070412.g005
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seed gene. From previous works, Wilson et al. reveal that the

overexpression of HER2 alters components of the TGF-beta

signaling pathway [43]. Yamanaka et al. find HER2 frequently

overexpressing in human pancreatic carcinoma [35]. Co-overex-

pression of EGFR and HER2 is detected in renal cell carcinoma

(RCC) by Stumm et al. [44]. Moreover, the activation of HER2 is

detected in colorectal cancers [45–47]. In agreement with all these

observations, we find that the KEGG pathway of ‘TGF-beta

signaling pathway’ (P,4.26e-08), ‘Colorectal cancer’ (P,7.76e-

03), ‘Pancreatic cancer’ (P,7.76e-03), and ‘Renal cell carcinoma’

(P,7.76e-03) are all significantly enriched in our SNAI1

associated deregulated module according to the results of ORA.

In addition, analyzing the results of NOA (Table 4), we find that

the significantly enriched functions in the case group are

transformed into the process of ‘regulation of gene-specific

transcription’ (P,0.02), ‘response to hypoxia’ (P,0.025), and

‘response to oxygen levels’ (P,0.027), when compared with the

enriched functions in the control group. Moreover, Hypoxia-

Inducible Factor 1A (HIF-1A) is also a member of the SNAI1

associated deregulated module. Such observations are in line with

the results of existing studies. Laughner et al. [48] demonstrate

that HER2 oncogene signaling increases the synthesis rate of HIF-

1A, which is a ‘‘master’’ gene controlling the hypoxic response and

sensitive to the oxygen level. HIF-1A, a transcription factor, can

promote the transcription of its multiple specific target genes

including glucose transporters and enzymes involved in glycolysis.

HIF-1A also enhances the activity of these proteins which plays an

important role in maintaining the high rate of glucose uptake [49].

Therefore, increased expression of HIF-1A induced by the HER2

oncogene may contribute partly to the cell phenotype transform-

ing into insulin-independent glucose uptake. Based on these

analyses, we can conclude that the SNAI1 associated regulatory

mechanism is significantly affected by the HER2 oncogene.

In summary, we have developed a novel and effective regulatory

path-based approach for identifying deregulated modules. Fur-

thermore, we apply successfully to the time-series gene expression

associated with HER2. Compared with existing methods, our

approach is designed primarily for directed regulatory networks,

and the regulatory information is well utilized by estimating the

regulatory strength within the gene pairs. Outperforming the

method by Backes et al. [5], more KEGG pathways are

significantly enriched in our results that can be validated by

previous studies. Moreover, we not only consider the deregulation

of the genes themselves, but also the detection of the deregulated

links. Interestingly, even though we do not devise to search

connected subnetworks by optimal algorithms [1–3], [5], integrat-

ing the deregulated links (differential edges of the CCRPs) can

often construct a connected subnetwork which indicates a close

association among different deregulated pathways. It is noted that

functional enrichment analysis and the literature evidence both

demonstrate the effectiveness of our method. Our method not only

can be applied to gene expression with two stages (e.g. the case and

control), it can also be applied to expression with multiple stages.

Thus dynamic change of deregulation in the progression of

diseases can be detected if a sufficiently large number of time

points with even time lag dataset and the appropriate selection of

SAM cutoff are available. As a whole, our method provides not

only a novel strategy for the detection of deregulated links forming

a network, it also identifies concerning deregulated modules, thus

Figure 6. SNAI1 associated deregulated module. The figure
shows the SNAI1 associated deregulated module consisting of 9 gene
nodes and 13 directed edges. This includes 7 and 6 edges belonging
respectively to the control (colored by blue) and the case group
(colored by red). The seed gene SNAI1 is colored by yellow.
doi:10.1371/journal.pone.0070412.g006

Table 4. Significantly enriched GO biological processes with respect to the SNAI1 associated deregulated module.

Control group Case Group

Anatomical structure morphogenesis (GO: 0009653) Wound healing (GO: 0042060)

Organ morphogenesis (GO: 0009887) Regulation of localization (GO: 0032879)

Positive regulation of cell differentiation (GO: 0045597) Positive regulation of gene-specific transcription (GO: 0043193)

Transforming growth factor beta receptor signaling pathway (GO: 0007179) Response to chemical stimulus (GO: 0042221)

Positive regulation of developmental process (GO:0051094) Regulation of gene-specific transcription (GO: 0032583)

Organ development (GO: 0048513) Developmental process (GO: 0032502)

Transmembrane receptor protein serine/threonine kinase signaling
pathway (GO: 0007178)

Regulation of secretion (GO: 0051046)

Regulation of cell differentiation (GO: 0045595) Response to hypoxia (GO: 0001666)

Regulation of epithelial cell migration (GO: 0010632) Response to oxygen levels (GO: 0070482)

Positive regulation of epithelial cell migration (GO: 0010634) Aging (GO: 0007568)

The table lists the results of NOA on the SNAI1 associated deregulated module. All the significantly enriched GO biological processes in the control and case group are
presented, respectively.
doi:10.1371/journal.pone.0070412.t004
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contributing significantly to the target selection for the develop-

ment of edgetic drugs.
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Overexpression of HER2/neu oncogene in human pancreatic carcinoma.

Human Pathology 24: 1127–1134.

36. Soini Y, Tuhkanen H, Sironen R, Virtanen I, Kataja V, et al. (2011)

Transcription factors zeb1, twist and snai1 in breast carcinoma. BMC Cancer

11: 73.

37. Schmalhofer O, Brabletz S, Brabletz T (2009) E-cadherin, b-catenin, and zeb1

in malignant progression of cancer. Cancer Metastasis Rev. 28: 151–166.

38. Wever OD, Pauwels P, Craene BD, Sabbah M, Emami S, et al. (2008)

Molecular and pathological signatures of epithelial-mesenchymal transitions at

the cancer invasion front. Histochemistry and Cell Biology 130: 481–494.

39. Bromberg J (2002) Stat proteins and oncogenesis. Journal of Clinical

Investigation 109: 1139–1142.

40. Wolf-Yadlin A, Kumar N, Zhang Y, Hautaniemi S, Zaman M, et al. (2006)

Effects of HER2 overexpression on cell signaling networks governing

proliferation and migration. Molecular Systems Biology 2: 54.

41. Bédard S, Marcotte B, Marette A (1997) Cytokines modulate glucose transport

in skeletal muscle by inducing the expression of inducible nitric oxide synthase.

Biochem J. 325: 487–493.

42. Harari D, Yarden Y (2000) Molecular mechanisms underlying ErbB2/HER2

action in breast cancer. Oncogene 19: 6102–6114.

Detection of Deregulated Modules

PLOS ONE | www.plosone.org 10 July 2013 | Volume 8 | Issue 7 | e70412



43. Wilson CA, Cajulis EE, Green JL, Olsen TM, Chung YA, et al. (2005) HER-2

overexpression differentially alters transforming growth factor-b responses in
luminal versus mesenchymal human breast cancer cells. Breast Cancer Research

7: R1058–R1079.

44. Stumm G, Eberwein S, Rostock-Wolf S, Stein H, Pomer S, et al. (1996)
Concomitant overexpression of the EGFR and erbB-2 genes in renal cell

carcinoma (RCC) is correlated with dedifferentiation and metastasis. Interna-
tional Journal of Cancer 69: 17–22.

45. Ross JS, Mckenna BJ (2001) The HER-2/neu oncogene in tumors of the

gastrointestinal tract. Cancer Investigation 19: 554–568.
46. Caruso ML, Valentini AM (1996) Immunhistochemical p53 overexpression

correlated to c-erbB-2 and cathepsin D proteins in colorectal cancer. Anticancer
Res. 16: 3813–3818.

47. Kapitanovic S, Radosevic S, Kapitanovic M, Andelinovic S, Ferencic Z, et al.

(1997) The expression of p185(HER-2/neu) correlates with the stage of disease

and survival in colorectal cancer. Gastroenterology 112: 1103–1113.

48. Laughner E, Taghavi P, Chiles K, Mahon PC, Semenza GL (2001) HER2 (neu)

signaling increases the rate of Hypoxia-Inducible Factor 1a (HIF-1a) synthesis:

novel mechanism for HIF-1-mediated vascular endothelial growth factor

expression. Molecular and Cellular Biology 21: 3995–4004.

49. Luo FM, Liu XJ, Yan NH, Li SQ, Cao GQ, et al. (2006) Hypoxia-inducible

transcription factor-1a promotes hypoxia-induced A549 apoptosis via a

mechanism that involves the glycolysis pathway. BMC cancer 6: 26.

Detection of Deregulated Modules

PLOS ONE | www.plosone.org 11 July 2013 | Volume 8 | Issue 7 | e70412


