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Background
Gliomas are primary brain tumors that arise from differentiated glial cells and include 
oligodendroglioma, malignant glioma, ependymoma, astrocytoma, oligoastrocytoma, 
and not otherwise specified [1]. In the United States of America, 45.7% of tumors in chil-
dren and adolescents are gliomas [2]. Owing to inherent heterogeneity, the prognosis 
of gliomas varies across different subtypes, with 5-year survival rate of 82.7% for oligo-
dendroglioma and 6.8% for glioblastoma [2]; thus, rendering robust prognosis prediction 
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challenging. Several factors, including age, tumor grade, chemotherapy, and radiother-
apy, have been associated with glioma prognosis [3]. Moreover, molecular subtypes have 
shown distinct differences in survival time. miR-215 overexpression [4], miR-637 sup-
pression [5], and IDH1 wildtype [6] were associated with the poor prognosis of patients 
with glioma. However, these predictors of prognosis are unstable and greatly influenced 
by samples selection [7]. We aim to find a new approach for a more accurate glioma 
prognosis prediction.

Deep learning, a branch of machine learning to model high level abstractions of data 
using multiple layers of neurons consisting of complex structures [8], has dramatically 
improved speech recognition, visual object recognition, object detection, and other 
domains, such as drug discovery and genomics [8]. The advent of deep learning algo-
rithm and the accessibility of multi-omic data represent a new approach for the identi-
fication of survival-sensitive subtypes. A recent study which employed a deep learning 
approach to jointly analyze methylation, miRNA expression, and mRNA expression 
data, showed improved efficiency in the identification of features linked to survival com-
pared with the use of principal component analysis (PCA) or Cox proportional hazards 
(Cox-PH) [9]. However, this approach has rarely been used for glioma subtyping.

Herein, using RNA sequencing (RNA-seq) and DNA methylation (DNAm) data from 
The Cancer Genome Atlas (TCGA), we trained an autoencoder-based model (a deep 
learning algorithm) to identify survival-sensitive subtypes, and used DNAm-driven 
genes of subtypes to find the pathways associated with prognosis of gliomas.

Results
Identification of two subtypes of gliomas

We preprocessed RNA-seq and DNAm data from TCGA dataset as input features for 
the autoencoder framework (architecture of autoencoder is shown in Additional file 1). 
From the bottleneck hidden layer of autoencoder, we obtained 100 new features; 46 of 
the 100 new features were found to be significantly associated with survival using uni-
variate Cox-PH models (p < 0.05). K-means clustering (cluster number ranging from 2 
to 6) was applied to the 46 features, and the optimal number of clusters was found to be 
2 (calinski harabasz score = 144.58, silhouette score = 0.19; Additional file 2). Thus, we 
clustered the samples into two subtypes (G1: 346 and G2: 217; Fig. 1); there was signifi-
cant difference in survival time between the subtypes, with the G2 subtype exhibiting a 
worse prognosis (log-rank p < 0.0001; Fig. 2a).

Robustness assessment

To predict on TCGA 2-omics testing dataset, we trained the SVM model from a com-
bination of the top 100 mRNAs and 100 methylation features (Additional file  3). The 
model produced a high C-index (0.92 ± 0.02), low brier score (0.16 ± 0.02), and signifi-
cant log-rank p value (p < 0.0001; Table 1). For the TCGA GBM tumor type, we obtained 
a C-index of 0.84, brier score of 0.13. As the GBM tumor type had only 56 samples, log-
rank p value was not significant (p = 0.70; Additional file 4). For the TCGA LGG tumor 
type, we obtained a C-index of 0.90, brier score of 0.16, and significant log-rank p value 
(p < 0.0001; Additional file 4). We further predicted on TCGA single omic testing data-
set using the corresponding top 100 mRNAs or 100 methylation features. The model 
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Fig. 1  Study design workflow for the identification of glioma subtypes

Fig. 2  Kaplan–Meier survival curves of the two subtypes in TCGA and CGGA datasets. a TCGA dataset. b 
CGGA DNAm dataset. c CGGA RNA-seq dataset

Table 1  Cross validation-based performance of the SVM model on TCGA testing dataset

SVM, Support vector machine; geo.mean, geometric mean

Ten folds cross validation C-index, mean (SD) Brier score, mean 
(SD)

Log-rank p 
value, geo.
mean

TCGA 2-omics testing dataset (40%) 0.92 (0.02) 0.16 (0.02) 4.68E−12

TCGA mRNA testing dataset 0.92 (0.02) 0.17 (0.02) 3.73E−12

TCGA methylation testing dataset 0.95 (0.02) 0.16 (0.03) 6.33E−13
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also had a decent performance in terms of C-index, brier scores, and log-rank p value 
(Table 1).

We further used CGGA RNA-seq and CGGA DNAm datasets as external validation 
datasets (Fig.  1). The number of common features between the top 100 mRNAs and 
CGGA RNA-seq dataset was 94, and that between the top 100 methylation features and 
CGGA DNAm dataset was 62. To predict on two external validation datasets, we uti-
lized the common features to build the SVM models. For the CGGA DNAm dataset, we 
obtained a C-index of 0.70, brier score of 0.21, and significant log-rank p value (p = 0.04; 
Table 2, Fig. 2b). For the CGGA RNA-seq dataset, we obtained a C-index of 0.79, brier 
score of 0.18, and significant log-rank p value (p < 0.0001; Table 2, Fig. 2c).

Autoencoder‑based approach outperforms alternative approaches

The performance of the autoencoder-based approach was compared with that of the two 
alternative approaches, PCA and iCluster. Using PCA, we obtained 100 principal com-
ponents, 29 of which were significantly associated with survival, as determined using 
univariate Cox-PH models (p < 0.05). Moreover, two subtypes were obtained from the 
29 principal components via K-means clustering (G1: 562 and G2: 1; Additional file 5). 
iCluster clustered the samples into two subtypes directly from the initial features (G1: 
509 and G2: 54; Additional file 5). Kaplan–Meier survival curves of three approaches are 
shown in Additional file 6.

The subtypes determined using PCA or iCluster were used as labels to build an SVM 
model with cross-validation. As the G2 subtype of PCA had only one sample, this 
approach failed to build the SVM model to predict on the testing dataset. The autoen-
coder-based approach had a better performance, with a higher C-index (0.92 ± 0.02 vs. 
0.90 ± 0.02), than the iCluster approach (Additional file 7).

Clinical covariate analysis

We examined the statistical differences in clinical covariates between subtypes. The G2 
subtype had a higher tumor grade, shorter follow-up time, and higher proportion of 
GBM type and deaths than the G1 subtype (Additional files 8, 9 and 10). For CGGA 
RNA-seq datasets, the mutation rate of the IDH gene was 51.55%. IDH was less fre-
quently mutated in the aggressive G2 subtype than in the G1 subtype (Additional file 9).

To test whether the accuracy of prediction could be improved by adding clinical infor-
mation, we built a multivariate Cox-PH model (age, gender, tumor types, tumor grade 
and autoencoder subtypes) and compared the model with autoencoder subtypes (G2 vs. 
G1) or tumor types (GBM vs. LGG) only model. The model with autoencoder subtypes 
had better predictive ability than combination model or tumor types model (C-index: 
0.91 vs. 0.86 vs. 0.90; Additional file 11).

Table 2  Performance of the SVM model on two external validation datasets

SVM, Support vector machine

External validation datasets Samples (N) C-index Brier score Log-rank p value

CGGA RNA-seq dataset 970 0.79 0.18 < 0.0001

CGGA DNAm dataset 140 0.70 0.21 0.04
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Functional analysis of the two glioma subtypes

We performed a MethylMix analysis to identify 389 DNAm-driven genes (correlation 
coefficients r <  − 0.3, Wilcoxon rank-sum tests p value < 0.05). Methylation and mRNA 
levels of DNAm-driven genes were visualized via heatmaps (Additional files 12 and 13). 
Among these genes, 305 hypomethylated and highly expressed genes in the G2 subtype 
were significantly enriched in the salmonella infection, axon guidance and glutathione 
metabolism pathway (p < 0.01; Additional file 14, Fig. 3a). Eighty-four hypermethylated 
and lowly expressed genes in the G2 subtype were significantly enriched in the herpes 
simplex virus 1 infection pathway (p < 0.01; Fig. 3b).

Discussion
Deep learning is a subgroup of machine learning that has multiple processing layers [10]. 
This approach has been applied to solve a number of biomedical problems [11], includ-
ing those associated with image analysis [12], genomics [13], and drug discovery [14]. 
Matsui et al. [15] trained a deep learning model to jointly analyze magnetic resonance 
imaging, computed tomography, and positron emission tomography data and identified 
three subtypes of lower-grade gliomas. The autoencoder, a deep learning algorithm, is 
capable of jointly learning from multi-omic data without explicitly defining common 
features [11]. The autoencoder model showed efficiency in the identification of two 

Fig. 3  KEGG pathway analysis of DNA methylation driven genes. a 305 hypomethylated and highly 
expressed genes in the G2 subtype. b 84 hypermethylated and lowly expressed genes in the G2 subtype
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survival-sensitive subtypes of neuroblastoma [16]. However, this approach has rarely 
been used for glioma subtyping.

Herein, we demonstrated that the autoencoder-based approach could capture core 
prognostic features and effectively identify two survival-sensitive subtypes of glioma. 
First, cross-validation results revealed a decent performance in TCGA testing dataset. 
Second, this model was validated in two external validation datasets, CGGA RNA-seq 
and CGGA DNAm. Third, the model showed increased efficiency in the identification of 
features relevant to the prognosis than PCA or iCluster. Finally, the performance of the 
model was not improved upon the addition of clinical information.

We also explored molecular subtypes and biological pathways involved in the progno-
sis of glioma. In concordance with a previous study [6], IDH was less frequently mutated 
in the aggressive G2 subtype than in the G1 subtype. Moreover, we identified 389 
DNAm-driven genes, and found that 305 hypomethylated and highly expressed genes 
in the G2 subtype were significantly enriched in the glutathione metabolism pathway. It 
has been reported that the imbalance of glutamate homeostasis in the central nervous 
system is related to the occurrence and development of gliomas. Glioma cells can release 
a large amount of glutamate, transport glutamate to the outside of the cell through the 
glutamate/cystine transporter, and take cystine into the cell to synthesize glutathione 
to increase the antioxidant capacity of tumor cells [17]. Pharmacologic inhibition of the 
nuclear factor erythroid 2-related factor 2/glutathione pathway via brusatol administra-
tion exhibited a potent tumor suppressive effect on IDH1-mutated glioma in vitro and 
in vivo [18].

There are several limitations in this study. First, more validation datasets are neces-
sary for demonstrating the robustness of the model. Second, the clinical covariates of 
patients are not always known in public datasets, restricting our confirmation effort.

Conclusions
Our study identifies two survival-sensitive subtypes of glioma and provides insights into 
the molecular mechanisms underlying glioma development; thus, potentially providing 
a new target for the prognostic prediction of gliomas and supporting personalized treat-
ment strategies.

Methods
Data extraction and normalization

Data were obtained from TCGA and Chinese Glioma Genome Atlas (CGGA) datasets. 
TCGA, a project to understand the molecular mechanisms of cancer, has data on 1122 
glioma samples [19]; 563 samples with 25,292 genes from RNA-seq and 18,976 genes 
from DNAm data were used as the training dataset. CGGA, a project to investigate brain 
tumors, has data on 2000 glioma samples collected from Chinese cohorts [20]; 970 sam-
ples with 23,271 genes from RNA-seq and 140 samples with 14,476 genes from DNAm 
data were used as external validation datasets.

We applied 2-step normalization on both training and validation datasets [21]. First, 
we used the median absolute deviation on both the training and validation datasets. Sec-
ond, we applied the robust scale normalization on the training dataset, and scaled the 
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validation dataset using the means and standard deviations of the training dataset (Addi-
tional file 15).

Construction of an autoencoder model

The autoencoder algorithm is a reduction method implemented using artificial neural 
networks. We used autoencoder to reconstruct x by the output x′ . Tanh was used as the 
activation function for the i layer [9], that is:

where x and γ are two vectors of size d and p; Wi is the weight matrix of size p × d; bi is 
an intercept vector of size p; and Wi.x gives a vector of size p [9].

For a k-layer autoencoder model, x′ is:

Logloss was used as the loss function to assess the error between x and x′ [9], that is:

To control overfitting, L1 regularization penalty aw was added on Wi , and L2 regulari-
zation penalty aa was added on F1→i(x) [9], that is:

We used preprocessed data from TCGA dataset as the input for the autoencoder 
framework. We constructed a five-layer autoencoder model with three hidden layers 
(500, 100, and 500 nodes). The bottleneck layer was used to obtain 100 new features. We 
set the L1 regularization to 0.0001 and L2 regularization to 0.001. The autoencoder was 
trained using a gradient descent algorithm with 10 epochs and 50% dropout, a learning 
rate of 1E-06, and a batch size of 32 (using the PythonKeras library).

Feature selection and K‑means clustering

Survival-associated features were selected from the 100 new features using univariate 
Cox-PH models (p < 0.05, using the R survival package). The labels for different sub-
types were obtained via K-means clustering from survival-associated features (using the 
Python scikit-learn package). We determined the optimal number of clusters using the 
calinski harabasz score and silhouette score.

Robustness assessment

We demonstrated the robustness of the model using internal and external validation 
datasets. After obtaining the labels, we built a support vector machine (SVM) model 
with cross-validation. The 563 samples of TCGA dataset were split into 10 folds for 
model training and testing with a 6/4 ratio. We selected the top 100 mRNAs or 100 
methylation features of TCGA training dataset based on analysis of variance (ANOVA) 

γ = fi(x) = tanh(Wi.x + bi)

x′ = F1→k(x) = f1 . . . fk−1fk(x)

logloss x, x′ =

d

k=1

(xk log x′k + (1− xk)log 1− x′k )

L
(

x, x′
)

= logloss
(

x, x′
)

+

k
∑

i=1

(aw||wi||1 + aa||F1→i(x)||
2
2)
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F values. To predict on TCGA 2-omics testing dataset, we trained the SVM model from 
a combination of the top 100 mRNAs and 100 methylation features selected above. We 
further predicted on TCGA single omic testing dataset using the corresponding top 100 
mRNAs or 100 methylation features.

We further used CGGA RNA-seq and CGGA DNAm datasets as external validation 
datasets. To predict on two external validation datasets, we utilized the common fea-
tures between the top 100 mRNAs or 100 methylation features of the whole TCGA data-
set and CGGA dataset to build the SVM model.

Evaluation metrics

We used three metrics to reflect the accuracy of survival prediction of the model. Log-
rank p value, used to evaluate the survival difference between subgroups [22], and con-
cordance index (C-index), used to assess the predictive ability of the model [23], were 
calculated using the R survival package. Brier score, used to measure the accuracy of 
probabilistic prediction, was calculated using the Python scikit-learn package [24].

Two alternative approaches

We further compared the performance of autoencoder-based approach with PCA and 
iCluster using the data from TCGA dataset. One hundred principal components were 
obtained by PCA (using the Python scikit-learn package), which was the same number 
as features in the bottleneck layer of autoencoder. Survival-associated principal compo-
nents were selected from the 100 principal components using univariate Cox-PH mod-
els (p < 0.05, using the R survival package). Labels were obtained via K-means clustering 
from survival-associated principal components (using the Python scikit-learn package). 
iCluster obtained labels directly from initial features (using the R iCluster package) [25]. 
After obtaining the labels, we also built SVM models with cross-validation. The perfor-
mance of the model was evaluated using the above three metrics.

Clinical covariate analysis

We examined the statistical differences in clinical covariates (age, gender, tumor grade, 
tumor type) between autoencoder subtypes using Wilcoxon rank-sum tests for con-
tinuous variables and χ2 tests for categorical variables. To test whether the accuracy of 
prediction could be improved by adding clinical information, we built a multivariate 
Cox-PH model (age, gender, tumor grade, tumor type and autoencoder subtypes) and 
compared the model with autoencoder subtypes or tumor types only model.

A systematic review reported that the IDH1 mutation is an independent factor for 
longer overall survival in patients with glioblastoma [6]. We performed χ2 tests on the 
IDH mutation between subtypes from the CGGA RNA-seq dataset.

Functional analysis

Functional analyses were performed to understand the characteristics of the autoen-
coder subtypes from TCGA dataset. DNAm-driven genes were identified by integrat-
ing DNAm and gene expression profiling analyses using the R MethylMix package [26]. 
DNAm-driven genes met the following two conditions: (1) DNAm levels of these genes 
were negatively correlated with the mRNA expression levels. The correlation coefficient 
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was calculated using Spearman’s correlation test (correlation coefficients r <  − 0.3). (2) 
There were significant differences in the levels of DNAm between autoencoder subtypes 
(Wilcoxon rank-sum tests p value < 0.05). Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis was performed to determine the enriched pathways of 
DNAm-driven genes (p < 0.01). The results of KEGG pathway analysis were visualized 
via ConsensusPathDB (http://​cpdb.​molgen.​mpg.​de/).
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