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SUMMARY

Doppelgänger effects (DEs) occur when samples exhibit chance similarities such
that, when split across training and validation sets, inflates the trained machine
learning (ML) model performance. This inflationary effect causes misleading con-
fidence on the deployability of the model. Thus, so far, there are no tools for
doppelgänger identification or standard practices to manage their confounding
implications. We present doppelgangerIdentifier, a software suite for doppel-
gänger identification and verification. Applying doppelgangerIdentifier across
a multitude of diseases and data types, we show the pervasive nature of DEs in
biomedical gene expression data. We also provide guidelines toward proper
doppelgänger identification by exploring the ramifications of lingering batch ef-
fects from batch imbalances on the sensitivity of our doppelgänger identification
algorithm. We suggest doppelgänger verification as a useful procedure to estab-
lish baselines for model evaluation that may inform on whether feature selection
and ML on the data set may yield meaningful insights.

INTRODUCTION

The doppelgänger effect (DE) describes the situation when a machine learning (ML) model performs well

on a validation set regardless of how it has been trained. DE is problematic as it could exaggerate the per-

formance of the ML model on real-world data and potentially complicate model selection processes that

are solely based on validation accuracy. Hence, it is crucial for ML practitioners to be aware of the presence

of any doppelgängers before model validation.

ML has been increasingly adopted in biology. Some notable examples include models predicting

enhancer-promoter interactions, RNA secondary structure, and protein structure. Across these applica-

tions, several independent studies have noted the presence of confounding similarities [similar chromo-

somes (Cao and Fullwood, 2019), RNA families (Szikszai et al., 2022), or shared ancestry (Greener et al.,

2022)]) between training and validation sets resulting in overinflated validation performances. Extrapo-

lating from the above-cited studies, we conjecture that chance similarities between training and validation

sets (causing DEs) would have similar consequences on ML models trained across a wide variety of biolog-

ical data. Indeed, in this paper, we also show that DEs are prevalent in several examples of gene expression

data. Hence, it is crucial to address DEs in biological data to train better models that can explain biology.

Previously. we introduced the phenomenon of DE in biomedical data set and broadly suggested a tech-

nique for identifying (or ‘‘spotting’’) potential doppelgängers between and within data sets (Wang et al.,

2021). There are two key definitions – data doppelgängers (DDs) and functional doppelgängers (FDs).

DDs are sample pairs that exhibit very high mutual correlations or similarities. For example, we may use

pairwise Pearson’s correlation coefficient (PPCC) to identify DDs such that sample pairs with high PPCCs

are also referred to as PPCC DDs. On the other hand, FDs are sample pairs that, when split across training

and validation data, results in inflatedML performance, i.e., the ML will be accurate regardless of how it was

trained (It can be assumed that such models have not truly ‘‘learnt’’). In our previous finding, PPCCDDs also

act as FDs, although we suspect, under certain conditions, that it is also possible for non-PPCC DDs to act

as FDs. To the best of our knowledge, there has been limited literature on how FDs could be readily iden-

tified or any publicly available software for the expressed purpose of FD identification. As of now, we were

only aware of an R package, doppelgangR. However, this package aims to identify duplicate samples be-

tween and within data sets, and does not actually deal with doppelgängers (which are not technical dupli-

cates but rather independent data that somehow resembled each other).

1School of Computer Science
and Engineering, Nanyang
Technological University, 60
Nanyang Drive, 637551,
Singapore

2School of Biological
Sciences, Nanyang
Technological University, 60
Nanyang Drive, 637551,
Singapore

3Lee Kong Chian School of
Medicine, Nanyang
Technological University, 60
Nanyang Drive, 637551,
Singapore

4Centre for Biomedical
Informatics, Nanyang
Technological University, 60
Nanyang Drive, 637551,
Singapore

5Lead contact

*Correspondence:
wilsongoh@ntu.edu.sg

https://doi.org/10.1016/j.isci.
2022.104788

iScience 25, 104788, August 19, 2022 ª 2022 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

ll
OPEN ACCESS

mailto:wilsongoh@ntu.edu.sg
https://doi.org/10.1016/j.isci.2022.104788
https://doi.org/10.1016/j.isci.2022.104788
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2022.104788&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


In this descriptor paper, we address the following gaps from our previous feature paper regarding DEs:

first, the identification method utilized in the feature paper was only mentioned briefly. Hence, there

may be insufficient details for successful adoption of this practice. Secondly, the feature paper only dem-

onstrates the existence of DE within a single proteomics data set; hence, it does not show the pervasiveness

of the DE across other data modalities such as high-throughput gene expression (genomics). Lastly, the

feature paper does not explore possible limitations of the current approach and possible methods of miti-

gating such limitations.

To address the first research gap, we have developed a new R package, doppelgangerIdentifier, with user-

friendly functions for PPCCDD identification and DD inflationary effect verification, in hopes that this would

lead toward better data science practices in the community. The doppelgangerIdentifier package is

currently available at https://github.com/lr98769/doppelgangerIdentifier together with a step-by-step

guide on how PPCC DDs can be identified and verified within and between microarray and RNA-Seq

data sets.

The second limitation was scope: We previously concentrated our descriptions on a single renal cell carci-

noma (RCC) protein expression (proteomics) data set because RCC has well-defined meta-data, allowing

us to construct a variety of positive and negative evaluation scenarios demonstrating clearly the additive

inflationary effects of DDs. However, RCC is only a single data set representing a single disease type. It

is also derived from mass spectrometry, which is not the most common platform used in the biomedical

or life science community. To address this limitation, we aim to demonstrate the wider implications of

DEs across a wider variety of diseases and biomedical comparisons (i.e., What is the generalizability of

DEs?). We would also like to show that DEs are also present in widely-used gene expression profiling tech-

nologies. Hence, we intend to explore DE in two types of gene expression data sets, namely a well-studied

microarray gene expression data from the study of Belorka and Wong (Belorkar and Wong, 2016) and a

widely available RNA-Seq gene expression data from the Cancer Cell Line Encyclopedia (CCLE) project

(Broad, 2018; Ghandi et al., 2019). This allows us to corroborate our DE studies against prior analyses.

Previously, DDs were identified within a single data set between two even-sized batches. However, this

experimental setup does not account for other compositions of data sets. For instance, a common practice

for ML practitioners in the biomedical field is to utilize multiple data sets from different sources in order to

increase statistical power and reduce uncertainty. This process is referred to as data integration or mega

analysis (Eisenhauer, 2021), which, unfortunately, produces a multitude of problems, the most prominent

of which is known as batch effects (BEs) (Goh et al., 2017). BEs are technical sources of variation that can

confound statistical feature selection, and mislead ML model training. The most common BE correction

method, ComBat, is very widely used (Zhang et al., 2020) and usually assumed to work correctly. However,

ComBat should not be applied carelessly as its efficiency relies on the balance of class distributions across

batches (Li et al., 2021). Moreover, if the new source of data is used as a form of external validation (Ho et al.,

2020a) i.e., theMLmodel is trained on a data set and evaluated on another independently-derived data set,

the DE may overstate the ML model’s performance (Wang et al., 2021). We expect batch effects may

confound DEs, especially when not removed properly. Recently, the effects of batch imbalance on proper

batch effect removal are becoming a serious concern. We believe it may also affect the sensitivity of our

doppelgänger identification algorithm. Thus, our final aim is to see how doppelgänger ‘‘spotting’’ is

impacted when BEs are inadequately dealt with (i.e., what are the technical barriers that prevent us from

correctly estimating and observing DEs?).

RESULTS

Software and code

The doppelgangerIdentifier R package allows users to easily identify PPCC DDs between and within data

sets and verify the impacts of these detected PPCC DDs on ML model validation accuracy. It provides four

functions for computation and visualization:

In Table 1, functions are sequenced (top to bottom) in the order they are usually invoked in: first, PPCC DDs

are identified with getPPCCDoppelgangers and visualized with visualisePPCCDoppelgangers. Using the

PPCC DDs found in getPPCCDoppelgangers, we may construct a CSV file describing the samples in

each training-validation pair. Training-validation pairs should be chosen strategically to have incrementally

increasing numbers of PPCC DDs between the training and validation sets. This allows us to observe the
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inflationary effects of the PPCC DDs easily. Next, we may use verifyDoppelgangers to execute the exper-

iment plan in the CSV file and generate the validation accuracies of all KNN models. Finally, we may use

visualiseVerificationResults to plot the validation accuracies on a scatter-violin plot. If we observe a positive

relationship between the number of PPCC DDs and validation accuracies in the scatter-violin plot, we can

conclude that the detected PPCC DDs (included in the test) are in fact FDs.

To cater to both microarray and RNA-Seq data, we provided an option in the getPPCCDoppelgangers and

verifyDoppelgangers functions to choose between two batch correction methods: (1) ComBat for microar-

ray data and (2) ComBat-Seq for RNA-Seq data sets. We also allow users to use other batch correction

methods by providing a button to toggle the batch correction step in both functions; users can carry out

batch correction with their preferred method before the invocation of both functions and disable batch

correction when using the functions. We recognize that users may want to utilize different similarity metrics

for the identification of DDs, hence, we also provide a parameter to pass in a user-defined correlation func-

tion in the getPPCCDoppelgangers function.

The doppelgangerIdentifier R package also includes four ready-to-use data sets (gene expression count

matrix and meta data in the appropriate formats for all functions in doppelgangerIdentifier). The details

of the data sets are described in Table 2.

The doppelgangerIdentifier R package is available on GitHub (https://github.com/lr98769/doppelganger

Identifier) with instructions for installation and a complete documentation. We also included a step-by-step

tutorial of the package on the renal cell carcinoma proteomics data from our seminal paper (Wang et al.,

2021) and on a breast cancer RNA-Seq data set in the README R Markdown file. All R code used to

generate results and graphs in this paper can be found at https://github.com/lr98769/doppelganger

Spotting.

Demonstration of DD identification with other correlation metrics

Other than Pearson’s correlation coefficient, other correlation metrics such as the Spearman Rank correla-

tion coefficient and Kendall Rank correlation coefficient can also be used to identify DDs. Spearman Rank

correlation coefficient is calculated by first ranking the values in each sample, then Pearson’s correlation

Table 1. List of functions in the doppelgangerIdentifier R package

Function Name Role Used In

getPPCCDoppelgangers Detects PPCC DDs between two batches or within a batch ‘‘PPCC DD identification’’ sections

visualisePPCCDoppelgangers Plot PPCCs from getPPCCDoppelgangers in a univariate scatterplot ‘‘PPCC DD identification’’ sections

verifyDoppelgangers Trains random KNN models according to a user-defined experiment

plan (CSV file describing samples in each training-validation set) to

verify the confounding effects of PPCC DDs identified by

getPPCCDoppelgangers

‘‘Functional doppelgänger testing’’ sections

visualiseVerificationResults Plots validation accuracies of KNN models from verifyDoppelgangers

in scatter-violin plots

‘‘Functional doppelgänger testing’’ sections

Each row describes the name (Function Name), role (Role), and sections of the paper where it is utilized (Used In) of each function in the doppelgangerIdentifer

package. The algorithms for getPPCCDoppelgangers and verifyDoppelgangers were described in greater detail in Methods.

Table 2. List of ready-to-use data sets in the doppelgangerIdentifier R package

Name Description Citation

Rc Renal Cell Carcinoma Proteomics DataSet Guo et al

Dmd Duchenne Muscular Dystrophy (DMD) Microarray DataSet Haslett et al., Pescatori et al

Leuk Leukemia Microarray DataSet Golub et al., Armstrong et al

All Acute Lymphoblastic Leukemia (ALL) Microarray DataSet Ross et al., Yeoh et al

The first column, ‘‘Name,’’ gives the variable names of each data set; the second column, ‘‘Description’’ describes the type of

data set; and the last column, ‘‘Citation,’’ cites the original paper the data sets were retrieved from. The meta data of each

data set are also available in the package with the variables name in the format of ‘‘datasetName_metadata.’’ For instance,

the meta data for the ‘‘rc’’ data set have the variable name ‘‘rc_metadata.’’
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coefficient is applied to the ranked variables. Spearman Rank correlation coefficient measures the mono-

tonic relationship between samples, and is more general than Pearson’s correlation coefficient that only

measures the linear relationship. Using a similar identification method as that of PPCC, Pairwise Spearman

Rank correlation coefficients (PSRCC) are calculated between sample pairs for lymph_lung and large_up-

per data sets. The results are illustrated in Figure 1. On the other hand, the Kendall Rank correlation coef-

ficient is based on the order of the rankings of the variables in each sample. Like the Spearman Rank cor-

relation coefficient, the Kendall Rank correlation coefficient also measures the monotonic relationship

between samples and is more general than PPCC. Using a similar identification method as that of PPCC,

Pairwise Kendall Rank Correlation Coefficients (PKRCC) are calculated between sample pairs for lym-

ph_lung and large_upper data sets. The results are illustrated in Figure 2. Though there are some differ-

ences, it is difficult to say which correlation measure is best. This may depend on the required sensitivity

and precision of the analysis. It may also depend on the data distributions. This warrants deeper analysis.

For the remainder of this paper, we will stick to the use of the PPCC (although users can also switch to their

preferred correlation measures in doppelgangerIdentifier).

Figure 1. Results of PSRCC DD Identification on lymph_lung and large_upper data sets

x-=axis: types of sample pairs based on the similarities of their class and patient. y-axis: PSRCC (Pairwise Spearman Rank Correlation Coefficient) values of

each sample pair. Dots labeled in gray are not PSRCC DDs (data doppelgängers), whereas dots labeled in purple are PSRCC DDs. PSRCC DDs are sample

pairs in ‘‘Same Class Different Patient’’ with a PSRCC value greater than the cut-off. The cut-off is the maximum PSRCC of any sample pair in ‘‘Different Class

Different Patient.’’ The cut-off PSRCC is higher in large_upper (B) than in lymph_lung (A). In sum, 1,034 PSRCC DDs were identified within lymph_lung (A),

whereas 144 PSRCC DDs were identified within large_upper (B).
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FDs in RNA-Seq data

PPCC DD identification

To evaluate the prevalence of the DEs in gene expression data, we explore DEs in other data set types with

different sizes, assay platforms, and disease types. In this section, we focus on identifying PPCC DDs in two

RNA-Seq data sets, lymph_lung and large_upper. Both data sets were named after the two cancer cell lines

present within each subset (cf. Table 3 for meta data of both data sets). PPCC DDs were recognized using

the procedure described in ‘‘data doppelgänger identification with PPCC’’ with each sample assumed to

be taken from different patients and each sample pair defined to have different classes if they are of

different cancer types. The DD identification procedure can be summarized as the calculation of PPCC

values of all sample pairs after batch correction and the spotting of PPCCDDs with a dynamically calculated

PPCC threshold and rules based on sample pair types. The results from applying the PPCC DD identifica-

tion procedure on both lymph_lung and large_upper data sets are illustrated in Figure 3.

Based on the PPCC strip plots in Figure 3, we observe higher PPCC values in lymph_lung for both ‘‘Different

Class Different Patient’’ and ‘‘Same Class Different Patient’’ sample pairs compared with large_upper. This

indicates higher mutual correlations within lymph_lung compared with large_upper.

Figure 2. Results of PKRCC DD Identification on lymph_lung and large_upper data sets

x-axis: types of sample pairs based on the similarities of their class and patient. y-axis: PKRCC (Pairwise Kendall Rank Correlation Coefficient) values of each

sample pair. Dots labeled in gray are not PKRCCDDs (data doppelgängers), whereas dots labeled in purple are PKRCCDDs. PKRCCDDs are sample pairs in

‘‘Same Class Different Patient’’ with a PKRCC value greater than the cut-off. The cut-off is the maximum PKRCC of any sample pair in ‘‘Different Class

Different Patient.’’ The cut-off PKRCC is higher in large_upper (B) than in lymph_lung (A). In sum, 1,719 PKRCC DDs were identified within lymph_lung (A),

whereas 17 PKRCC DDs were identified within large_upper (B).
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Comparing the PPCC DDs identified for both large_upper and lymph_lung, we observed higher numbers

and proportions of PPCC DDs in lymph_lung (692; 1.06% of all sample pairs) compared with large_upper

(6; 0.157% of all sample pairs). We noticed a similar trend when comparing the number of PPCC DD

Table 3. Explored RNA-Seq data set (obtained from the CCLE website)

DataSet Name Tumor Class Distribution ENSEMBL IDs (Genes)

lymph_lung 173 Haematopoietic and Lymphoid Tissue 57,820

lymph_lung 188 Lung 57,820

large_upper 56 Large Intestine 57,820

large_upper 31 Upper Aerodigestive Tract 57,820

We created two data sets from the CCLE data set each with two tumor cell lines: Haematopoietic and Lymphoid Tissue-Lung

(lymph_lung) tumors and Large Intestine-Upper Aerodigestive Tract (large_upper) tumors. The lymph_lung tumor pair was

chosen as both classes had the greatest number of samples in the CCLE data set and we intended to explore the prevalence

of DE in a larger data set. The large_upper tumor pair was chosen as both tumors affect the digestive system.

Figure 3. Results of PPCC DD Identification on lymph_lung and large_upper data sets

x-axis: types of sample pairs based on the similarities of their class and patient. y-axis: PPCC (Pairwise Pearson’s correlation coefficient) values of each sample

pair. Dots labeled in gray are not PPCC DDs (data doppelgängers), whereas dots labeled in purple are PPCC DDs. PPCC DDs are sample pairs in ‘‘Same

Class Different Patient’’ with a PPCC greater than the cut-off. The cut-off is the maximum PPCC of any sample pair in ‘‘Different Class Different Patient.’’ The

cut-off PPCC is higher in large_upper (B) than in lymph_lung (A). There is a wider distribution of PPCCs in lymph_lung compared with large_upper. In sum,

692 PPCC DDs were identified within lymph_lung (A), whereas six PPCC DDs were identified within large_upper (B).
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samples (samples that are PPCC DDs with at least one other sample). There were higher numbers and

proportions of PPCC DD samples in lymph_lung (181; 50.1% of all samples in lymph_lung) compared

with large_upper (9; 10.3% of all samples in large_upper). The higher proportions of PPCC DDs and

PPCC DD samples in lymph_lung compared with large_upper were most likely owing to the presence

of stronger outliers in large_upper for ‘‘Different Class Different Patient’’ samples pairs (large_upper:

Outlier Z score = 3.82448; lymph_lung: Outlier Z score = 3.80650; evident in Figure 3). These stronger

outliers resulted in greater inflation in the PPCC cut-off, which, in turn, resulted in a greater decrease

in DD identification sensitivity.

Comparing the proportions of PPCC DDs and PPCC DD samples in both data sets with proportions from

our feature paper (8.02% of all sample pairs; 50% of all samples), we observed great variations in the pro-

portions of PPCC DDs in data sets of different biological contexts. This establishes the absence of a uni-

versal estimate for PPCC DD proportions for all data sets, further emphasizing the importance of the

PPCC DD identification step.

FD testing

We have identified PPCC DDs in lymph_lung and large_upper data sets. In this section, we verify if these

PPCC DDs have an inflationary effect on the accuracies of trained ML models (Verify that PPCC DDs are

FDs). We apply the verification steps detailed in ‘‘Functional Doppelgänger Testing’’ with the experimental

setup described in Table 4. The verification steps mainly comprise the training of multiple random ML

models and their subsequent evaluation on validation sets with incrementally increasing numbers of

PPCC DD samples (Validation samples that are PPCC DDs with at least one sample in the training set).

We expect a positive relationship between the number of PPCC DD samples and the validation accuracies

of the randomMLmodels if most of the identified PPCCDDs are FDs. The results of FD testing in both data

sets are presented in Figure 4.

In Figure 4A, despite the overall high randommodel validation accuracies, we still observed a positive rela-

tionship between the number of PPCC DD samples and random model validation accuracy; this indicates

that most of the detected PPCC DDs were FDs, capable of inflating model accuracies. Most interestingly,

‘‘50 Doppel’’ (validation set with 50 PPCC DD samples) had higher random model validation accuracies

compared with ‘‘50 Pos Con’’ (validation set with 50 duplicates from the training set). This could suggest

that in some cases, DEs may have stronger inflationary effects compared with leakage. In Figure 4B, we

noted a consistently high randommodel validation accuracy across all training-validation pairs with a slight

decrease in accuracy as the number of PPCC DD samples increased. This peculiar trend suggests two

possible scenarios: (1) The identified PPCC DDs are not FDs but the sample pairs that were removed

from the training-validation set as PPCC DD samples were added were true FDs. (2) The identified PPCC

DDs are FDs; however, they have smaller inflationary effects than the non-PPCC DD FDs they were

replacing.

Analyzing PPCC DD identification outcomes in both data sets, we can conclude that PPCC DD identifica-

tion was more precise in lymph_lung since most of lymph_lung’s detected PPCC DDs were FDs whereas

none of the PPCC DDs in large_upper were obvious FDs. The disparity in PPCC DD identification success

Table 4. Experiment set up for functional doppelgänger testing for both lymph_lung and large_upper RNA-Seq data sets

DataSet Name Training Validation Positive Control Training-Validation Sets

lymph_lung 148 Haematopoietic and

Lymphoid Tissue, 163 Lung

25 Haematopoietic and

Lymphoid Tissue, 25 Lung

25 Haematopoietic and Lymphoid

Tissue, 25 Lung duplicates from

the training set

0 Doppel, 10 Doppel, 20 Doppel,

30 Doppel, 40 Doppel, 50 Doppel

and 50 Pos Con

large_upper 51 Large Intestine, 26 Upper

Aerodigestive Tract

5 Large Intestine, 5 Upper

Aerodigestive Tract

5 Large Intestine duplicates from

the training set, 5 Upper

Aerodigestive Tract

0 Doppel, 1 Doppel, 2 Doppel,

3 Doppel, 4 Doppel, 5 Doppel

and 5 Pos Con

The ‘‘DataSet Name’’ column states the given name of the data set. The ‘‘Training,’’ ‘‘Validation,’’ and ‘‘Positive Control’’ columns show the class distribution of the

training data, validation data in ‘‘i Doppel’’ cases, and the validation data in the ‘‘Pos Con’’ cases, respectively. The ‘‘Training-Validation Sets’’ column lists the

names of the training-validation sets in the experiment set-up. ‘‘i Doppel’’ training-validation sets have validation sets with i number of PPCC DD samples (Vali-

dation samples that are PPCCDDswith at least one sample in the training set). ‘‘i Pos Con’’ training-validation sets have validation sets with i number of duplicates

from the training set
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could be attributed to the presence of stronger outliers in large_upper that strongly impacts PPCC DD

recovery (as pointed out in the previous section). Comparing random model accuracies across both data

sets, we observed higher model accuracies in (A; lymph_lung). A possible explanation for this observation

would be the existence of greater data correlations in lymph_lung (as suggested in the previous section),

which further inflates model accuracy or owing to the larger validation set size in lymph_lung.

Across data sets, the random model accuracies remain close to 1 regardless of the training-validation set.

This may point to the presence of many non-PPCC DD FDs even in the ‘‘0 Doppel’’ cases where no PPCC

DDs exist between the training and validation sets. A reason for the existence of many non-PPCC DD FDs

would be poor FD recovery during PPCC DD identification. Some reasons for poor FD recovery include (1)

limitations of PPCC as a measure of a sample pair’s ability to confound or (2) owing to the identification

method’s susceptibility to outliers (overly strict thresholds owing to ‘‘Different Class Different Patient’’ sam-

ple pairs with anomalously high PPCCs; as observed in the previous section).

How batch imbalance affects DD identification

PPCC DD identification

As all of our input microarray data sets are imbalanced between batches, this needs to be addressed early

in the analysis. Batch imbalances, i.e. different numbers of samples in both batches, have been shown to

worsen the performance of two-step batch correction algorithms like ComBat (Li et al., 2021; Zhou et al.,

2019). Our doppelgänger identificationmethod relies on ComBat to first reduce the impact of batch effects

before PPCC values are calculated (This is a critical step. To see the drastic reductions in PPCC should no

batch correction be performed, please refer to the R Markdown at https://github.com/lr98769/

doppelgangerSpotting/blob/master/rmarkdowns/DMD_no_combat.Rmd). Batch correction can be tricky:

incomplete or inefficient batch correction may leave lingering batch effects that confound sample similar-

ities. We expect that it will lead to reduced sensitivity in DD identification.

Hence, it is of interest to study the impact of batch imbalances on the performance of our doppelgänger

identification algorithm. In this experiment, we observed the PPCC distributions, PPCC cut-off points, and

the number of identified PPCC DDs of each data set pair (DMD, leukemia, and ALL) with and without batch

balancing (Haslett et al., 2002).

Figure 5 and Table 5 depict how the presence of batch imbalance in data sets affects PPCC DD identi-

fication outcomes. In Figure 5, we observed a slight increase in the PPCC cut-off, whereas the overall

PPCC distribution showed the opposite trend for all three data sets after batch balancing; Comparing

the median PPCC values before and after batch balancing, we noted a decrease in PPCC values after

batch balancing. Analyzing the PPCC disparity between sample pairs of different types (‘‘Different Class

Different Patient’’ and ‘‘Same Class Different Patient’’) across all three data sets, we noticed significant

differences in DMD and very subtle differences in leukemia and ALL. The absence of significant differ-

ences in PPCC values between the two sample types diminishes the sensitivity of the doppelgänger iden-

tification procedure in leukemia and ALL (inferred from the lower PPCC DD proportions in Table 5). This

may suggest that in leukemia and ALL, Pearson’s correlation coefficient is an inadequate metric for the

differentiation of FD sample pairs.

Figure 4. Testing inflationary effects of identified PPCC DDs (Pairwise Pearson’s correlation coefficient data doppelgängers) in both lymph_lung

and large_upper data sets

In each subplot, the title describes the data set used, whereas the subtitle states the sizes of the training and validation sets. Each subplot shows the

distributions of model accuracies across different training-validation sets. The x-axis indicates the characteristics of the validation set: ‘‘i Doppel’’ (where i =

0, 10, 20, 30, 40, 50 or 0, 1, 2, 3, 4, 5) refers to a validation set with i number of PPCC DD samples (Validation samples that are PPCC DDs with at least one

training sample). ‘‘i Pos Con’’ (where i = 50, 5) refers to the validation set with i samples duplicated from the training set. ‘‘Neg Con’’ refers to the accuracies

produced by 22 binomial distributions (In A, n = 50 and p = 0.5; in B, n = 10 and p = 0.5). The performance of 22 models with different feature sets (20 models

with random feature sets (gray), onemodel with features of highest variance (pink) and one model with features of lowest variance (green)) were evaluated on

each validation set. The y-axis indicates the validation accuracies of all models (1 indicates all validation samples were correctly classified) (cf. Table 4 for

experiment set up). The scatterplot shows the accuracies of each model, the violin plot shows the distribution of randommodel accuracies and the cross bar

highlights the mean random model accuracy. Accuracies of all models in (A) and (B) appear to be near 1 ((A) displayed higher model accuracies than (B)),

regardless of the number of PPCCDD samples in the validation set. We observed increasingmean randommodel accuracy with increasing numbers of PPCC

DD samples in (A). We also noted a slight decreasing trend in mean random model accuracy with increasing numbers of PPCC DD samples in (B).
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Examining the results in Table 5, we noted significant changes in the number of identified PPCC DDs after

batch balancing; the number of PPCC DDs decreased in the DMD and ALL data sets and increased in the

leukemia data set. From trends discussed in Figure 5 (increasing cut-offs and decreasing PPCC values after

batch balancing), we would expect the number of PPCC DDs to decrease (as seen in DMD and ALL); poten-

tially reducing the number of false positive PPCCDDs (PPCCDDs that do not function as FDs). Surprisingly,

we also noted additional PPCC DDs identified after batch balancing in DMD and leukemia. This increase in

detected PPCC DDs could suggest that balancing our batches before doppelgänger identification may in

some cases lead to a slightly better recovery of PPCC DDs.

While testing for PPCC DDs in the DMD data set, we also detected an outlier in the Haslett et al., 2002)

data set (NOR_12) that produced highly negative PPCC values with all other samples of Pescatori et al.,

2007). A PCA (Principal Component Analysis) plot of the DMD data set paints a similar picture; NOR_12

was isolated from all other samples in PC2. This finding proposes another benefit to performing PPCC

DD identification; the ability to identify anomalies in the data set through studying the PPCC distribu-

tions of individual samples. This makes doppelgangerIdentifier very useful for exploratory data analysis

as well.

FD testing

In the previous section, we have detected PPCC DDs in DMD, leukemia, and ALL data sets. To determine if

these PPCCDDs could induce FD effects, we incrementally added DDs into the training-validation sets and

observed changes in the validation accuracy (see STAR Methods). If we observe an increase in validation

accuracy after adding PPCC DDs to the training-validation set, we can verify that these PPCC DDs are

FDs. We illustrate the results of this procedure on all three data sets in Figure 6.

FD testing aims to verify if identified DDs (This manuscript focuses on PPCC DDs in particular) are true FDs

that are capable of inflating random model accuracies. The results of FD testing on the three data sets

describe three possible outcomes of FD testing: (1) most of the tested PPCC DDs are FDs; (2) some of

the tested PPCC DDs are FDs; and (3) none of the tested PPCC DDs are FDs.

In DMD (Figure 6A), we observed a strong positive relationship between the number of PPCC DD sam-

ples (Validation samples that are PPCC DDs with at least one sample in the training set) and the valida-

tion accuracies of random KNN models. The presence of such a strong positive trend demonstrates that

most of the tested PPCC DDs are true FDs. In leukemia (Figure 6B), we only observed a slight increase in

random model validation accuracies from ‘‘4 Doppel’’ to ‘‘6 Doppel.’’ This observation suggests that not

all of the tested PPCC DDs are true FDs; PPCC DDs added between the ‘‘4 Doppel’’ to ‘‘6 Doppel’’

training-validation sets show inflationary effects and are hence FDs, whereas the PPCC DDs added be-

tween ‘‘0 Doppel’’ and ‘‘4 Doppel’’ are not FDs. In ALL (Figure 6C), there were no changes in mean

Figure 5. PPCC distributions sample pairs between DMD, leukemia, and ALL data sets with and without batch imbalance

x-axis: types of sample pairs based on the similarities of their class and patient. y-axis: PPCC values of each sample pair

(A–F) In (A) and (B), sample pairs containing sample NOR_12 from Haslett et al. (2002) were removed from both scatterplots as they yielded highly negative

correlations with all samples of Pescatori et al. (2007), which suggests the sample is likely an outlier or anomaly. Comparing the PPCC cut-offs before and

after batch correction, we observed that the PPCC cut-off increased slightly for all three data sets

Table 5. Summary of identified PPCC DDs (Pairwise Pearson’s correlation coefficient data doppelgängers) before and after balancing

DataSet

Number of PPCC

DDs in Unbalanced

Number of PPCC

DDs in Balanced

Batch Imbalance

Ratio Description of PPCC DDs

DMD 54 (6.25%) 47 (5.44%) 1.5 2 additional PPCC DDs in the balanced case,

9 additional PPCC DDs in the unbalanced case

Leukemia 6 (0.174%) 9 (0.260%) 1.5 3 additional PPCC DDs in the balanced case

ALL 41 (2.96%) 22 (1.59%) 1.27 9 additional PPCC DDs in the unbalanced case

The first column ‘‘DataSet’’ contains the names of the data sets described in each row. The next two columns contain the number of PPCCDDs and the proportion

of PPCC DDs (percentage of all sample pairs that are PPCC DDs) in brackets in both balanced and unbalanced cases. The ‘‘Batch Imbalance Ratio’’ column de-

notes the extent of batch imbalance in each data set; it is calculated by dividing the batch size of the larger batch by the batch size of the smaller batch. The final

column, ‘‘Description of PPCC DDs,’’ mentions notable observations of PPCC DDs in both cases.
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random model validation accuracies across all training-validation sets, which suggests that none of the

added PPCC DDs were FDs.

The presence of FDs in both DMD and leukemia demonstrates that DEs are also present in other

biomedical data. The differences in the extent of validation accuracy inflation in DMD and leukemia

show that the strength of the DE varies across data sets of different disease contexts. We also observed

in both data sets high random model validation accuracies in ‘‘0 Doppel’’ (where no PPCC DDs exist be-

tween training and validation sets). This observation hints at the presence of non-PPCC DD FDs. Future

work could focus on methods to identify these non-PPCC DD FDs. Ideally, with the exclusion of

both non-PPCC DD FDs and PPCC DD FDs from the training-validation set, the ‘‘0 Doppel’’ case

would then show similar accuracy distributions with the negative control. We also observed that random

feature sets could perform as well or better than the feature set consisting of variables with the highest

variance.

In the previous section, we mentioned that the detected PPCC DDs changed after batch balancing. To

determine if these additionally identified PPCC DDs have an inflationary effect on randommodel accuracy,

we carried out FD testing on these PPCC DDs in a separate experiment set-up described in Table 6. The

results of these tests are depicted in Figure 7.

From the positive trend observed in Figure 7A, we can conclude that the additional PPCC DDs identified

before batch correction were FDs. However, we did not observe any inflation in model accuracies for leu-

kemia or ALL. This result suggests that batch imbalance could influence the identification of PPCC DDs,

resulting in a reduction or increase in the number of identified PPCC DDs. However, these additional

PPCC DDs (in either balanced or imbalanced cases) may not necessarily be FDs (leukemia and ALL data

set). This highlights the importance of the FD testing procedure for the verification of DDs as well as the

importance of the correct treatment of batch effects.

DISCUSSION

DEs are prevalent in a wide variety of biological data. They may disrupt analytical practices centered

around selecting feature sets with the highest validation accuracy (with the expectation that the most ac-

curate model yields the most correct explanation). Observations of DEs and random feature set superi-

ority in DMD and leukemia further emphasize how we should not naively trust any feature selection pro-

cesses or ML outcomes purely based on validation accuracy since high accuracies could be achieved by

any feature set and a good feature set could perform just as well as a random feature set in the presence

of DEs. Such phenomenon is not unheard of: In biology, random signature superiority effects and irrel-

evant signature superiority effects have been observed in breast cancer (Goh and Wong, 2018, 2019; Ho

et al., 2020a; Venet et al., 2011) and are owing to a variety of confounding factors, the most prominent of

which is high class-effect proportion (CEP) (Ho et al., 2020b). For data with high CEP, good accuracy is

assured regardless of feature selection or identification of DDs. This approach is also largely problematic

and untrue given what we know about Rashomon Sets (Rudin, 2019) and ‘‘No Free Lunch’’ theorem (Wol-

pert, 1996).

Figure 6. Testing the inflationary effects of the detected PPCC DDs in the batch balanced case of DMD, leukemia, and ALL data sets

In each subplot, the title describes the data set used, whereas the subtitle states the sizes of the training and validation sets. Each subplot shows the

distributions of model accuracies across different training-validation sets. The x-axis labels describe the characteristics of each training-validation set:

‘‘i Doppel’’ (where i = 0, 2, 4, 6, 8, 10 or 0, 2, 4, 6 or 0, 2, 2, 4, 5) refers to a training-validation set where there are i numbers of PPCC DD samples in the

validation set; PPCC DD samples are samples in the validation set that are PPCC DDs with at least one sample in the training set. ‘‘i Pos Con’’ (where i = 10, 6,

5) refers to training-validation sets with i samples duplicated from the training set. ‘‘Neg Con’’ refers to the accuracies produced by 22 binomial distributions

(n = 10, p = 0.5). The y-axis indicates the validation accuracies of all models (1 indicates all validation samples were correctly classified). The performance of

22 models with different feature sets (20 models with random feature sets (gray), one model with features of highest variance (pink) and one model with

features of lowest variance (green)) were evaluated for each training-validation set. The scatterplot shows the accuracies of each model, the violin plot shows

the distribution of random model accuracies, and the cross bar highlights the mean random model accuracy

(A–C) High random model accuracies can be observed for (A) and (B), whereas for (C), random model accuracies remained close to 0.5 across all training-

validation sets. In (A), a positive relationship between the number of PPCC DD samples and random model validation accuracies is evident. This suggests

that most of the tested PPCC DDs are functional doppelgängers (FDs). In (B), we observed a more gradual increasing trend between ‘‘4 Doppel’’ and

‘‘6 Doppel.’’ This suggests that only PPCC DDs added between ‘‘4 Doppel’’ and ‘‘6 Doppel’’ training-validation sets are FDs.
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Table 6. Experiment set up for functional doppelgänger testing for all microarray data sets

Disease Training Validation Positive Control Training-Validation Sets

DMD 12 DMD and 11 NOR from

Haslett et al. (2002)

5 DMD and 5 NOR from

Pescatori et al. (2007)

5 DMD and 5 NOR duplicates from Haslett et al. (2002) 0 Doppel, 2 Doppel, 4 Doppel, 6 Doppel, 8 Doppel,

10 Doppel and 10 Pos Con

Leukemia 24 ALL and 24 AML from

Armstrong et al. (2002)

5 ALL and 5 AML from

Golub et al. (1999)

5 ALL and 1 AML duplicates from Armstrong et al. (2002)

and 4 AML non-doppelgänger samples from Golub

et al. (1999)

0 Doppel, 2 Doppel, 4 Doppel, 6 Doppel and 6 Pos Con

ALL 15 BCR and 15 E2A from

Yeoh et al. (2002)

5 BCR and 5 E2A from

Ross et al. (2004)

5 E2A duplicates from Yeoh et al. (2002) and 5 BCR

non-doppelgänger samples from Ross et al. (2004)

0 Doppel, 2 Doppel, 4 Doppel, 5 Doppel and 5 Pos Con

DMD

(Additional)

12 DMD and 11 NOR from

Haslett et al. (2002)

5 DMD and 5 NOR from

Haslett et al. (2002)

1 DMD and 2 NOR duplicate from Haslett et al. (2002),

4 DMD and 3 NOR non-doppelgänger samples from

Haslett et al. (2002); (Pescatori et al., 2007)

0 Doppel, DMD_13_P (Unbalanced)b, NOR_2_P (Unbalanced)b,

NOR_7_P (Unbalanced)b and 3 Pos Con

Leukemia

(Additional)

24 ALL and 24 AML from

Armstrong et al. (2002)

5 ALL and 5 AML from

Golub et al. (1999)

2 ALL duplicate from Armstrong et al. (2002), 3 ALL

and 5 AML non- doppelgänger samples from

Golub et al. (1999)

0 Doppel, ALL_22_G (Balanced)a, ALL_19_G (Balanced)a

and 2 Pos Con

ALL

(Additional)

15 BCR and 15 E2A from

Yeoh et al. (2002)

5 BCR and 5 E2A from

Ross et al. (2004)

2 E2A duplicates from Yeoh et al. (2002), 3 E2A and

5 BCR non-doppelgänger samples from Ross et al. (2004)

0 Doppel, E2A_2_R (Unbalanced)b, E2A_13_R (Unbalanced)b

and 2 Pos Con

The ‘‘Disease’’ column states the disease type of the data set. Disease types labeled with the ‘‘(Additional)’’ label describes the set up for testing the functionality of PPCC DD samples identified in the un-

balanced case but not in the balanced case and vice versa. The ‘‘Training,’’ ‘‘Validation,’’ and ‘‘Positive Control’’ columns show the class distribution and source of the training data, validation data in ‘‘i Doppel’’

cases, and the validation data in the ‘‘Pos Con’’ cases, respectively. The ‘‘Training-Validation Sets’’ column lists the names of the training-validation sets in the experiment set-up. ‘‘i Doppel’’ training-validation

sets have validation sets with i number of PPCC DD samples (validation samples that are PPCC DDs with at least one sample in the training set). ‘‘i Pos Con’’ training-validation sets have validation sets with i

number of duplicates from the training set (cf. Table 7 for abbreviations).
aAdditional doppelgängers were identified in the balanced batches case but not in the unbalanced batches case.
bAdditional doppelgängers were identified in the unbalanced batches case but not in the balanced batches case.
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Our results also highlight the importance of checking for DEs before model validation so as to be cognizant

of patterns of mutual correlations present in data. We may exploit these patterns not only to improve

model explainability but also ensure models are minimally biased. As DDs act mostly as FDs, identified

doppelgänger pairs should not be split across training-validation sets.

In addition, the identification of PPCC pairs also allows us to identify anomalous data or outliers, acting as a

data quality assurance check. The validation series comprising increasing doppelgänger loads can also

educate us on the nature of the data well. For example, the performance of randommodels in the ‘‘0 Dop-

pel’’ case could serve as a baseline. If we see high model accuracies, given random signatures in spite of

DDs already being dealt with, it will probably be difficult to extract explainable models from this disease. In

stark contrast, such as in the ALL data, we observed the accuracies of all random KNN models clustered

around 0.5 even as the number of PPCC DDs increased. This observation may suggest little class effects

present in the ALL data set (Figure 6C), which makes it difficult for randomly trained KNN classifiers to

distinguish between classes (BCR-ABL and E2A-PBX1). Indeed, checking for DDs can also help us develop

deeper insight.

While checking for PPCCDDs, it is important for users to be conscious of the impacts of batch imbalance on

the performance of the identification algorithm, especially if data integration is part of the analysis pipeline.

As illustrated by the leukemia data set, the batch imbalance could reduce the number of PPCCDDs, poten-

tially allowing some FDs to remain undetected. Allowing undetected FDs in the validation set could result

in lingering DEs during model testing. Whereas our evaluations only revealed subtle differences between

balanced and unbalanced cases, it is not known how badly data integrity is affected should batch imbal-

ances be very extreme and/or batch effects are large and heterogeneous. Such work warrants an extensive

investigation and goes beyond the scope of this paper. We can only advise that when batch effects and

batch imbalances warrant concern, it is useful to model data with and without balancing to evaluate the

difference. It is also useful to try to model and visualize the batch effect (�Cuklina et al., 2021).

Limitations of the study

Though the PPCC DD identification method has been proven to be able to identify FDs, there is still room

for improvement as seen from the elevated performance in lymph_lung, large_upper, DMD, and leukemia

data sets. In all the above cases, some DEs persist even where no PPCC DDs should exist between training

and validation sets. This may suggest that FDs still exist between the training and validation sets but are

undetectable by PPCC. This could be the result of the shortcomings of Pearson’s correlation (Clark,

2013). The Pearson’s correlation may perform poorly in the presence of outlier values and non-normal

data. Observing the distributions of values in each sample shows that the distribution of signals is far

from normal. Hence, it is possible that non-normality may have reduced the effectiveness of Pearson’s

correlation in detecting DDs. Another possible hypothesis is Pearson’s correlation’s inability to capture

non-linear relationships and therefore, it is unable to identify more complex FDs that are linearly dissimilar

but non-linearly associated. Future work could perhaps focus on incorporating other similarity metrics

robust to non-normal data like Spearman’s measure or metrics capable of detecting non-linear relation-

ships like dCor (Székely and Rizzo, 2009) into the DD identification procedure. We would also explore

Figure 7. Testing the inflationary effects of the additionally detected PPCC DDs in both batch balanced and imbalanced cases of DMD, leukemia

and ALL data sets

In each subplot, the title describes the data set used, whereas the subtitle states the sizes of the training and validation sets. Each subplot shows the

distributions of model accuracies across different training-validation sets. The ‘‘0 Doppel’’ training-validation set describes a training-validation set with no

PPCC DD samples between the training and validation sets; PPCC DD samples are samples in the validation set that are PPCC DDs with at least one sample

in the training set. Subsequent training-validation sets are named after the PPCC DD sample added to the previous validation set (e.g., ‘‘NOR_2_P’’ was

added to the validation set of ‘‘DMD_13_P,’’ the validation set of ‘‘NOR_2_P00 has two PPCC DD samples). Each PPCC DD sample is named according to this

convention: Class_SampleNumber_FirstLetterOfDataSetSource. For example, ‘‘DMD_13_P00 is the 13th sample having the class ‘‘DMD’’ and originates from

the Pescatori data set. The bracketed words ‘‘Balanced’’ and ‘‘Unbalanced’’ written under the PPCC DD sample names inform us in which case they were

identified in. For instance, ‘‘DMD_13_P (Unbalanced)’’ was identified in the unbalanced case but not in the balanced case. ‘‘i Pos Con’’ refers to training-

validation sets with i samples duplicated from the training set (where i = 3 or 2). ‘‘Neg Con’’ refers to the accuracies produced by 22 binomial distributions

(n = 10, p = 0.5). The y-axis indicates the validation accuracies of all models (1 indicates all validation samples were correctly classified). The performance of

22 models with different feature sets (20 models with random feature sets (gray), one model with features of highest variance (pink), and one model with

features of lowest variance (green)) were evaluated for each training-validation set. The scatterplot shows the accuracies of each model, the violin plot shows

the distribution of random model accuracies, and the cross bar highlights the mean random model accuracy.

(A–C) In (A), a positive trend between the random model accuracy and the number of PPCC DD samples can be observed. This suggests that the identified

PPCC DDs are true FDs. This trend was not observed in (B) or (C).

ll
OPEN ACCESS

16 iScience 25, 104788, August 19, 2022

iScience
Article



synergies between these correlation measures and high-dimensional data normalization methods.

Another possible reason for poor FD recovery could be attributed to the presence of anomalously high

‘‘Different Class Different Patient’’ PPCC values (observed in all data sets); this would inflate the PPCC

cut-off reducing the number of detected PPCC DDs. Perhaps future work could attempt to alter the defi-

nition of the PPCC cut-off to be more robust to outliers. We expect that as more in the community become

interested in DEs, more FD identification methods will be developed.

Currently, there are no established methods to remove DEs from a data set without compromising its sta-

tistical power. Possible approaches to neutralizing DEs in data sets include experimenting with different

data transformation techniques like Gene Fuzzy Score (GFS) (Belorkar and Wong, 2016) or feature gener-

ation. A temporary solution to mitigate DEs is to identify FDs before data splitting and to avoid assorting

FDs across training and validation sets. During themodel evaluation, we suggest comparing the accuracies

of fine-tuned ML models with randomly trained models for an unbiased assessment of its performance on

unseen data.

Prevailing data science practices propose the use of non-overlapping data subsets for training, validation,

and testing (Chicco, 2017;Wujek et al., 2016). However, it is becoming increasingly apparent that such prac-

tices are insufficient for a fair assessment of ML models since high associations between training and vali-

dation sets could overexaggerate model performance (Cao and Fullwood, 2019; Greener et al., 2022).

Hence, we recommend doppelgangerIdentifier as a tool to construct training-validation sets with a low

propensity to overstate the model accuracy. We suggest ML practitioners to check for PPCC DDs before

the training-validation split with getPPCCDoppelgangers. With the detected PPCC DDs, assort samples

into training and validation sets with increasing numbers of PPCC DDs and execute the functionality test

with verifyDoppelgangers. With this functionality test, we can check if the identified PPCC DDs are FDs

(if an increase in validation accuracy is observed) and if all FDs have been identified in the 0 PPCC DDs

case. If the validation accuracies of randommodels in the 0 PPCCDDs case centered around 0.5 (consistent

with the accuracy of a randomly trained model; seen in the ALL data set), the validation set would be

deemed suitable for model evaluation (free from DEs). Should an elevated accuracy be observed in the

0 PPCC DDs case (seen in the leukemia data set), the test would inform us of the intensity of the DEs be-

tween the training and validation set even in the absence of PPCC DDs. This could serve as a baseline for

feature selection.

Conclusion

We have shown that the DE is widely observed across a multitude of diseases and high-throughput assay

platforms capturing gene expression. We present doppelgangerIdentifier, a software suite that eases

doppelgänger identification. Our results showed that DEs may be confounded by batch effects such

that when improperly dealt with, lingering batch effects may lead to underestimation of DDs. As the per-

formance of batch correction algorithms drops when batch size imbalances are present in data, we advise

caution. Techniques such as oversampling may be useful, but still requires careful post-hoc analysis. Exam-

ining DEs across a multitude of diseases and phenotype comparisons, the exact presentation of DEs in

each data set and context is unique, and must be interpreted carefully with domain knowledge. We

show that checking for DDs can also serve as robust data quality procedures, useful for assaying data out-

liers and anomalies. In addition, the validation series sets allow us to establish baselines that also inform on

whether feature selection and ML, in general, may yield meaningful insights. Finally, we noted that the use

of Pearson’s correlation may not be sufficiently robust for more complex associations, leading to an under-

estimation of DEs. As DEs are still being investigated, we will devise and evaluate additional approaches,

including combinatorial approaches between batch correction, data normalization, and doppelgänger

detection in future works.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information should be directed to the lead contact, Wilson Wen Bin Goh, (wilsongoh@ntu.edu.sg).

Materials availability

This study did not generate new reagents.

Data and code availability

d The CCLE RNA-Seq data set used was an existing, publicly available data. The data set (CCLE_RNA-

seq_rsem_genes_tpm_20180929.txt.gz) can be downloaded from the CCLE (Broad, 2018) DepMap por-

tal. All 3 preprocessed microarray data sets derived from (Belorkar andWong, 2016) have been added to

the doppelgangerIdentifier package (which is available at https://github.com/lr98769/

doppelgangerIdentifier) and are publicly available as of the date of publication.

d All original code used to generate the results in this manuscript have been deposited at https://github.

com/lr98769/doppelgangerSpotting and is publicly available as of the date of publication. The doppel-

gangerIdentifier package is publicly available as of the date of publication at https://github.com/

lr98769/doppelgangerIdentifier.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

Data sets

To demonstrate the prevalence and platform/disease independence of DEs, we applied our PPCC DD

identification method (doppelgangerIdentifier) on two gene expression RNA-Seq data sets (Broad,

2018; Ghandi et al., 2019) and three pairs of gene expression microarray data sets (Belorkar and Wong,

2016). The details of each data set are summarised in the following two sections:

Gene expression RNA-Seq data sets

The CCLE RNA-Seq gene expression data set is a publicly available data set comprising 1019 cell lines. Ac-

cording to Ghandi et al. (2019), the data set was generated with the following steps: First, RNA-Seq reads

were produced by following the Illumina TruSeq RNA Sample Preparation protocol (for non-strand specific

RNA sequencing). Next, the RNA-Seq reads were aligned with STAR 2.4.2a58. Finally, gene expression

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

3 Preprocessed Microarray DataSets Belorkar and Wong, 2016 https://github.com/lr98769/doppelgangerIdentifier

CCLE RNA-Seq Data Set Cancer Cell Line Encyclopedia, 2018 https://depmap.org/portal/download/api/download?

file_name=ccle%2Fccle_2019%2FCCLE_RNAseq_

rsem_genes_tpm_20180929.txt.gz&bucket=depmap-

external-downloads

Software and algorithms

doppelgangerIdentifier R Package This paper https://github.com/lr98769/doppelgangerIdentifier

R Version 4.0.3 R Foundation for Statistical Computing https://cran.r-project.org/bin/windows/base/

Other

Original code used for result generation in this paper This paper https://github.com/lr98769/doppelgangerSpotting
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levels were estimated with RSEM v.1.2.22 from the RNA-Seq reads. In this manuscript, we only utilised 448

cell lines out of the 1019 cell lines in the CCLE data set. Table 3 summarizes how the CCLE RNA-Seq data

was divided into two cross-class data sets.

The two above RNA-Seq data sets contain samples bearing different diseases and were obtained using a

different gene expression profiling technology from the renal cell carcinoma microarray gene expression

data set evaluated in our seminal paper. Owing to the larger size of the lymph_lung data set, we can

observe the impacts of DE on a larger RNA-Seq data set. However, since both data sets were obtained

from the same source, we assume no batch effects exist within the data set and hence will not be perform-

ing any batch correction. As a result, we will not be exploring the effects of batch imbalance on batch

correction efficacy with these data sets.

Gene expression microarray data sets

The gene expression microarray data sets were derived from 6 independently-derived microarray data sets

(Armstrong et al., 2002; Golub et al., 1999; Haslett et al., 2002; Pescatori et al., 2007; Ross et al., 2004; Yeoh

et al., 2002) each with different data generation methods. Refer to see Table for a summary of the data gen-

eration methods for each data set. see Table summarizes how pairs of gene expression microarray datasets

sharing the same class labels were merged with reference to the original data table published by Belorkar

and Wong (Belorkar and Wong, 2016).

Table of explored microarray data sets

Disease Source Affy GeneChip Class Distribution

DataSet

Size

Probes Before

Mapping

ENSEMBL IDs

Before Merging

ENSEMBL IDs

After Merging

DMD Haslett et al. (2002) HG-U95Av2 12 DMD, 12 Control 24 12,600 8,987 8,813

DMD Pescatori et al. (2007) HG-U133A 22 DMD, 14 Control 36 22,283 13,077 8,813

Leukemia Golub et al. (1999) HU-6800 47 ALL, 25 AML 72 7,129 5,472 5,145

Leukemia Armstrong et al. (2002) HG-U95Av2 24 ALL, 24 AML 48 12,564 8,967 5,145

ALL Yeoh et al. (2002) HG-U95Av2 15 BCR-ABL, 27 E2A-PBX1 42 12,625 8,987 8,813

ALL Ross et al. (2004) HG-U133A 15 BCR-ABL, 18 E2A-PBX1 33 22,283 13,077 8,813

We explore data sets of the following two diseases: Duchennemuscular dystrophy (DMD) and leukemia. The DMDdata set comprises normal and DMD samples.

The leukemia data set comprises two different types of leukemia: acute lymphocytic leukemia (ALL) and acute myeloid leukemia (AML). The ALL data set com-

prises Acute lymphocytic leukemia samples with two different mutations: BCR-ABL and E2A-PBX1 (refer to Table 8 for the data processing methods of each

data set).

Table 8. Summary of microarray data generation methods. The following table was compiled with reference to the sources of each microarray data

set

DataSet Name Description of Data Generation Method

Haslett et al. (2002) 24 quadriceps biopsies (12 from DMD patients, 12 from controls). RNA extraction with Trizol, Hybridized to

HG-U95Av2 GeneChips. GeneChip scanning with Affymetrix/Hewlett–Packard G2500A Gene Array Scanner.

Expression values calculated with Affymetrix GeneChip Ver. 5.0 software

Pescatori et al. (2007) 36 quadriceps biopsies (24 from DMD patients, 12 from controls). RNA extraction with Trizol, Hybridized to

HG-U133A GeneChips, GeneChip scanning with Affymetrix G2500 GeneChip scanner. Raw data processed

with the log scale robust multiarray analysis (rma) procedure by Irizarry et al. (2003), then normalized and

background-corrected. Genes with little variation (having less than 20% of arrays having variation greater than

1.5 times the median) across arrays were excluded from the data set

Golub et al. (1999) 38 leukemia samples from bone marrow aspirates (27 childhood ALL, 11 adult AML) and 34 independent

leukemia samples (24 bone marrow, 10 peripheral blood; 20 childhood ALL, 4 adult AML, 10 childhood

AML). Extracted with Trizol (Gibco/BRL), RNAqueous reagents (Ambion) or aqueous extraction (Qiagen).

Hybridized to HU-6800 GeneChips. No mention of data processing methods

(Continued on next page)
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These three data sets in Table explore different diseases beyond the proteomics renal cell carcinoma (RCC)

data set we used previously (Wang et al., 2021). Since all three data set pairs were independently-derived

using different microarrays, substantial batch effects are expected to exist once integrated or merged. In

addition, all data set pairs have different sample sizes which allows us to explore the effects of such batch

size differences on the subsequently identified PPCC DDs. Before the following experiments were carried

out, the pairs of data sets were combined into a single data set with the following procedure:

1. All probes of both data sets were converted to ENSEMBL IDs using biomaRt (Except GolubData

since the hu6800 chip was not found in biomaRt, instead the library hu6800.db was utilized).

2. To ensure a one-to-onemapping between the probes and ENSEMBL IDs in both data sets, all probes

with no ENSEMBL ID were removed. Probes with multiple ENSEMBL IDs were replaced by the

ENSEMBL ID with the smallest value (ENSEMBL IDs were ordered using the default R order function

and all ENSEMBL IDs after the first ENSEMBL ID were removed). We took the median values of

probes sharing the same ENSEMBL ID. After this procedure, both data sets would consist of unique

ENSEMBL ID variables.

3. To join both data sets without any null values or data imputation (since both data sets may not have

the same number and type of ENSEMBL IDs), we took the intersection of ENSEMBL IDs between

both data sets. This set of ENSEMBL IDs would be the ENSEMBL IDs of the joined data set.

4. Both data sets were joined along the shared set of ENSEMBL IDs.

Methods

Data doppelgänger identification with PPCC

In our feature paper, we used a simple method for identifying PPCC DDs (Wang et al., 2021). Like Wal-

dron et al. (Waldron et al., 2016), we define similarity based on Pearson’s Correlation Coefficient (PCC)

across sample pairs. This is known as the pairwise PCC or PPCC. PPCC is meaningless if calculated for all

sample pairs without context. For example, PPCC calculated for technical replicates of the same sample

will always be high. But these are not true doppelgängers as they are merely repeated measures of the

same sample. Replicates of the same sample accidentally split into training and validation data in ML will

cause ‘‘leakage’’ issues (Kaufman et al., 2012). DDs are similar to data leakage, but covers the scenario of

non-replicate samples being too similar (by chance) or broadly dissimilar except in a few critical ways

(e.g., decision rules used by the ML). Waldron et al. (Waldron et al., 2016) looked for duplicates based

on the highest PPCCs. However, if they have checked the meta-data, then they would have realized these

were technical replicates of the same sample being used across a multitude of studies. The PPCC tech-

nique in itself cannot differentiate leakage and DDs, and so devising context based on meta-data is

necessary.

The contextual rules we set are as follows: In clinical data comprising samples taken frommultiple patients,

we first calculate PPCCs between sample pairs of the same class thatmust come from different individuals

(P1). Next, we calculate PPCCs between sample pairs of different classes (P2). If replicate information is pre-

sent, then we may calculate PPCCs between sample pairs of the same class which come from the same

Table 8. Continued

DataSet Name Description of Data Generation Method

Armstrong et al. (2002) 48 leukemia samples from peripheral blood or bone marrow (24 ALL, 24 AML). Extracted with Trizol.

Hybridized to HG-U95Av2 GeneChips. Expression values calculated with Affymetrix GeneChip software.

Raw data normalized with a linear scaling method

Yeoh et al. (2002) 42 bone marrow samples (15 BCR-ABL, 27 E2A-PBX1). Extracted with Trizol. Hybridized to HG-U95Av2

GeneChips. GeneChip scanning with a laser confocal scanner (Agilent). Expression values calculated with

Affymetrix Microarray software v.4.0. Average intensity difference (AID) values of each sample were normalized

Ross et al. (2004) 33 bone marrow (BM) aspirates or peripheral blood (PB) samples (15 BCR-ABL, 18 E2A-PBX1). Hybridized

to HG-U133A GeneChips. Expression values calculated with Affymetrix Microarray Suite 5.0 (MAS 5.0). Raw

data scaled to 500 with global methods. Parameters for the determination of detection values (present,

marginal, or absent) were set to default values
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individual (P3). P3 is optional, and can only be performed if technical replicates (batches) are present.

Comparing P1 against P2, we may spot DDs for pairs in P1 where PPCC is greater than the maximal of

P2. If P3 is present (the PPCC distribution of technical replicates), then wemay better define DDs, by stating

that DDs should be between minimum PPCC of P3 and above the maximum of P2. Also, any sample in P1

with PPCCs within the PPCC-distribution ranges of P3 would mean the samples are so similar they look like

technical replicates. If the majority of samples behaved like this, one must exercise great caution when at-

tempting ML model development.

Before PPCC DD identification, we may employ data preprocessing methods like batch-correction and

min-max normalisation. If batch effects exist in the data set, apply batch correction methods like

ComBat or ComBat-Seq (sva implementation is included in doppelgangerIdentifier). If the data set re-

quires data realignment after batch correction, the data can be transformed with min-max normalisation

(this step can be toggled in doppelgangerIdentifier) prior to the PPCC DD identification steps detailed

below:

1. Pearson’s correlation coefficients were calculated between samples. This value is defined as the pair-

wise Pearson’s correlation coefficient (PPCC).

2. Sample pairs are labelled and split based on the previously-described contextual rules.

3. A threshold for identifying PPCC data doppelgängers is defined based on the previously-described

contextual rules.

4. Sample pairs in P1 with a PPCC value greater than the calculated threshold are identified as PPCC

DDs.

ComBat was chosen as the default batch correction method for PPCC DD identification as it has been high-

lighted as the standard for batch correction in numerous academic papers for proteomic studies, gene

expression microarray data and high-throughput data (Chen et al., 2011; �Cuklina et al., 2021; Leek et al.,

2010). In addition, ComBat (and its subsequent refinements such as ComBat-Seq) is the only batch correc-

tion method which caters to both microarray and RNA-seq gene expression data sets.

The above procedure can be easily applied to any gene expression data set with the getPPCCDoppel-

gangers function from the doppelgangerIdentifier package. The user need only provide the gene expres-

sion count matrix and the meta data (containing the patient id, batch and class of each sample in table

form). For a step-by-step guide on how to identify PPCC DDs, please refer to the R Markdown tutorial at

https://github.com/lr98769/doppelgangerIdentifier/blob/main/README.Rmd.

Functional doppelgänger testing

To test if the PPCC DDs identified using the above protocol have an inflationary effect on validation accu-

racy (and are therefore FDs), we may use doppelgangerIdentifier to perform the following procedure:

1. The data set is first batch-corrected with ComBat (if data integration is required) and then min-max

normalized to avoid scaling issues.

2. 22 feature sets were generated: (Each feature set comprises 1% of the total number of features for all

data sets):

a. 20 randomly generated feature sets (These simulated non-meaningful ‘‘random’’ learning. The

distribution of random models can inform how inflated ML models become when spiked with

increasing numbers of DDs).

b. 1 feature set containing features of the highest variance (These simulate deliberate feature selec-

tion based on features which exhibited the greatest changes. To avoid class bias, we do not select

based on methods such as the t-test or other similar statistical tests. We expect this to form the

upper bound of ML model performance).

c. 1 feature set containing features of the lowest variance (This is a negative control, where we pur-

posely select features which hardly changed in the data set. We expect this to form the lower

bound of ML model performance).
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In summary, the purpose of the randomly generated feature sets is to show doppelgängers’ ability to over-

exaggerate the performance of a randomly trained model. Feature sets selected with reference to variance

(top 1%, and bottom 1%) allow us to observe how PPCC data doppelgängers affect properly and poorly

trained models.

3. The data was partitioned to form a series of training-validation sets. Each consecutive training-vali-

dation set contains increasing proportions of PPCC data doppelgängers (e.g. from 0 to 100%). If rep-

licates exist, then we may construct a positive control (Pos Con) to demonstrate inflated accuracies

due to leakage.

The number of correctly classified validation samples for each feature set (22 feature sets in total) was

modelled with a binomial distribution with n = number of samples in validation and p = 0.5 (probability

of randomly guessing the labels of a validation sample). This serves as a null model for the experiment since

a binary model trained on random signatures is expected to be equal in performance to a series of random

coin tosses (Ho et al., 2020a).

4. For each training-validation set and feature set, a K-Nearest Neighbours (KNN) model from the class

package was independently trained and validated.

The KNN is a useful and powerful model highly suitable for biomedical data modelling. Previously, we have

also evaluated DEs using Naı̈ve Bayes (NB), Decision Tree (DT) and Logistic Regression (Logit) models. The

KNN provided the best performance overall. This was not surprising, as KNN is suited for analyzing high-

dimensional data, and is quick to train. Moreover, DT cannot deal well with high dimensional data while NB

and Logit makes certain assumptions, which may not be valid for biomedical data. For NB, it assumes var-

iable independence while for Logit, it assumes linearity between dependent and independent variables.

All KNN models were trained with the hyperparameter k equals to the square root of n (the sample size

of the training set). The following are the k values for each of the data sets: lymph_lung-k = 17, large_up-

per-k = 9, DMD-k = 5, ALL-k = 5, Leukaemia-k = 7.

This procedure can be easily applied to any gene expression data set with the verifyDoppelgangers

function from the doppelgangerIdentifier package. The user only has to prepare the list of samples

in each training-validation set, the gene expression count matrix and the meta data (containing the

patient id, batch and class of each sample in table form). For a step-by-step guide on how to verify the

functionality of PPCC DDs, please refer to the R Markdown tutorial at https://github.com/lr98769/

doppelgangerIdentifier/blob/main/README.Rmd.

Functional doppelgängers in RNA-Seq data

In this section, we demonstrate how doppelgangerIdentifier can be utilised to identify FDs within an RNA-

Seq data set. First, we identify PPCC DDs in both lymph_lung and large_upper RNA-Seq data sets (see

Error! Not a valid bookmark self-reference. section) with the protocol described in ‘‘data doppelgänger

identification with PPCC’’ (Data was min-max normalised prior to the identification procedure). Next,

with the procedure mentioned in ‘‘Functional Doppelgänger Testing’’, we validate the inflationary effects

of all identified PPCCDDs in both data sets. The experimental set up for functional doppelgänger testing is

described in Table 4.

How batch imbalance affects DD identification

To investigate the effects of batch imbalance on PPCC data doppelgänger identification, we compare two

cases: (1) imbalanced batches and (2) balanced batches. In the balanced batches case, we over sample the

smaller batch to match the sample size of the larger batch prior to doppelgänger identification (and batch

correction). This over sampling results in many duplicate sample pairs after doppelgänger identification.

Since we will be comparing the number of detected PPCC DDs in both cases, we have to ensure both cases

result in the same total number of sample pairs. Hence, we removed duplicate sample pairs after doppel-

gänger identification in the balanced batches case. The steps below illustrate the two cases in greater

detail:

1) Imbalanced Batches

ll
OPEN ACCESS

24 iScience 25, 104788, August 19, 2022

iScience
Article

https://github.com/lr98769/doppelgangerIdentifier/blob/main/README.Rmd
https://github.com/lr98769/doppelgangerIdentifier/blob/main/README.Rmd


1. Batch-correct and min-max normalise the data set.

2. PPCC data doppelgängers were identified in the imbalanced data sets with getPPCCDoppel-

gangers (see data Doppelgänger identification with PPCC).

2) Balanced Batches

1. The datasets with a smaller sample size were randomly oversampled with replacement.

2. Batch-correct and min-max normalise the dataset.

3. PPCC data doppelgängers were identified in the oversampled datasets with getPPCCDoppel-

gangers (see PPCC Doppelgänger identification method).

4. Duplicate samples and sample pairs added in step 1 were removed.

We compared the PPCC distributions, identified PPCC cut-offs and the number of identified PPCC data

doppelgängers between the imbalanced and balanced cases. see Table shows the class distribution of da-

tasets after over sampling.

PPCC DDs identified in the batch-balanced case were tested for inflationary effects through functional

doppelgänger testing (see functional Doppelgänger Testing). When more PPCC DDs were found in the

balanced case or the imbalanced case, the additional PPCC DDs were tested to see if they acted as FDs

(These PPCC DDs were tested in a separate experimental set up). Table 6 describes the experimental

set up for the three pairs of datasets.

QUANTIFICATION AND STATISTICAL ANALYSIS

Some statistical analysis methods were utilized during functional doppelgänger (FD) testing.

� Binomial distributions, with n = number of samples in the validation set and p = 0.5, were used in the

negative control to simulate the validation accuracies of random feature sets. This serves as a null

model for the experiment since a binary model trained on random signatures is expected to be equal

in performance to a series of random coin tosses (Ho et al., 2020a).

� During data analysis, for each training-validation set, we calculate the mean validation accuracies for

models with random feature sets. This statistic aids in the analysis of the relationship between

randommodel validation accuracy and the number of DDs (between the training and validation sets).

The statistical details of each FD testing experiment can be found in the figure legends of Figures 4, 6 and 7.

No statistical tests were used in this study.

Class distribution of microarray data sets after over sampling

Disease Source Before Over Sampling After Over Sampling

DMD Haslett et al. (2002) 12 DMD, 12 Control 17 DMD, 19 Control

DMD Pescatori et al. (2007) 22 DMD, 14 Control 22 DMD, 14 Control

Leukemia Golub et al. (1999) 47 ALL, 25 AML 47 ALL, 25 AML

Leukemia Armstrong et al. (2002) 24 ALL, 24 AML 37 ALL, 35 AML

ALL Yeoh et al. (2002) 15 BCR-ABL, 27 E2A-PBX1 15 BCR-ABL, 27 E2A-PBX1

ALL Ross et al. (2004) 15 BCR-ABL, 18 E2A-PBX1 19 BCR-ABL, 23 E2A-PBX1

The ‘‘Disease’’ column states the disease type of the data set pairs, the ‘‘Source’’ column denotes the source of each data set,

the ‘‘Before Over Sampling’’ column shows the class distribution of the data sets before oversampling, the ‘‘After Over Sam-

pling’’ column shows the class distribution of the data sets after over sampling the smaller data set in the pair (cf. for Table 7

abbreviations).

ll
OPEN ACCESS

iScience 25, 104788, August 19, 2022 25

iScience
Article


	ISCI104788_proof_v25i8.pdf
	Doppelgänger spotting in biomedical gene expression data
	Introduction
	Results
	Software and code
	Demonstration of DD identification with other correlation metrics
	FDs in RNA-Seq data
	PPCC DD identification
	FD testing

	How batch imbalance affects DD identification
	PPCC DD identification
	FD testing


	Discussion
	Limitations of the study
	Conclusion

	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Method details
	Data sets
	Gene expression RNA-Seq data sets
	Gene expression microarray data sets

	Methods
	Data doppelgänger identification with PPCC
	Functional doppelgänger testing
	Functional doppelgängers in RNA-Seq data
	How batch imbalance affects DD identification


	Quantification and statistical analysis




