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The massive production and improper disposal of organohalides resulted in worldwide
contamination in soil and water. However, their environmental survey based on
chromatographic methods was hindered by challenges in testing the extremely wide
variety of organohalides. Dehalococcoides as obligate organohalide-respiring bacteria
exclusively use organohalides as electron acceptors to support their growth, of which
the presence could be coupled with organohalides and, therefore, could be employed
as a biomarker of the organohalide pollution. In this study, Dehalococcoides was
screened in various samples of bioreactors and subsurface environments, showing
the wide distribution of Dehalococcoides in sludge and sediment. Further laboratory
cultivation confirmed the dechlorination activities of those Dehalococcoides. Among
those samples, Dehalococcoides accounting for 1.8% of the total microbial community
was found in an anaerobic granular sludge sample collected from a full-scale bioreactor
treating petroleum wastewater. Experimental evidence suggested that the influent
wastewater in the bioreactor contained bromomethane which support the growth of
Dehalococcoides. This study demonstrated that Dehalococcoides could be employed
as a promising biomarker to test the present of organohalides in wastestreams or other
environmental samples.

Keywords: Dehalococcoides, biomarker, environmental samples, organohalide compounds, reductive
dehalogenation

INTRODUCTION

Organohalide compounds are a giant group of halogen-substituted hydrocarbons produced in
large quantities as solvents, plastics, pesticides, and chemical intermediates for industrial and
agricultural uses (Stringer and Johnston, 2001; Jugder et al., 2016). The improper handling and
disposal of harmful halogenated compounds resulted in their worldwide contamination in soil
and water as well as bioaccumulation through food webs, posing threat to both human health
and the environment (Stringer and Johnston, 2001; Zhou et al., 2004; Lu et al., 2017). Due to
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the side effects on biota, 69 out of the 126 EPA Priority Pollutants
are organohalide compounds (United States Environmental
Protection Agency, 2013). However, detection and monitoring
of their environmental transport and fate using chromatography-
based methods were limited due to the extremely wide variety of
organohalide compounds (Stringer and Johnston, 2001).

Anoxic aquatic sediments became the major environmental
sink for hydrophobic organohalide compounds, facilitating
the growth of dehalogenating bacteria through organohalide-
respiration (Smidt and de Vos, 2004; Zhou and Song, 2004;
Rossi et al., 2012). In the organohalide-respiration process,
anaerobic bacteria couple their growth with halogen-removal
using acetate as a carbon source, H2 as an electron donor, and
various organohalides as electron acceptors (Mohn and Tiedje,
1992; Holliger and Schumacher, 1994). Thus far, phylogenetically
diverse bacterial groups have been identified to be able to
remove halogens from organohalide compounds, including
Dehalococcoides, Dehalogenimonas, Dehalobium, Dehalobacter
and Desulfitobacterium (Smidt and de Vos, 2004; Zanaroli et al.,
2015; Wang et al., 2016), which were normally originated from
contaminated sites (Hendrickson et al., 2002; Taş et al., 2009;
van der Zaan et al., 2010). Among them, Dehalococcoides are
obligate organohalide-respiring bacteria that exclusively employ
acetate as a carbon source, H2 as an electron donor and
organohalides as electron acceptors to conserve energy for
growth (Löffler et al., 2013). Dehalococcoides were identified to
have the most diverse and extensive dehalogenation activities
on organohalide compounds, including chloroethenes (Maymó-
Gatell et al., 1997; He et al., 2003; Müller et al., 2004),
chlorobenzenes (Adrian et al., 2000), polychlorinated biphenyls
(PCBs) (Bedard et al., 2007; Wang et al., 2014), polybrominated
diphenyl ethers (PBDEs) (He et al., 2006), chloroethanes and
chlorophenols (Fennell et al., 2004; Lookman et al., 2004; Adrian
et al., 2007; Wang and He, 2013a,b). Therefore, Dehalococcoides
might be employed as a potential biomarker, complementing
current chromatography-based methods, to test the presence of
organohalide compounds.

In this study, we first screened Dehalococcoides in sludge and
sediment samples collected from various anaerobic bioreactors
for industrial wastewater treatment and contaminated black-
odorous urban rivers. Further source-tracking together with
laboratory cultivation confirmed which organohalide compounds
supported the growth of Dehalococcoides. These results opened
up opportunities employing Dehalococcoides as a biomarker
to track unknown sources of organohalide compounds in
wastewater and environmental samples.

MATERIALS AND METHODS

Microbial Cultures Setup and Transfer
Sludge and sediment samples collected from bioreactors and
black-odorous urban rivers were employed as inoculum for
culture setup (Table 1). These samples were acquired directly
by filling sterile 50 ml plastic Falcon tubes that were capped
and transported to the laboratory at an ambient temperature.
To control exposure of the samples to oxygen, Falcon tubes

were sealed with Parafilm, and microcosm setup was performed
in anaerobic chamber soon after their arrivals. For granular
sludge, it was smashed into floc-form sludge before inoculation.
Defined anaerobic mineral medium in 160 ml serum bottles
for microbial cultivation was prepared as described (He et al.,
2003; Wang and He, 2013a), which contains salts, trace elements
and vitamins. L-cysteine and Na2S·9H2O (0.2 mM each) were
added to the medium to achieved reduced conditions. The
bottles were sealed with black butyl rubber septa and secured
with aluminum crimp caps. The organohalide-fed cultures were
transferred in 100 ml medium supplemented with 10 mM lactate,
10 mM 2-bromoethanesulphonate (BES, to inhibit methanogen
growth), and 1 mM PCE or 10 ppm chloromethane. The control
cultures without organohalide-amendment were transferred in
the same mineral medium. Unless stated otherwise, cultures
were incubated at 30◦C in the dark without shaking. All the
experiments were set up in duplicates.

Analytical Techniques
Headspace samples of chloroethenes (i.e., PCE, TCE, cis-DCE,
trans-DCE, VC and ethane)and chloromethane were injected
manually with a glass, gastight, luer lock syringe (Hamilton,
Reno, NV, United States) into a gas chromatography (GC) 7890N
equipped with a flame ionization detector (Agilent, Wilmington,
DE, United States) and a GS-GasPro column (30 m × 0.32 mm;
Agilent, Wilmington, DE, United States) as described (Wang and
He, 2013b). The standards compounds (with analytical pure or
above) were purchased from Sigma–Aldrich.

Fluorescence In Situ Hybridization (FISH)
The FISH experiment was performed according to protocols
described previously (Amann et al., 1995). Granular sludge
samples were fixed in a 4% paraformaldehyde solution for 8 h
at 4◦C, and embedded in Optimal Cutting Temperature (O.C.T.)
compound (Fisher Healthcare, Houston, TX, United States).
Then the freezing granules were cut into 15 µm-thick sections
with CM3050S cryostat (Leica, Germany). Hybridization was
performed at 46◦C for 4 h with oligonucleotide probes Dhe1259
(Yang and Zeyer, 2003), EUBmix and ARCH915 (Amann
et al., 1995) targeting Dehalococcoides, bacteria and archaea,
respectively. Dhe1259 and EUBmix/ARCH915 for dual-staining
FISH were labeled with Cyanine 3 (Cy3) and Cy5, respectively.
FISH-stained images were captured CLSM (Leica TCS-SP2,
Germany).

DNA Extraction, PCR, and Illumina Miseq
Sequencing
Community gDNA was extracted using the FastDNA Spin Kit for
Soil (MP Biomedicals, Carlsbad, CA, United States) according
to the manufacturer’s instructions. The 16S rRNA gene was
amplified with the U515F forward primer and U909R reverse
primer as described (Narihiro et al., 2015). Illumina Miseq
sequencing (Illumina, San Diego, CA, United States) service
was provided by BGI (Shenzhen, China). The provided pair-
end (2 × 300 nd) demultiplexed sequences were assembled
and filtered using Mothur v.1.33 (Schloss et al., 2009).
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TABLE 1 | Sludge samples information which collected from anaerobic industrial wastewater treating bioreactors and environmental samples.

Sample No. Sludge/sediments source Sludge/sediments Form Bioreactor type Dehalococcoides occurrence Dechlorination activity

1 Vitamin-C Industry Granules UASB − −

2 Petrochemical Industry Granules UASB + +

3 Brewery Industry Granules UASB − −

4 Paper mill Industry Granules UASB − −

5 Coke Industry Flocs Anaerobic digester − −

6 Acrylic textile Industry Flocs Anaerobic digester − −

7 Textile-dyeing Industry Flocs Anaerobic digester − −

8 WAS Anaerobic digestion Industry Flocs Anaerobic digester − −

9 Black-odorous River A Flocs N.A. + +

10 Black-odorous River B Flocs N.A. + +

11 Black-odorous River C Flocs N.A. + +

Quantitative Insights Into Microbial Ecology (QIIME, v1.8.0)
was employed for the subsequent processing and downstream
analysis (Caporaso et al., 2010).

Data Deposition
Raw Illumina Miseq sequencing reads were deposited into NCBI
Sequence Read Archive (SRA) with accession no. SRP112682.

RESULTS

Screening of Obligate
Organohalide-Respiring
Dehalococcoides in Anaerobic Sludge
and Sediment Samples
Dehalococcoides as an obligate dehalogenating bacterial group
can only utilize organohalides as electron acceptors to support
their growth (Löffler et al., 2013). In this study, sediment
and sludge samples from black-odorous urban rivers and
anaerobic bioreactors, respectively, were selected to screen the
presence of Dehalococcoides (Table 1). PCR amplification with
Dehalococcoides genus-specific primers, FpDHC1/RpDHC1377
(Hendrickson et al., 2002), showed the positive detection of
Dehalococcoides in all urban river sediment samples, as well as in
a granular sludge sample collected from a full-scale mesophilic
UASB reactor treating petrochemical wastewater (Table 1).
And the petrochemical wastewater contains organic compounds
generated from terephthalic-acid industry, e.g., terephthalic-acid,
benzoic acid, toluic acid, acetic acid and other intermediate
compounds and byproducts (Lykidis et al., 2011).

To profile microbial communities of those Dehalococcoides-
containing environmental samples, Miseq 16S rRNA gene
sequencing was performed, showed the very different microbial
community structure in samples between Dehalococcoides-
containing granular sludge and urban river sediments (Figure 1).
In granular sludge collected from the UASB reactor, acidogenic
populations, Syntrophorhabdus (of Syntrophorhabdaceae) and
Syntrophus, formed syntrophic interactions with methanogenic
Methanosaeta and Methanosarcinaceae (Figure 1). Surprisingly,
the obligate organohalide-respiring Dehalococcoides presented

abundant in the full-scale UASB reactor, accounting for
1.83% of the total microbial community, comparable with the
relative abundance of Dehalococcoides in enrichment cultures
dechlorinating PCBs (Wang and He, 2013a) and PCE (Lee
et al., 2015). The presence of abundant obligate organohalide-
respiring Dehalococcoides implied that the TA-wastewater
contained uncharacterized organohalide compound(s). In the
UASB reactor, acetate and H2 generated from degradation
of aromatic compounds in petrochemical wastewater by
Syntrophorhabdus, Syntrophus and other syntrophs, together
with low redox potential and the uncharacterized organohalide
compounds, provide ideal growth niches for the fastidious
Dehalococcoides. No other obligate dechlorinating bacteria, e.g.,
Dehalogenimonas and Dehalobacter, were found in the granular
sludge sample. In a control sample collected from a lab-scale
anaerobic sludge digester without organohalide amendment,
no known dechlorinating bacteria can be detected (Figure 1).
The highly similar microbial community structures of the three
black-odorous river sediments, distinguish themselves from
the community compositions of the granular sludge, especially
the predominant lineages of Chloroflexi (i.e., Longilinea,
GCA004, WCHB1-05 and Anaerolinaceae) and Proteobacteria
(i.e., Syntrophobacter and Dechloromonas) (Şimsir et al., 2017)
(Figure 1). Dehalococcoides were shown the appearance in
the microbial community, on which indicate the potential of
organohalides’ contamination.

Dechlorination Activities in
Dehalococcoides-Containing Cultures
To further evaluate the dechlorination activities, perchloroethene
(PCE) was spiked into microcosms established with those
Dehalococcoides-containing sediment and sludge samples. After
around 2 months’ incubation, PCE dechlorination activities were
observed in all three microcosms with the river sediment inocula
(data not shown). Subsequent consecutive culture transfers of
the three microcosms generated three active cultures which
reductively dechlorinate PCE into vinyl chloride (VC) or ethene
(Figure 2). No dechlorination activity was observed in the control
microcosm established with digester sludge (Figure 2D).

In contrast to PCE dechlorination in sediments of the three
black-odorous urban rivers, microcosms inoculated with the
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FIGURE 1 | The relative abundance (RA) of dominant microbial populations in environmental samples. Only populations with RA > 0.5% in at least one samples
were shown here.

Dehalococcoides-containing granular sludge showed negative
PCE-dechlorination activity. To identify potential organohalides
to support the growth of Dehalococcoides in the granular
sludge, organohalide pollution in the petrochemical wastewater
as influent of the UASB reactor was evaluated. The petrochemical
wastewater was generated from a AMOCO process that oxidize
para-xylene to terephthalic-acid, using a homogeneous catalyst
of cobalt and manganese together with bromide as a promoter,
in which bromomethane was generated as a byproduct (Tomás
et al., 2013). Due to difficulties in obtaining bromomethane,
dehalogenation activity test was performed with chloromethane

as a homolog alternative to bromomethane. In chloromethane-
fed culture, over 70% chloromethane was dechlorinated within
8 days (Figure 3). No obvious dechlorination activity was
observed in abiotic control.

Dehalococcoides in the Granular Sludge
The partial 16S rRNA gene sequences (∼400 bp) generated from
Miseq sequencing of V4–V5 hypervariable regions were unable
to differentiate Dehalococcoides between Cornell and Victoria
subgroups. Therefore, Dehalococcoides genus-specific primers
(i.e., FpDHC1/RpDHC1377) were utilized to generate longer 16S
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FIGURE 2 | PCE-dechlorination activity observed in cultures inoculated with (A) sediment of black-odorous river A, (B) sediment of black-odorous river B, (C)
sediment of black-odorous river C, (D) anaerobic digester sludge.

FIGURE 3 | Dechlorination of chloromethane by UASB granules.

rRNA gene sequences (∼1300 bp) to identify the Dehalococcoides
in the anaerobic granular sludge. Phylogenetic analysis showed
the close clustering of Dehalococcoides in TA-degrading granules
with D. mccartyi 195 in Cornell subgroup (Figure 4A), sharing
99% 16S rRNA gene sequence similarity (2 bp difference over
1311 bp) with that of strain 195.

To provide insight into the spatial distribution of
Dehalococcoides in the granular sludge, FISH was conducted with
Dehalococcoides-specific, bacterial and archaeal oligonucleotide

probes (Amann et al., 1995; Yang and Zeyer, 2003). FISH analysis
showed the scattered distribution of Dehalococcoides inside
granules, closely colonized with other bacteria (Figure 4B) but
separated from archaea (Figure 4C). Degradation of aromatic
compounds by fermentative bacteria is thermodynamically
restricted and will become endergonic (1G > 0) as metabolic
byproducts (e.g., acetate and H2) accumulate in the biosystem.
Similar with methanogenic archaea, Dehalococcoides might
form syntrophic interactions with aromatic compound
degrading acidogens in the granular sludge: the degradation
of aromatic compounds by Syntrophorhabdus and other
syntrophs provide acetate as carbon source and H2 as
electron donor for the halorespiration of Dehalococcoides;
correspondingly, Dehalococcoides help maintain acetate and H2
at low concentration in the biosystem and ‘pull’ degradation of
aromatic compounds toward completion through consuming
metabolic byproducts generated by acidogenic bacteria. The
close colonization of Dehalococcoides with syntrophic bacteria
could facilitate the interspecies transfer of H2 (Mao et al., 2015).

DISCUSSION

Thus far, it remains challenging to detect organohalide
compounds in wastewater and environmental samples based on
chromatography methods due to their extremely wide variety,
e.g., PCBs are a family of 209 structurally similar congeners
(Chu and Hong, 2004; Elder et al., 2008). Bromomethane,
similar with many other organohalide compounds produced as
intermediate or byproducts in chemical synthesis processes, was
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FIGURE 4 | (A) Phylogenetic tree of Dehalococcoides identified in TA-degrading anaerobic granular sludge. Phylogenetic tree was calculated by neighbor-joining
method using MEGA4 (Tamura et al., 2007). FISH analysis revealed the space distribution of (B) bacteria (red) and Dehalococcoides (yellow), and (C) archaea (red)
and Dehalococcoides (green).

a noteless synthesis byproduct in the petrochemical wastewater
generated from terephthalic acid industry (Tomás et al., 2013).
In this study, we reported the abundant presence of obligate
organohalide-respiring Dehalococcoides in a full-scale UASB
reactor for petrochemical wastewater treatment, and further
cultivation experiments suggested the possible contamination
of bromomethane in the petrochemical wastewater. Recent
studies showed experimental evidences of biosynthesis of
aromatic organohalides in nature, which might explain the
detection of Dehalococcoides in the three black-odorous urban
rivers (Agarwal et al., 2014; El Gamal et al., 2016; Şimsir
et al., 2017). Also, Dehalococcoides was detected in various
environmental samples contaminated with organohalides,
including sludge/sediment collected from anaerobic digesters
(Smith et al., 2015) and hyporheic zone of a wastewater treatment
plant (WWTP)-impacted eutrophic river (Atashgahi et al., 2015).
Therefore, Dehalococcoides might be a promising biomarker,
complementing current chromatography-based methods, to

test organohalide compounds in wastewater and environmental
samples.

The UASB reactors provided ideal ecological niches for the
growth of Dehalococcoides which further formed syntrophic
interactions, as methanogens in syntrophic methanogenic
communities (Stams and Plugge, 2009), with aromatic-
compound degrading bacteria to overcome the thermodynamic
limit through consuming acetate and H2. To our knowledge,
this is the first report of the strictly organohalide-respiring
Dehalococcoides present abundantly in a full-scale bioreactor
for industrial wastewater treatment. In previous studies,
Dehalococcoides was documented in various lab-scale bioreactors,
including membrane biofilm reactors (Chung et al., 2008), UASB
reactor (Hwu and Lu, 2008) and anaerobic biotrickling filter
(Popat and Deshusses, 2009). The presence of Dehalococcoides in
high abundance in both full- and lab-scale bioreactors showed
the feasibility of removing toxic and persistent organohalides
from various industrial wastewaters in anaerobic bioreactors
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through employing the microbial reductive dehalogenation
process.
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