

 $\beta = 105.891 \ (1)^{\circ}$

 $\nu = 107.889 (1)^{\circ}$

Z = 2

V = 1017.38 (5) Å³

Mo $K\alpha$ radiation

 $0.26 \times 0.21 \times 0.18 \; \text{mm}$

28998 measured reflections

8197 independent reflections

6984 reflections with $I > 2\sigma(I)$

 $\mu = 0.90 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.024$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(Adipato- $\kappa^2 O, O'$)diaqua[bis(pyridin-2-yl- κN)amine]cobalt(II) trihvdrate

Zouaoui Setifi,^{a,b} Fatima Setifi,^{c,b}* Graham Smith,^d* Malika El-Ghozzi,^{e,f} Djamil-Azzeddine Rouag,^b Daniel Avignant^{e,f} and Hocine Merazig^b

^aDépartement de Technologie, Faculté de Technologie, Université 20 Août 1955 de Skikda, 21000 Skikda, Algeria, ^bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Constantine I, 25000 Constantine, Algeria, ^cLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas, Sétif I, 19000 Sétif, Algeria, ^dScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane 4001, Australia, ^eClermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France, and ^fCNRS UMR 6296, ICCF, BP 80026, 63171 Aubière, France

Correspondence e-mail: fat_setifi@yahoo.fr, g.smith@qut.edu.au

Received 11 May 2013; accepted 12 May 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.030; wR factor = 0.097; data-to-parameter ratio = 26.8.

In the monomeric title complex, $[C_0(C_6H_8O_4)(C_{10}H_9N_3) (H_2O)_2$]·3H₂O, the distorted octahedral CoN₂O₄ coordination environment comprises two N-atom donors from the bidentate dipyridyldiamine ligand, two O-atom donors from one of the carboxylate groups of the bidentate chelating adipate ligand and two water molecules. In addition, there are three solvent water molecules which are involved in both intra- and inter-unit O-H···O hydrogen-bonding interactions, which together with an amine-water N-H···O hydrogen bond produce a three-dimensional framework.

Related literature

For the background to metal-dicarboxylate complexes, see: Rao et al. (2004); Setifi et al. (2006, 2007); Wen et al. (2010).

Experimental

Crystal data

 $[Co(C_6H_8O_4)(C_{10}H_9N_3)(H_2O)_2]$ -- $3H_2O$ $M_r = 464.34$ Triclinic, $P\overline{1}$ a = 9.9587 (3) Å b = 10.5458 (3) Å c = 11.0885 (3) Å $\alpha = 100.887 \ (1)^{\circ}$

Data collection

```
Bruker APEXII CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2008)
  T_{\min} = 0.800, T_{\max} = 0.855
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	H atoms treated by a mixture of
$wR(F^2) = 0.097$	independent and constrained
S = 0.99	refinement
8197 reflections	$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
306 parameters	$\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$
1 restraint	

Table 1

Selected bond lengths (Å).

Co1-O1	2.0680 (10)	Co1-O6	2.1336 (9)
Co1-O2	2.3079 (9)	Co1-N1	2.0781 (9)
Co1-O5	2.0877 (12)	Co1-N2	2.0596 (10)

```
Table 2
```

Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
N3-H3···O9 ⁱ	0.78 (2)	2.05 (2)	2.8228 (17)	172 (2)
$O5-H51\cdots O7^{ii}$	0.775 (19)	1.923 (19)	2.6933 (15)	172.7 (19)
O5−H52···O3 ⁱⁱⁱ	0.80 (2)	1.97 (2)	2.7706 (17)	173 (2)
$O6-H61\cdots O2^{iv}$	0.83 (2)	2.00 (2)	2.8278 (12)	178 (4)
O6−H62···O8	0.77 (2)	1.94 (2)	2.7056 (16)	170 (2)
$O7 - H71 \cdot \cdot \cdot O3^{v}$	0.74 (3)	2.56 (3)	3.2596 (18)	160 (3)
O7−H72···O1	0.89 (2)	1.86 (2)	2.7543 (16)	175 (2)
$O8-H81\cdots O4^{v}$	0.88 (3)	1.97 (3)	2.8221 (19)	163 (2)
$O8-H82 \cdot \cdot \cdot O4^{vi}$	0.79 (3)	2.05 (3)	2.832 (2)	175 (3)
O9−H91···O3 ^{vii}	0.77 (2)	2.12 (2)	2.8670 (17)	164 (2)
$O9-H92\cdots O3^{v}$	0.79 (3)	1.99 (3)	2.7452 (17)	160 (3)

Symmetry codes: (i) -x + 1, -y + 1, -z;(ii) -x + 2, -v + 1, -z;(iii) -x + 3, -y + 1, -z + 1; (iv) -x + 2, -y + 1, -z + 1; (v) -x + 3, -y + 2, -z + 1; (vi) x - 1, y, z; (vii) x - 1, y, z - 1.

metal-organic compounds

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON* and *publCIF* (Westrip, 2010).

We are grateful for financial assistance from the DG-RSDT and ANDRU (Diretion Générale de la Recherche Scientifique et du Développement Technologique et l'Agence Nationale pour le Développement de la Recherche Universitaire, Algéria) through the PNR project.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5322).

References

- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. Engl. 43, 1466–1496.
- Setifi, F., Benmansour, S., Triki, S., Gómez-García, C. J., Marchivie, M., Salaün, J.-Y. & Maamache, M. (2007). *Inorg. Chim. Acta*, **360**, 3879–3886.
- Setifi, F., Bouchama, A., Sala-Pala, J., Salaün, J.-Y. & Triki, S. (2006). Inorg. Chim. Acta, 359, 3269–3274.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wen, G.-L., Wang, Y.-Y., Zhang, W.-H., Ren, C., Liu, R.-T. & Shi, Q.-Z. (2010). CrystEngComm, 12, 1238–1251.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2013). E69, m335-m336 [doi:10.1107/S1600536813012981]

(Adipato- $\kappa^2 O, O'$)diaqua[bis(pyridin-2-yl- κN)amine]cobalt(II) trihydrate Zouaoui Setifi, Fatima Setifi, Graham Smith, Malika El-Ghozzi, Djamil-Azzeddine Rouag, Daniel Avignant and Hocine Merazig

Comment

Dicarboxylates have been widely used as ligands in metal coordination chemistry because they possess interesting features, such as: (i) the presence of two carboxylato groups capable of bidentate and monodentate linking modes, (ii) the possibility of obtaining mono- or dianionic forms, (iii) the probability of triply coordinated oxygen atoms and (iv) the possibility of forming secondary building blocks (Rao *et al.*, 2004). Their use as bridging ligands has generated metal-organic coordination polymers with diverse and interesting structural features (Setifi *et al.*, 2006, 2007; Wen *et al.*, 2010). Given the rich coordination chemistry and the flexibility of these anionic ligands, we are interested in using them in combination with other chelating co-ligands to explore their structural features and properties in the large field of molecular materials. This led us to the synthesis of the parent coordination compound, the title complex [Co(dpa)(adip) (H₂O)₂]. 3H₂O, (where dpa is 2,2'-dipyridylamine and adip is the adipate dianion), and the structure is described herein.

In this monomeric complex, the distorted octahedral MN_2O_4 coordination sphere comprises two N-donors from the bidentate chelate dpa ligand, two carboxyl O-donors (O1, O2) from one of the carboxyl groups of the adipate ligand and two water molecules (O5, O6). In addition, there are three water molecules of solvation (O7–O9) (Fig. 1). The (N,N') interaction is essentially symmetric [Co–N, 2.0596 (10), 2.0781 (9) Å] (Table 1) but the (O,O') interaction is asymmetric [Co–O, 2.0680 (10), 2.3079 (9) Å], with a 'bite' angle of 59.68 (3)°. The second adipate carboxyl group is not involved in coordination.

In the crystal, both the coordinated water molecules and the solvent water molecules are involved in both intra- and inter-unit O—H…O hydrogen-bonding interactions. The amine N-atom of the dpa ligand is also hydrogen-bonded to a water molecule (O9) (Table 2), giving an overall three-dimensional framework structure (Fig. 2).

Experimental

All reagents were purchased from commercial sources and used as received. Under aerobic conditions, an ethanolic solution of 2,2'-dipyridylamine (0.017 g, 5 ml) was added, with stirring at room temperature to an ethanolic solution of CoCl₂.6H₂O (0.024 g, 5 ml), resulting in a pink suspension. Adipic acid was dissolved in water (0.015 g, 10 ml) and added quickly to the mixture. The final solution was filtered and the filtrate allowed to evaporate in air for two weeks, giving brown crystals of the title compound suitable for X-ray diffraction analysis.

Refinement

All H-atoms potentially involved in hydrogen-bonding were located from a difference-Fourier and both positional and isotropic displacement parameters were refined. Other H-atoms were placed in calculated positions with C—H(aromatic) = 0.93 Å or C—H(methylene) = 0.97 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$. Several reflections (8), considered to be affected by beam stop interference were omitted from the refinement.

Computing details

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

Figure 1

A view of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Figure 2

The crystal packing of the title compound in the unit cell viewed down a, showing hydrogen bonds as dashed lines. Non-associative H-atoms are omitted.

(Adipato- $\kappa^2 O, O'$)diaqua[bis(pyridin-2-yl- κN)amine]cobalt(II) trihydrate

Crystal data	
$[Co(C_{6}H_{8}O_{4})(C_{10}H_{9}N_{3})(H_{2}O)_{2}]\cdot 3H_{2}O$ $M_{r} = 464.34$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 9.9587 (3) Å b = 10.5458 (3) Å c = 11.0885 (3) Å a = 100.887 (1)° $\beta = 105.891$ (1)° $\gamma = 107.889$ (1)° V = 1017.38 (5) Å ³	Z = 2 F(000) = 486 $D_x = 1.516 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9938 reflections $\theta = 2.5-33.9^{\circ}$ $\mu = 0.90 \text{ mm}^{-1}$ T = 296 K Prism, brown $0.26 \times 0.21 \times 0.18 \text{ mm}$
Data collection Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube	Graphite monochromator φ and ω scans

Absorption correction: multi-scan $R_{int} = 0.024$ (SADABS; Bruker, 2008) $\theta_{max} = 33.9^{\circ}, \theta_{min} = 3.3^{\circ}$ $T_{min} = 0.800, T_{max} = 0.855$ $h = -15 \rightarrow 15$ 28998 measured reflections $k = -16 \rightarrow 16$ 8197 independent reflections $l = -17 \rightarrow 17$ 6984 reflections with $I > 2\sigma(I)$ $I > 2\sigma(I)$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.030$	Hydrogen site location: inferred from
$wR(F^2) = 0.097$	neighbouring sites
S = 0.99	H atoms treated by a mixture of independent
8197 reflections	and constrained refinement
306 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0677P)^2 + 0.048P]$
1 restraint	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.37 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

 Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

 x
 y
 z
 U_{iso}^*/U_{eq}

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Col	0.87882 (1)	0.40987 (1)	0.21923 (1)	0.0256 (1)
O1	1.05309 (9)	0.59199 (9)	0.24329 (8)	0.0346 (2)
O2	1.10712 (9)	0.48396 (9)	0.38874 (8)	0.0334 (2)
O3	1.92943 (11)	0.90473 (12)	0.80972 (9)	0.0509 (3)
O4	1.88720 (12)	0.95610 (12)	0.62266 (12)	0.0579 (3)
O5	0.97049 (11)	0.29574 (11)	0.11448 (10)	0.0401 (3)
O6	0.80952 (9)	0.52897 (9)	0.35009 (8)	0.0318 (2)
N1	0.71591 (9)	0.40327 (9)	0.05172 (8)	0.0259 (2)
N2	0.73045 (10)	0.22973 (9)	0.22883 (9)	0.0289 (2)
N3	0.51381 (10)	0.22666 (11)	0.06928 (10)	0.0338 (2)
C1	1.14696 (10)	0.58243 (11)	0.34175 (9)	0.0274 (2)
C2	1.30419 (11)	0.69271 (12)	0.39566 (11)	0.0329 (3)
C3	1.42382 (11)	0.66497 (12)	0.49212 (11)	0.0347 (3)
C4	1.57881 (11)	0.77823 (11)	0.53102 (11)	0.0315 (3)
C5	1.69945 (12)	0.76076 (12)	0.63591 (12)	0.0365 (3)
C6	1.84988 (11)	0.88359 (11)	0.69272 (11)	0.0305 (2)
C7	0.76159 (12)	0.49385 (12)	-0.01408 (11)	0.0332 (3)
C8	0.66587 (14)	0.50906 (13)	-0.12028 (11)	0.0374 (3)
C9	0.51360 (13)	0.42605 (14)	-0.16405 (10)	0.0367 (3)
C10	0.46425 (12)	0.33147 (12)	-0.10088 (10)	0.0329 (3)

C11	0.58275 (11)	0.17043 (10)	0.15844 (10)	0.0274 (2)	
C12	0.56943 (10)	0.32248 (10)	0.00812 (9)	0.0255 (2)	
C13	0.78977 (14)	0.16797 (14)	0.31479 (14)	0.0401 (3)	
C14	0.70567 (18)	0.05002 (16)	0.33525 (17)	0.0495 (5)	
C15	0.55197 (17)	-0.01009 (13)	0.26316 (16)	0.0469 (4)	
C16	0.48925 (14)	0.04862 (12)	0.17371 (13)	0.0387 (3)	
O7	1.14682 (14)	0.81433 (12)	0.14879 (11)	0.0492 (3)	
08	0.88888 (16)	0.80611 (12)	0.38293 (15)	0.0613 (4)	
09	0.80392 (11)	0.89324 (14)	0.01315 (13)	0.0604 (4)	
H2A	1.29990	0.77980	0.43830	0.0390*	
H2B	1.33620	0.70600	0.32230	0.0390*	
Н3	0.426 (2)	0.1928 (19)	0.0392 (18)	0.050 (5)*	
H3A	1.42590	0.57550	0.45290	0.0420*	
H3B	1.39850	0.66010	0.57000	0.0420*	
H4A	1.60690	0.77760	0.45390	0.0380*	
H4B	1.57380	0.86830	0.56270	0.0380*	
H5A	1.71530	0.67790	0.59900	0.0440*	
H5B	1.66320	0.74550	0.70680	0.0440*	
H7	0.86380	0.54890	0.01450	0.0400*	
H8	0.70200	0.57340	-0.16210	0.0450*	
H9	0.44560	0.43450	-0.23560	0.0440*	
H10	0.36270	0.27410	-0.12970	0.0400*	
H13	0.89300	0.20800	0.36220	0.0480*	
H14	0.75020	0.01120	0.39570	0.0590*	
H15	0.49160	-0.08990	0.27540	0.0560*	
H16	0.38660	0.00850	0.12400	0.0460*	
H51	0.932 (2)	0.2581 (19)	0.0397 (19)	0.046 (5)*	
H52	1.002 (2)	0.242 (2)	0.143 (2)	0.065 (6)*	
H61	0.836 (3)	0.526 (3)	0.427 (2)	0.083 (7)*	
H62	0.838 (2)	0.607 (2)	0.3537 (19)	0.057 (5)*	
H71	1.117 (3)	0.868 (3)	0.168 (3)	0.107 (10)*	
H72	1.122 (2)	0.745 (2)	0.184 (2)	0.063 (6)*	
H81	0.958 (3)	0.868 (3)	0.367 (2)	0.075 (6)*	
H82	0.884 (3)	0.849 (3)	0.447 (3)	0.085 (8)*	
H91	0.833 (2)	0.880 (2)	-0.044 (2)	0.067 (6)*	
H92	0.870 (3)	0.949 (3)	0.077 (3)	0.085 (8)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.0168 (1)	0.0288 (1)	0.0261 (1)	0.0034 (1)	0.0039 (1)	0.0117 (1)
01	0.0216 (3)	0.0398 (4)	0.0325 (4)	0.0018 (3)	0.0020 (3)	0.0170 (3)
O2	0.0243 (3)	0.0370 (4)	0.0328 (3)	0.0047 (3)	0.0054 (3)	0.0156 (3)
03	0.0306 (4)	0.0617 (6)	0.0328 (4)	-0.0007 (4)	-0.0034 (3)	0.0056 (4)
O4	0.0370 (5)	0.0520 (6)	0.0595 (6)	-0.0090 (4)	0.0017 (4)	0.0276 (5)
05	0.0393 (5)	0.0504 (5)	0.0350 (4)	0.0211 (4)	0.0143 (4)	0.0141 (4)
06	0.0328 (4)	0.0307 (4)	0.0303 (4)	0.0101 (3)	0.0098 (3)	0.0113 (3)
N1	0.0198 (3)	0.0288 (4)	0.0253 (3)	0.0054 (3)	0.0050 (3)	0.0103 (3)
N2	0.0245 (4)	0.0270 (4)	0.0352 (4)	0.0075 (3)	0.0106 (3)	0.0133 (3)
N3	0.0188 (4)	0.0360 (4)	0.0377 (4)	0.0013 (3)	0.0047 (3)	0.0144 (4)

C1	0.0182 (4)	0.0318 (4)	0.0265 (4)	0.0041 (3)	0.0052 (3)	0.0090 (3)
C2	0.0187 (4)	0.0328 (5)	0.0356 (5)	0.0015 (3)	0.0020 (3)	0.0100 (4)
C3	0.0201 (4)	0.0371 (5)	0.0347 (5)	0.0003 (4)	0.0015 (4)	0.0138 (4)
C4	0.0194 (4)	0.0324 (5)	0.0322 (4)	0.0017 (3)	0.0021 (3)	0.0109 (4)
C5	0.0228 (4)	0.0311 (5)	0.0409 (5)	0.0000 (4)	-0.0019 (4)	0.0148 (4)
C6	0.0198 (4)	0.0281 (4)	0.0342 (4)	0.0045 (3)	0.0035 (3)	0.0052 (4)
C7	0.0251 (4)	0.0388 (5)	0.0314 (4)	0.0058 (4)	0.0064 (4)	0.0171 (4)
C8	0.0370 (5)	0.0444 (6)	0.0326 (5)	0.0150 (5)	0.0096 (4)	0.0205 (4)
C9	0.0350 (5)	0.0473 (6)	0.0264 (4)	0.0204 (5)	0.0035 (4)	0.0111 (4)
C10	0.0223 (4)	0.0386 (5)	0.0288 (4)	0.0097 (4)	0.0010 (3)	0.0051 (4)
C11	0.0257 (4)	0.0227 (4)	0.0309 (4)	0.0045 (3)	0.0117 (3)	0.0068 (3)
C12	0.0198 (4)	0.0265 (4)	0.0247 (4)	0.0059 (3)	0.0046 (3)	0.0050 (3)
C13	0.0338 (5)	0.0419 (6)	0.0522 (7)	0.0166 (5)	0.0152 (5)	0.0269 (5)
C14	0.0541 (8)	0.0447 (7)	0.0679 (9)	0.0250 (6)	0.0285 (7)	0.0362 (7)
C15	0.0548 (8)	0.0299 (5)	0.0661 (9)	0.0130 (5)	0.0331 (7)	0.0243 (6)
C16	0.0340 (5)	0.0280 (5)	0.0469 (6)	0.0008 (4)	0.0168 (5)	0.0103 (4)
07	0.0603 (7)	0.0403 (5)	0.0440 (5)	0.0140 (5)	0.0175 (5)	0.0159 (4)
08	0.0727 (8)	0.0345 (5)	0.0813 (9)	0.0112 (5)	0.0427 (7)	0.0201 (5)
09	0.0245 (4)	0.0761 (8)	0.0492 (6)	-0.0076 (5)	0.0069 (4)	0.0033 (5)

Geometric parameters (Å, °)

Co1—O1	2.0680 (10)	C2—C3	1.5111 (17)
Co1—O2	2.3079 (9)	C3—C4	1.5177 (17)
Co105	2.0877 (12)	C4—C5	1.5106 (17)
Co106	2.1336 (9)	C5—C6	1.5172 (17)
Col—N1	2.0781 (9)	C7—C8	1.3681 (17)
Co1—N2	2.0596 (10)	C8—C9	1.387 (2)
01—C1	1.2715 (13)	C9—C10	1.3705 (18)
O2—C1	1.2537 (14)	C10—C12	1.4064 (15)
O3—C6	1.2569 (15)	C11—C16	1.4070 (17)
O4—C6	1.2387 (17)	C13—C14	1.368 (2)
O5—H51	0.775 (19)	C14—C15	1.388 (3)
O5—H52	0.80 (2)	C15—C16	1.374 (2)
O6—H62	0.77 (2)	C2—H2A	0.9700
O6—H61	0.83 (2)	C2—H2B	0.9700
O7—H71	0.74 (3)	С3—НЗА	0.9700
O7—H72	0.89 (2)	C3—H3B	0.9700
O8—H81	0.88 (3)	C4—H4B	0.9700
O8—H82	0.79 (3)	C4—H4A	0.9700
O9—H92	0.79 (3)	C5—H5A	0.9700
O9—H91	0.77 (2)	C5—H5B	0.9700
N1-C12	1.3350 (14)	С7—Н7	0.9300
N1—C7	1.3527 (15)	C8—H8	0.9300
N2-C11	1.3363 (15)	С9—Н9	0.9300
N2—C13	1.3580 (17)	C10—H10	0.9300
N3—C12	1.3815 (15)	C13—H13	0.9300
N3—C11	1.3785 (15)	C14—H14	0.9300
N3—H3	0.78 (2)	C15—H15	0.9300
C1—C2	1.5059 (16)	C16—H16	0.9300

O1—Co1—O2	59.68 (3)	C9-C10-C12	119.02 (11)
O1—Co1—O5	89.56 (4)	N3—C11—C16	116.66 (11)
O1—Co1—O6	88.57 (4)	N2—C11—N3	121.87 (10)
O1—Co1—N1	100.35 (4)	N2—C11—C16	121.46 (10)
O1—Co1—N2	169.33 (4)	N1—C12—N3	121.29 (9)
O2—Co1—O5	84.94 (4)	N3—C12—C10	116.80 (10)
O2—Co1—O6	87.44 (3)	N1—C12—C10	121.92 (10)
O2—Co1—N1	159.98 (4)	N2—C13—C14	123.44 (14)
O2—Co1—N2	109.79 (4)	C13—C14—C15	118.04 (15)
O5—Co1—O6	172.04 (4)	C14—C15—C16	119.82 (14)
O5—Co1—N1	94.09 (4)	C11—C16—C15	118.94 (13)
O5—Co1—N2	91.18 (4)	C1—C2—H2B	108.00
O6—Co1—N1	93.86 (4)	H2A—C2—H2B	107.00
O6—Co1—N2	89.24 (4)	С3—С2—Н2А	108.00
N1—Co1—N2	90.21 (4)	C3—C2—H2B	108.00
Co1-01-C1	95.33 (7)	C1—C2—H2A	108.00
Co1—O2—C1	84.88 (6)	C4—C3—H3B	109.00
Co1-O5-H51	122.6 (16)	H3A - C3 - H3B	108.00
$C_01 - 05 - H52$	120.3(15)	C4—C3—H3A	109.00
H51-05-H52	104(2)	C2-C3-H3A	109.00
Co1 - O6 - H61	116 (2)	C2—C3—H3B	109.00
Co1 - O6 - H62	112.1 (15)	C3—C4—H4A	109.00
H61—O6—H62	107 (3)	C3—C4—H4B	109.00
H71 - 07 - H72	112 (3)	C5-C4-H4A	109.00
H81—O8—H82	103(3)	C5-C4-H4B	109.00
H91—O9—H92	100(3)	H4A - C4 - H4B	108.00
C7—N1—C12	117 69 (9)	C6-C5-H5A	109.00
C_01 N_1 C_12	125.38 (7)	H5A—C5—H5B	108.00
Co1 - N1 - C7	116.84 (8)	C4—C5—H5B	109.00
$Co1 - N^2 - C13$	116.29 (9)	C6-C5-H5B	109.00
$C_{11} = N_2 = C_{13}$	118.28 (10)	C4-C5-H5A	109.00
C_{01} N_{2} C_{11}	125 44 (7)	N1-C7-H7	118.00
$C_{11} = N_3 = C_{12}$	122.11(7) 132.59(11)	C8 - C7 - H7	118.00
C12—N3—H3	132.39(11) 110.7(14)	C9 - C8 - H8	121.00
C11_N3_H3	116.7(14)	C7 - C8 - H8	121.00
01-C1-C2	116.83 (10)	C10-C9-H9	120.00
$0^{2}-C^{1}-C^{2}$	123 13 (10)	C8 - C9 - H9	120.00
01 - C1 - 02	120.04(10)	C9-C10-H10	120.00
C1 - C2 - C3	116 75 (10)	C_{12} C_{10} H_{10}	121.00
$C_{2} = C_{3} = C_{4}$	111.55 (10)	N2_C13_H13	118.00
$C_2 = C_3 = C_4$	113.16(10)	C14 $C13$ $H13$	118.00
$C_{4} - C_{5} - C_{6}$	113.10 (10)	C15 - C14 - H14	121.00
04 - C6 - C5	119.03 (11)	C13 - C14 - H14	121.00
03-06-04	124 09 (12)	C14-C15-H15	121.00
03 - 06 - 05	116 88 (11)	C16_C15_ H15	120.00
N1 C7 C8	123.70(12)	C10-C13-1113 C11 C16 H16	120.00
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	123.70(12) 118 20 (12)	$C_{11} = C_{10} = 110$ $C_{15} = C_{16} = U_{16}$	120.00
$C^{2} = C^{1} = C^{1}$	110.30(12)	С13—С10—П10	121.00
0-09-010	119.30 (11)		

O2—Co1—O1—C1	1.54 (6)	C12—N1—C7—C8	1.49 (17)
O5—Co1—O1—C1	-82.85 (7)	Co1—N1—C12—N3	-4.11 (15)
O6—Co1—O1—C1	89.41 (7)	Co1—N1—C12—C10	175.23 (8)
N1—Co1—O1—C1	-176.92 (7)	C7—N1—C12—N3	179.59 (10)
O1—Co1—O2—C1	-1.56 (6)	C7—N1—C12—C10	-1.07 (16)
O5—Co1—O2—C1	90.90 (7)	Co1—N2—C11—N3	0.16 (15)
O6—Co1—O2—C1	-91.40 (7)	Co1—N2—C11—C16	-178.58 (9)
N1—Co1—O2—C1	2.85 (14)	C13—N2—C11—N3	179.90 (11)
N2—Co1—O2—C1	-179.67 (7)	C13—N2—C11—C16	1.16 (17)
O1—Co1—N1—C7	11.20 (9)	Co1—N2—C13—C14	178.23 (13)
O1—Co1—N1—C12	-165.14 (9)	C11—N2—C13—C14	-1.5 (2)
O2—Co1—N1—C7	7.33 (16)	C12—N3—C11—N2	17.69 (19)
O2—Co1—N1—C12	-169.01 (9)	C12—N3—C11—C16	-163.51 (12)
O5—Co1—N1—C7	-79.11 (9)	C11—N3—C12—N1	-15.42 (19)
O5—Co1—N1—C12	104.56 (9)	C11—N3—C12—C10	165.21 (12)
O6—Co1—N1—C7	100.44 (9)	O1—C1—C2—C3	-167.09 (10)
O6—Co1—N1—C12	-75.89 (9)	O2—C1—C2—C3	12.39 (16)
N2—Co1—N1—C7	-170.31 (9)	C1—C2—C3—C4	175.72 (9)
N2—Co1—N1—C12	13.36 (9)	C2—C3—C4—C5	175.19 (10)
O2—Co1—N2—C11	169.49 (9)	C3—C4—C5—C6	-170.72 (10)
O2—Co1—N2—C13	-10.25 (10)	C4—C5—C6—O3	150.64 (12)
O5—Co1—N2—C11	-105.46 (10)	C4—C5—C6—O4	-29.52 (17)
O5—Co1—N2—C13	74.80 (10)	N1—C7—C8—C9	-0.72 (19)
O6—Co1—N2—C11	82.49 (9)	C7—C8—C9—C10	-0.50 (19)
O6—Co1—N2—C13	-97.25 (9)	C8—C9—C10—C12	0.87 (18)
N1—Co1—N2—C11	-11.37 (9)	C9-C10-C12-N1	-0.08 (16)
N1—Co1—N2—C13	168.89 (9)	C9-C10-C12-N3	179.29 (11)
Co1-01-C1-02	-2.83 (11)	N2-C11-C16-C15	0.00 (19)
Co1-01-C1-C2	176.67 (8)	N3-C11-C16-C15	-178.80 (13)
Co1—O2—C1—O1	2.54 (10)	N2-C13-C14-C15	0.7 (2)
Co1—O2—C1—C2	-176.93 (10)	C13—C14—C15—C16	0.5 (2)
Co1—N1—C7—C8	-175.13 (10)	C14—C15—C16—C11	-0.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H… <i>A</i>
N3—H3…O9 ⁱ	0.78 (2)	2.05 (2)	2.8228 (17)	172 (2)
O5—H51…O7 ⁱⁱ	0.775 (19)	1.923 (19)	2.6933 (15)	172.7 (19)
O5—H52…O3 ⁱⁱⁱ	0.80 (2)	1.97 (2)	2.7706 (17)	173 (2)
O6—H61···O2 ^{iv}	0.83 (2)	2.00 (2)	2.8278 (12)	178 (4)
O6—H62…O8	0.77 (2)	1.94 (2)	2.7056 (16)	170 (2)
O7—H71…O3 ^v	0.74 (3)	2.56 (3)	3.2596 (18)	160 (3)
O7—H72…O1	0.89 (2)	1.86 (2)	2.7543 (16)	175 (2)
O8—H81···O4 ^v	0.88 (3)	1.97 (3)	2.8221 (19)	163 (2)
O8—H82····O4 ^{vi}	0.79 (3)	2.05 (3)	2.832 (2)	175 (3)

supplementary materials

O9—H91…O3 ^{vii}	0.77 (2)	2.12 (2)	2.8670 (17)	164 (2)
O9—H92…O3 ^v	0.79 (3)	1.99 (3)	2.7452 (17)	160 (3)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*+2, -*y*+1, -*z*; (iii) -*x*+3, -*y*+1, -*z*+1; (iv) -*x*+2, -*y*+1, -*z*+1; (v) -*x*+3, -*y*+2, -*z*+1; (vi) *x*-1, *y*, *z*; (vii) *x*-1, *y*, *z*=1.