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Prediction of the composition of urinary stones 
using deep learning
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Purpose: This study aimed to predict the composition of urolithiasis using deep learning from urinary stone images.
Materials and Methods: We classified 1,332 stones into 31 classes according to the stone composition. The top 4 classes with 
a frequency of 110 or more (class 1: calcium oxalate monohydrate [COM] 100%, class 2: COM 80%+struvite 20%, class 3: COM 
60%+calcium oxalate dihydrate [COD] 40%, class 4: uric acid 100%) were selected. With the 965 stone images of the top 4 classes, 
we used the seven convolutional neural networks (CNN) to classify urinary stones and compared their classification performances.
Results: Among the seven models, Xception_Ir0.001 showed the highest accuracy, precision, and recall and was selected as the 
CNN model to predict the stone composition. The sensitivity and specificity for the 4 classes by Xception_Ir0.001 were as follows: 
class 1 (94.24%, 91.73%), class 2 (85.42%, 96.14%), class 3 (86.86%, 99.59%), and class 4 (94.96%, 98.82%). The sensitivity and 
specificity of the individual components of the stones were as follows. COM (98.82%, 94.96%), COD (86.86%, 99.64%), struvite 
(85.42%, 95.59%), and uric acid (94.96%, 98.82%). The area under the curves for class 1, 2, 3, and 4 were 0.98, 0.97, 1.00, and 1.00, 
respectively.
Conclusions: This study showed the feasibility of deep learning for the diagnostic ability to assess urinary stone composition from 
images. It can be an alternative tool for conventional stone analysis and provide decision support to urologists, improving the ef-
fectiveness of diagnosis and treatment.
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INTRODUCTION

Artificial intelligence (AI) has made significant strides 
in interpreting perceptual information, allowing machines 
to analyze complex data better. Among the various technolo-
gies of AI, the most popular is deep learning (DL), part of 
a broader family of machine learning methods based on a 
neural network structure inspired by the human brain. In 

recent years, the application of such DL technology to medi-
cal and biomedical research fields has increased exponen-
tially [1]. 

When a specific problem is solved using DL, the devel-
oped algorithm would have derived the result. Algorithms 
can build models based on training data, apply experiences, 
and make predictions and decisions on new, unknown data 
obtained through training. To understand A more clearly 
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and use it, it is essential to select a topic suitable for DL 
and collect data, rather than simply input data and adjust 
variables to produce results. After that, it is necessary to go 
through several stages of verifying the already created algo-
rithm and applying it to actual clinical practice. 

Urolithiasis is one of the most common diseases in Ko-
rea and Western countries, and it can be a serious medical 
problem for the working-age population [2-4]. With the de-
velopment of optical technology and endoscopic instruments, 
transurethral endoscopic surgery through a natural orifice 
in the field of urology has been increasing rapidly in recent 
years [5,6]. Currently, it is possible to acquire high-quality 
images in real-time for urolithiasis or lesions during most 
urological endoscopic surgeries. Predicting the stone’s com-
position and strength using real-time images during surgery 
has several advantages in treating urolithiasis. It can enable 
the surgeon to select a more appropriate tool during surgery 
and help make decisions about treatment, such as adminis-
tering antibiotics before and after surgery.

If elements such as struvite exist, the surgeon will think 
more seriously about the countermeasures for postoperative 
infection and implement appropriate medical treatment ac-
cordingly. In addition, information on recurrent stones and 
metabolic stones can be provided before the conventional 
stone component test results are released.

In recent years, computer vision and DL have been used 
to detect many different diseases and lesions in the body 
automatically [7]. Object detection is a method that is used 
to recognize and detect other objects present in an image 
or video and label them to classify these objects, and the 
technology has been significantly advanced. In addition, DL-
based medical image analysis can be applied to computer-
aided diagnostics to provide decision support to clinicians 
and improve the accuracy and efficiency of various diagnos-
tic and treatment processes [7].

Most urinary stones are composed of different chemi-
cal compositions in varying proportions. Therefore, pure 
single composition-containing stones only account for a small 
proportion of urolithiasis. Black et al. [8] reported that deep 
convolutional neural networks (CNN) on 63 human kidney 
stones of various components in a previous pilot study could 
be usefully used to predict kidney stone composition with 
good calls in digital photographs. This study aimed to inves-
tigate the prediction of the components of urolithiasis by DL 
algorithm using images of urinary stones obtained by endo-
scopic surgery.

MATERIALS AND METHODS

1. Datasets
The protocol of this study was conducted in accordance 

with good clinical practice guidelines and the Declaration 
of Helsinki and was approved by the Institutional Review 
Board Committee for Human Subjects at Hallym University 
Dongtan Sacred Heart Hospital (IRB no. HDT 2022-01-004).

From January 2018 to March 2021, a total of 1,332 stones 
were obtained through endoscopic surgery. The components 
of each stone fragment were verified with the conventional 
stone analysis, and images of the stones were captured on a 
digital camera.

For conventional stone analysis, Fourier-transform in-
frared spectroscopy (FT-IR, Green cross labs, Yongin, Korea) 
method was used. This is a method using the physical prop-
erties of molecules forming stones to absorb infrared rays 
in a specific wavelength range that coincides with their in-
trinsic oscillation period. Objective and quantitative results 
can be obtained because the most suitable component and its 
composition ratio are found after comparing with the stan-
dard spectrum for the intrinsic spectrum of a substance. In 
addition, the sample processing process is quick and simple, 
and it is known as the gold standard method for stone 
analysis so far because it can accurately distinguish various 
components even with a very small amount of less than 100 
g [9].

These 1,332 stones were analyzed for components through 
stone analysis, and as a result of classification according 
to the proportion of stone components, a total of 31 classes 
were classified (Table 1). The top 4 classes with more than 
110 frequencies out of 31 categories, a total of 965 stones 
were used in the DL algorithm. The composition of the top 
four classes were as follows. Class 1 (n=469): calcium oxalate 
monohydrate (COM) 100%, Class 2 (n=240): COM 80% and 
struvite 20%, Class 3 (n=137): COM 60% and calcium oxalate 
dihydrate (COD) 40%, Class 4 (n=119): uric acid 100% (Table 1).

2. Preprocessing of image and architecture of the 
deep convolutional neural network
We used the 7 CNN models, DenseNet201 [10], ResNet152 

[11], ResNet152_FC3 [11], Xception [12], Xception dropout0.8 [12], 
Xception_Ir0.001 [12] and Xception_Ir0.001_FC3 [12] to clas-
sify the urinary stone images and compared their classifica-
tion performances. 

The original image data was cropped with 160×160 size 
and no more preprocessing as resize and contrast adjusting 
were not used. For the training data, the shortage of samples 
was solved by expanding the data set through data augmen-
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Table 1. The default distribution of stones used in the analysis

Class COM (%) COD (%) CA (%) ST (%) UA (%) AU (%) CY (%) BR (%) Other (%) N
1 + (100) 469
2 + (80) + (20) 240
3 + (60) + (40) 137
4 + (100) 119
5 + (50) + (25) + (25) 88
6 + (40) + (20) + (40) 57
7 + (20) + (80) 44
8 + (85) + (15) 34
9 + (95) + (5) 30

10 + (65) + (35) 24
11 + (100) 13
12 + (90) + (10) 9
13 + (20) + (80) 8
14 + (80) + (20) 8
15 + (50) + (25) + (25) 5
16 + (20) + (80) 5
17 + (100) 5
18 + (50) + (50) 5
19 + (65) + (35) 5
20 + (80) + (10) + (10) 5
21 + (90) + (10) 3
22 + (20) + (80) 3
23 + (70) + (30) 3
24 + (100) 3
25 + (20) + (80) 2
26 + (100) 2
27 + (50) + (50) 2
28 + (25) + (25) +(50) 1
29 + (50) + (20) + (30) 1
30 + (80) + (20) 1
31 + (100) 1

Sum (N) 1,077 284 277 407 138 14 2 8 1 1,332

COM, calcium oxalate monohydrate; COD, calcium oxalate dihydrate; CA, carbonate apatite; ST, struvite; UA, uric acid; AU, ammonium urate; CY, 
cysteine; Br, Brushite. 

Input
(160 160 3)

Xception convolution layers

Flatten

Fully connected layer
(1,024)

Output
(4)

Dense
(softmax) Fig. 1. Block representation showing 

the layer organization of Xception deep 
learning model.
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tation. We used transfer learning based on the 7 CNN mod-
els. The overall structure is Input (160×160×3) - Convolution 
layer - Flatten - Fully connected layer - Dense (4, softmax) 
and 7 CNN models were tested by adjusting the Convolution 
layer and Fully connected layer. Fully connected layers of 
each CNN architecture were replaced with flattened layers, 
dense with 1,024 nodes and dropout of 0.5 drop rate. The last 
fully connected layer has nodes of category size followed by 
softmax (Fig. 1). Each hyperparameter for training is as fol-
lows; Adam optimizer with learning rate 0.001, cross-entropy 
loss function, 256 batch size, 1,000 epoch, early stopping after 
150 patience for validation loss, and class weighting for un-
balanced data distribution. 10-fold cross-validation was used, 
which means 90% of data was used for training, and the re-
maining 10% of data was used for tests. The model was test-
ed with metrics of accuracy, precision, recall rate, F1 score, 
and area under the curve (AUC). In addition, the sensitivity 
and specificity of each class were analyzed to determine how 
accurately the same class of stone can be predicted, and the 
sensitivity and specificity of individual stone components 

were analyzed.

RESULTS

Among 1,332 stones, pure stones were 54% (7 types, 720 
stones) and mixed stones were 46% (24 types, 612 stones) (Fig. 
2). A total of 965 stones were used for the prediction of stone 
composition, including pure stones and mixed stones. Among 
the seven CNN models (DenseNet201, ResNet152, ResNet152_
FC3, Xception, Xception_dropout0.8, Xception_Ir0.001, Xcep-
tion_Ir0.001_FC3), Xception_Ir0.001 showed the highest 
accuracy of 0.91 (0.03), precision of 0.92 (0.03), and recall of 
0.90 (0.04), and was selected as the CNN model to predict the 
stone composition (Table 2, Fig. 3).

The sensitivity and specificity for the 4 classes by Xcep-
tion_Ir0.001 were as follows: class 1 (94.24%, 91.73%), class 2 
(85.42%, 96.14%), class 3 (86.86%, 99.59%), and class 4 (94.96%, 
98.82%) (Table 3). The sensitivity and specificity of the in-

Table 2. Accuracy, precision, and recall rate of 7 convolutional neural 
networks models

Model Accuracy Precision Recall

DenseNet201 0.82 (0.03) 0.84 (0.03) 0.81 (0.03)

ResNet 152 0.77 (0.03) 0.78 (0.03) 0.75 (0.03)

ResNet 152_FC3 0.70 (0.04) 0.64 (0.08) 0.66 (0.07)

Xception 0.89 (0.03) 0.90 (0.04) 0.88 (0.04)

Xception dropout0.8 0.89 (0.03) 0.90 (0.03) 0.88 (0.03)

Xception_Ir0.001 0.91 (0.03) 0.92 (0.03) 0.90 (0.04)

Xception_Ir0.001_FC3 0.87 (0.03) 0.87 (0.03) 0.87 (0.04)

Values are presented as average (error).

Pure stones
720 (54%)

Mixed stones
612 (46%)

Fig. 2. Ratio of pure stones and mixed stones.
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Fig. 3. Model accuracy (A), precision (B), and recall (C) rate of 7 convolutional neural networks models.
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dividual components of the stones were as follows. COM 
(98.82%, 94.96%), COD (86.86%, 99.64%), struvite (85.42%, 
95.59%), and uric acid (94.96%, 98.82%) (Table 4). Thearea un-
der the receiver operating characteristic curves for class 1, 2, 
3, and 4 were 0.98, 0.97, 1.00, and 1.00, respectively (Fig. 4).

DISCUSSION

Machine learning is a subbranch of AI that is concerned 
with developing and deploying dynamic algorithms to ana-
lyze data and facilitate the identification of complex pat-
terns [13]. DL, which trains artificial neural networks with 
multiple layers on large data sets, has been driving advances 
in AI in recent years. Many studies and applications for ma-
chine learning and DL are being conducted in urology fields 
such as urolithiasis, kidney cancer, bladder cancer, and pros-
tate cancer [14]. For example, with the development of optical 
technology, endoscopic instruments, and lasers, transurethral 
endoscopic surgery for urolithiasis is rapidly increasing [5,6], 
and faster and more accurate decision-making is required 
for urologists regarding various treatment methods. 

The conventional methods for stone component analysis 
must have a stone sample and usually require more than 
one day. A quick prediction of the urolithiasis component 
helps urologists consider the patient’s condition and select 
an appropriate treatment option. However, the surgeon’s 
prediction of the component by looking at the stone through 

the endoscopic screen is limited and unreliable. Sampogna et 
al. [15] reported the ability of surgeons to identify the com-
position of stones by observing endoscopic imaging. A total 
of 32 clinicians from 9 countries participated in the study. 
The overall accuracy was 39% (250 out of 640 predictions). 
COD stones were accurately detected in 69.8%, COM 41.8%, 
uric acid 33.3%, calcium oxalate/uric acid 34.3%, and cystine 
78.1%. The precision of struvite (15.6%), calcium phosphate 
(0%), and calcium oxalate/calcium phosphate mixture (9.3%) 
were significantly lower. As a result, during endoscopic pro-
cedures, the surgeon was able to identify some of the COD 
and cystine stones but concluded that they were unreliable 
in identifying the majority of the stone constituents [15].

Most stones are composed of  a mixture of  different 
chemical compositions. Pure single composition-containing 
stones only account for a small proportion of urolithiasis. 
Currently, urinary stones can be classified based on several 
specific chemical components, including oxalate, phosphate, 
apatite, struvite, uric acid, and cystine. Mixtures of these 
chemical compositions in a single stone are also common, re-
sulting in a spectrum of different stone chemistries [16]. Cal-
cium-containing stones, including COM, COD, and calcium 
phosphate stones, account for around 70% to 80% of stones. 
Struvite (magnesium ammonium phosphate) stones account 
for 15% of urinary calculi and are typically associated with 
urease-producing urinary tract infections and carry signifi-
cant morbidity [17]. Uric acid urolithiasis constitutes approxi-

Table 4. The sensitivity and specificity by stone composition for Xcep-
tion_Ir0.001 (unit: %)

Stone composition type Sensitivity Specificity
Calcium oxalate monohydrate 98.82 94.96
Calcium oxalate dihydrate 86.86 99.64
Struvite 85.42 95.59
Uric acid 94.96 98.82

Table 3. The sensitivity and specificity by class for Xception_Ir0.001 
(unit: %)

Class Sensitivity Specificity
1 94.24 91.73
2 85.42 96.14
3 86.86 99.59
4 94.96 98.82
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mately 7% to 10% of all urinary stones [18]. Cystine stones 
account for 1% of stones. Other stones, such as xanthine and 
drug-induced calculi (e.g., triamterene, indinavir), account for 
less than 1% of stones. There are variations in the composi-
tion of stones, which are influenced by the differences in 
geographical, economic, or sanitation conditions. 

In this study, the pure stones were more abundant than 
the mixed stones. Of the total stones, 35.2% were pure stones 
of COM component, and pure stones of the uric acid compo-
nent were second with 8.9%. When classified by stone com-
ponent, COM was included in 80.9% of the total stones, stru-
vite 30.6%, COD 21.3%, carbonate apatite 20.8%, and uric acid 
10.4%. Since this study included the stones obtained through 
transurethral endoscopic surgery, it cannot be said that the 
overall trend was reflected.

Chemical composition analysis of urolithiasis using DL 
is expected to provide real-time information to urologists to 
enable quick decision-making, helping various diagnostic 
and treatment processes. Black et al. [8] reported that in a 
pilot study, a DL computer vision algorithm was run using 
images of kidney stones of various components, and it was 
useful for recognizing the components of commonly encoun-
tered kidney stones. Estrade et al. [19] also reported that the 
prediction of urolithiasis components using various endo-
scopic urinary stone images and deep CNN algorithm was 
useful, and reported that the prediction of mixed stones, as 
well as pure stones, was good. In this study, we showed that 
it is able to predict the urinary stone composition using DL 
from digital photographs. Regardless of pure stones or mixed 
stones, the prediction of stone components using images of 
urolithiasis by a DL algorithm showed overall good recall. 
However, pure stones of COM and uric acid components, 
respectively, showed higher sensitivity than mixed stones 
(COM and COD, COM, and struvite), but there was no sig-
nificant difference in specificity.

CONCLUSIONS

This study showed the feasibility of deep learning for 
the diagnostic ability to assess urinary stone composition 
from images. It can be an alternative tool for conventional 
stone analysis and provide decision support to urologists, im-
proving the effectiveness of diagnosis and treatment.
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