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SUMMARY

Recurrent gene mutations often cooperate in a predefined stepwise and syner-
gistic manner to alter global transcription, through directly or indirectly remod-
eling epigenetic landscape on linear and three-dimensional (3D) scales. Here, we
present amultiomics data integration approach to investigate the impact of gene
mutational synergy on transcription, chromatin states, and 3D chromatin organi-
zation in a murine leukemia model. This protocol provides an executable frame-
work to study epigenetic remodeling induced by cooperating gene mutations
and to identify the critical regulatory network involved.
For complete details on the use and execution of this protocol, please refer to
Yun et al. (2021).

BEFORE YOU BEGIN

The protocol below describes the specific steps for performing the integrative analysis of chromatin

accessibility, chromatin states, DNA looping and transcriptome across four cellular states in a murine

allelic series that models the twomost commonmutations in acute myeloid leukemia (AML): Flt3-ITD

and Npm1c, both of which are present in 15%–20% of all AML cases. Either of the two mutations

alone caused mild and pre-malignant phenotype, whereas in combination they demonstrated

strong synergistic effect to induce aggressive AML. The hematopoietic stem and progenitor cells

(HSPCs), a bulk cell population represented by the lineage negative (Lin-) fraction of bone marrow

cells harvested from wildtype (WT), single mutant (Flt3-ITD or Npm1c), and double mutant (DM,

both Flt3-ITD and Npm1c) mice, were used to generate all the multiomics data as an exemplar in

this protocol.

This section includes minimum requirements for computer hardware, pre-installation of software

(including tools and algorithms) for data processing, as well as a collection of exemplar next gener-

ation sequencing (NGS) data to be analyzed.

Computer system

Exemplar data analysis in the protocol is performed in a computational environment with system

specifications indicated in the key resources table.
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Note:We recommend a computer system containing a minimum configuration of 16 GB local

memory and 12 CPU cores.

Software

Computational tools and software for raw data processing and further integrative analysis are listed

in the key resources table.

Note: To recapitulate the procedures undertaken in our published work (Yun et al., 2021) and

to confirm the data reproducibility, the same software versions are installed when possible,

otherwise the latest version are utilized. In addition, we have tested all the R scripts with

the latest R version (v.4.1.3), and we can seamlessly reproduce the results. And this also ap-

plies to the latest versions of R packages including CHiCAGO (v.1.24.0), Seurat (v.4.1.1), DE-

seq2 (v.1.36.0), and DiffBind (v3.6.3). As other software is mainly used for the initial processing

of NGS reads, such as mapping, initial QC analysis and data filtering, we would anticipate that

their newer versions will retain the main analytical and statistical power with the same key pa-

rameters, though not yet been tested on our exemplar data. Nevertheless, we cannot guar-

antee that there will be no compatibility issues when running the latest versions of some soft-

ware or algorithms.

Algorithms and scripts

Algorithms and scripts required in the protocol are available in GitHub (https://github.com/

haiyang-yun/3D_chromatin_in_AML) and are indicated in the key resources table.

Data collection

Timing: 6–8 h

Collect the bulk NGS data of each genomic profiling approach below in four cellular states (HSPCs

from WT, Flt3-ITD, Npm1c, and DM mice) for processing. All the experiments were performed as

described (Yun et al., 2021). All NGS data in the protocol were generated on Hiseq 2500 or 4000

platforms, with raw reads available in .FASTQ files with two biological replicates for each assay con-

dition for each genotype. Download the relevant data from data repositories as indicated in the key

resources table.

1. Chromatin accessibility profiled by assay for transposon accessible chromatin (ATAC-seq).

2. Multiple chromatin activation states detected by chromatin immunoprecipitation and mass par-

allel sequencing (ChIP-seq) on histone H3 lysine 4 mono- or trimethylation (H3K4me1 or

H3K4me3) and histone H3 lysine 27 acetylation (H3K27ac).

3. Promoter-anchored 3D chromatin interaction detected by Promoter capture HiC (pCHiC).

4. Global gene expression profiled by RNA high-throughput sequencing (RNA-seq).

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

FastQC Andrews (2010) http://www.bioinformatics.babraham.ac.uk/projects/fastqc

Bowtie2 (v.2.1.0) (Langmead and
Salzberg, 2012)

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

Picard tools (v.2.2.1) Picard Toolkit, 2019 https://broadinstitute.github.io/picard

MACS2 (v.2.0.1) (Zhang et al., 2008) https://pypi.org/project/MACS2

STAR (v.2.4.0) (Dobin et al., 2013) https://github.com/alexdobin/STAR

(Continued on next page)
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STEP-BY-STEP METHOD DETAILS

Herein we describe step-by-step analytical procedures starting from raw data processing all the way

through to integrated data analysis. The raw data undergo serial processing steps covering: quality

control, read mapping, data filtering, normalization, and statistical calling. Subsequently, the pro-

cessed data are first subjected to integrated analysis on dynamic chromatin states, to reveal differ-

ential clusters of cis-regulatory elements (CREs) that demonstrate similar dynamic chromatin mod-

ifications. Afterwards, the specific clusters of CREs with characteristic gain or loss of enhancer

signatures are annotated to target genes, using either linear or spatial proximity information. Differ-

ential mRNA expression is further analyzed for these genes along with their associated functional

network. The relevant biological information of the data used and their functional interpretation

are discussed in great detail in (Yun et al., 2021).

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

DESeq2 (v.1.12.4) (Love et al., 2014) https://bioconductor.org/packages/release/bioc/html/DESeq2.html

Python (v.3.9.5) Van Rossum and Drake
(2009)

https://www.python.org/

HTSeq (v.0.6.0) (Anders et al., 2015) https://htseq.readthedocs.io/en/master/

R (v.3.6.1) R Core Team (2019) https://www.R-project.org

HiCUP (v.0.5.8) (Wingett et al., 2015) https://www.bioinformatics.babraham.ac.uk/projects/hicup

CHiCAGO (v.1.1.1) (Cairns et al., 2016) https://functionalgenecontrol.group/chicago

Seurat (v.3.2.3) (Satija et al., 2015) https://satijalab.org/seurat/articles/get_started.html

DiffBind (v.2.0.1) (Ross-Innes et al., 2012) https://bioconductor.org/packages/release/bioc/html/DiffBind.html

featureCounts (Subread package v.2.0.1) (Liao et al., 2014) http://subread.sourceforge.net/featureCounts.html

ShinyGO v0.76 (Ge et al., 2020) http://bioinformatics.sdstate.edu/go/

get_data.sh (Yun et al., 2021) https://github.com/haiyang-yun/3D_chromatin_in_AML/tree/main/
ChIP-seq

process_aligned_reads.sh (Yun et al., 2021) https://github.com/haiyang-yun/3D_chromatin_in_AML/tree/main/
ChIP-seq

runRNA_STAR_paired.pl (Yun et al., 2021) https://github.com/haiyang-yun/3D_chromatin_in_AML/tree/main/
RNA-seq

RNAseq_differential_analysis.R (Yun et al., 2021) https://github.com/haiyang-yun/3D_chromatin_in_AML/tree/main/
Differential_analysis/

Digest.mm10.rmap (Yun et al., 2021) https://github.com/haiyang-yun/3D_chromatin_in_AML/tree/main/
Other

CHiC.mm10.baitmap (Yun et al., 2021) https://github.com/haiyang-yun/3D_chromatin_in_AML/tree/main/
Other

ATAC_consensus_peakmax.R (Yun et al., 2021) https://github.com/haiyang-yun/3D_chromatin_in_AML/tree/main/
Other

ATAC_peaksummit_to_saf.R (Yun et al., 2021) https://github.com/haiyang-yun/3D_chromatin_in_AML/tree/main/
Other

Multiomics_Seurat_analysis_v2022.R (Yun et al., 2021) https://github.com/haiyang-yun/3D_chromatin_in_AML/tree/main/
Other

Cluster_CREs_genes_diffexp.R (Yun et al., 2021) https://github.com/haiyang-yun/3D_chromatin_in_AML/tree/main/
Other

ATAC_consensus_summit2kb_adj_
cpm_merge_transpose.txt

(Yun et al., 2021) https://github.com/haiyang-yun/3D_chromatin_in_AML/tree/main/
Other

pCHiC_fragID_Gene.txt (Yun et al., 2021) https://github.com/haiyang-yun/3D_chromatin_in_AML/tree/main

Deposited data

Raw ATAC-seq data (Yun et al., 2021) GSE146616

Raw ChIP-seq data (Yun et al., 2021) GSE146663

Raw pCHiC data (Yun et al., 2021) GSE146662

Raw RNA-seq data (Yun et al., 2021) GSE146668

Other

Intel(R) Xeon(R) Silver 4214 CPU @ 2.20 GHz
(48 CPUs 3 2 Threads), 756 GB memory, Debian
GNU/Linux 10 (buster)

N/A N/A
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Data processing

Timing: 2–3 days

In this section, the raw data from different genomic approaches are processed in a stepwise manner

and are transformed into a format compatible with the subsequent integrative analysis. In brief, a QC

step is applied to check the ChIP-seq and ATAC-seq data quality prior to reads mapping to mouse

genome, followed by the removal of duplicated reads. Subsequently, genotype-specific open chro-

matin states are identified by calling significant peaks on ATAC-seq in each cellular condition. Next,

transcriptome data profiled by RNA-seq are processed in a similar fashion but with different tools. In

addition, the RNA-seq read counts are extracted for all annotated genes and differential expression

of protein-coding genes between single or double mutant cells and wildtype cells is analyzed.

Finally, chromatin interaction data stored in raw .FASTQ files of pCHiC are converted into readable

promoter-associated DNA interaction files. The data processing steps are described in great detail

below.

1. Process raw reads in ATAC-seq and ChIP-seq data for each genotype.

a. Perform QC and reads mapping by running custom scripts (‘‘get_data.sh’’) on the input

.FASTQ files.

Note:QC analysis is carried out with FastQC package, and raw reads are mapped toMusmus-

culus (house mouse) genome assembly GRCm38 (mm10) using Bowtie2, with parameters al-

lowing to keep reads for at most 2 alignment and 1 mismatch in the seed (20 bp default).

b. Filter the mapped reads by removing duplicate reads with custom scripts (‘‘process_aligne-

d_reads.sh’’) as below.

Note: This process utilizes Picard tools with the ‘‘MarkDuplicates’’ function for data filtering,

and generates sorted .BAM files.

c. Identify significant ATAC-seq peaks by running MACS2 callpeak on filtered .BAM files with a

pre-defined p value at 1e-20.

Note: The parameter –nomodel here is specified for single-read ATAC-seq data (the exemplar

data), without modeling the fragment size and by default extends the reads for 200 bp. This

may not accurately reflect the actual length of nucleosome-free regions.

2. Process RNA-seq raw data and analyze differential expression of protein-coding genes between

mutant and wildtype samples.

a. Process RNA-seq data by running custom scripts (‘‘runRNA_STAR_paired.pl’’) on paired

.FASTQ files (r_1 and r_2) for each genotype.

Note: This process covers QC analysis using FastQC, then reads mapping and uniquely

mappable reads extraction using STAR package which allows at most 2 mismatches, and

subsequently read counts computation for all annotated genes using a python package

HTSeq.

> get_data.sh -g [GENOTYPE] -m [OUTPUT_FOLDER] -i [INPUT_FASTQ] -x mm10

> process_aligned_reads.sh -g [GENOTYPE] -m [OUTPUT_FOLDER] -x mm10

> macs2 callpeak -t [INPUT_BAM] -g mm -f BAM -n [OUTPUT_FILE_NAME] -p 1e-20 –nomodel –nolambda

–bdg
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b. Analyze pairwise differential gene expression between any mutant condition (Npm1c, Flt3-

ITD, or DM) and WT counterpart by running custom scripts (‘‘RNAseq_differential_analy-

sis.R’’) on .HTSEQ.COUNTS files generated in step 2a.

Note: Bioconductor package DESeq2 is the core analytical tool utilized in this step. The

output files are in .CSV format (e.g., ‘‘WT.DM.PC.diffExp.csv’’).

3. Process the promoter-associated chromatin interaction data profiled by pCHiC assays in each

cellular condition.

a. Process pCHiC raw data (paired reads, r_1 and r_2) using HiCUP pipeline tomap and filter the

data and eventually output valid HiC fragments (termed di-tags) stored in .BAM files.

Note: The format of all input files is described in the HiCUP pipeline documentation (https://

www.bioinformatics.babraham.ac.uk/projects/hicup/read_the_docs/html/index.html). To

execute HiCUP, the input HindIII_digestion_file needs to be generated using hicup_digester

(included in the hicup software) using the first code above.

b. Transform valid HiC di-tags into statistically significant chromatin interactions associated

with all mouse promoters using Bioconductor package CHiCAGO.

i. Convert filtered read pairs in .BAM files generated by HiCUP into the CHiCAGO input

data format, .CHINPUT.

Note: The availability of the shell script, as well as the description and preparation of input files

can be referred to CHiCAGO online instruction (https://bitbucket.org/chicagoTeam/chicago/

src/master/chicagoTools/). The rmap file (.RMAP) and baitmap file (.BAITMAP) are tab-sepa-

rated files describing the restriction digestion fragments and the coordinates of the baited/

captured restriction fragments, respectively, all with numeric IDs. Both files can be generated

by a CHiCAGO script (‘‘create_baitmap_rmap.pl’’) which is accessible via clicking the link

above.

ii. Further statistical analysis is performed on .CHINPUT files from genotype replicates to

generate a list of significant promoter-associated DNA interactions.

Note: Significant interactions are called when CHiCAGO scores are R5. The format of

CHiCAGO input files is described in the CHiCAGO pipeline documentation (https://

bitbucket.org/chicagoTeam/chicago/src/master/chicagoTools/).

> runRNA_STAR_paired.pl [INPUT_r_1_FASTQ] [INPUT_r_2_FASTQ] [GENOTYPE] mm10 STAR-GENOMES-

mm10.gencode.vM7.comprehensive gencode.vM7.comprehensive.annotation.gtf [exons y/n]

> Rscript RNAseq_differential_analysis.R

> hicup_digester –genome Mouse_GRCm38 –re1 A^AGCTT,HindIII [mm10_GENOME.fa]

> hicup –bowtie2 [BOWTIE2_PATH] –index [mm10_REFERENCE_GENOME_PATH] –digest [mm10_HIN-

DIII_DIGESTION_FILE] –format Sanger –longest 800 –shortest 150 [INPUT_r_1_FASTQ]

[INPUT_r_2_FASTQ]

> bam2chicago.sh [INPUT_BAM] CHiC.mm10.baitmap Digest.mm10.rmap [OUTPUT_FILE] nodelete

> Rscript runChicago.R –design-dir [DESIGN_FILES_PATH] [CHINPUT_FILE_1, CHINPUT_-

FILE_2,.] [OUTPUT_FILE] WT.CHiC.R1.chinput,WT.CHiC.R2.chinput WT.CHiC.R1-2
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CRITICAL: Data processing by HiCUP and CHiCAGO are heavy computation tasks which

favor usage ofmultiple CPU cores and largememory. The running time can be reduced to a

reasonable duration in a computational environment with at least 24 threads and 48 GB

RAM.Data integration (i)—Dynamic chromatin states

Timing: 4–6 h

We first apply a multilayered approach (Ma et al., 2020) to integrate the multiomics chromatin anal-

ysis at all cis-regulatory elements (CREs) in wildtype and mutant HSPCs. As CREs are usually

rendered accessible by chromatin binding factors such as transcription factors (TFs), their presence

can be implied by open chromatin sites, which are profiled by ATAC-seq. We therefore identify all

open chromatin sites across four cellular conditions by creating a compendium of ATAC-seq

consensus peak sets. Afterwards, the read counts for each chromatin condition (H3K4me1,

H3K4me3, H3K27ac and ATAC-seq) of each genotype (WT, Npm1c, Flt3-ITD and DM) at these po-

tential CREs are computed to build a data matrix for further clustering analysis. Subsequently, the

data matrix is processed in a similar way as for single-cell RNA-sequencing with the Seurat package,

treating all CREs (as columns, equivalent to cells in a typical Seurat workflow) as separate data points

across all 16 assay conditions (as rows, 4 chromatin profiles 3 4 phenotypes, equivalent to genes in

Seurat). This allows dimensionality reduction to classify and visualize clusters of CREs with similar

patterns across wildtype and mutant cells. Meanwhile, specific clusters of chromatin regions

showing leukemia-specific alterations of chromatin activation marks are identified for downstream

gene network analysis.

4. Create a catalog of ATAC-seq consensus peak sets across four cellular states and convert it into a

data table listing 2-kilo base (kb) bins at these consensus peaks (G1 kb from peak summit) in a

format of .SAF required for read counts extraction using featureCounts.

a. Make a sample list (‘‘samplesheet_ATAC.csv’’) indicating which ATAC-seq samples to be pro-

cessed and the path to the storage of filtered reads (in .BAM files) and peak files (created by

MACS2), using the layout below (row 3–6 are examples).

b. By running custom scripts (‘‘ATAC_consensus_peakmax.R’’) on the sample list (‘‘sampleshee-

t_ATAC.csv’’) generated in step 4a, a list of consensus peak sets (‘‘ATAC_consensus_

peaks.bed’’) is computed on ATAC-seq peaks from all genotypes including all their replicates.

Then supplement this list with the information of which sample has maximal ATAC-seq signal

at each peak (‘‘ATAC_consensus_peakmax.bed’’).

Note: This step is performed by running DiffBind within our custom scripts.

c. Identify the peak summit of each consensus peak sets (summit of the sample with maximal

ATAC-seq signal identified in step 4b) and convert this information to featureCounts input

file (‘‘ATAC_consensus_summit2kb_adj.saf’’) by creating genome coordinates of 2-kb bins

surrounding ATAC-seq consensus peak summits (G1 kb from peak summit), with the help

of running custom scripts (‘‘ATAC_peaksummit_to_saf.R’’).

SampleID Condition Replicate bamReads ControlID bamControl Peaks

[SAMPLE] [GENOTYPE] 1 [BAM_FILE] NA NA [PEAK_FILE]

WT.ATAC.R1 WT 1 [path_to_bam_file] NA NA [path_to_MACSpeak_file]

WT.ATAC.R2 WT 2 [path_to_bam_file] NA NA [path_to_MACSpeak_file]

NPM1.ATAC.R1 NPM1 1 [path_to_bam_file] NA NA [path_to_MACSpeak_file]

NPM1.ATAC.R2 NPM1 2 [path_to_bam_file] NA NA [path_to_MACSpeak_file]

> Rscript ATAC_consensus_peakmax.R
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5. Extract the read counts for each genomic approach (H3K4me1, H3K4me3, H3K27ac, and ATAC-

seq) in each cellular condition at the 2-kb bins of ATAC-seq consensus peaks from the corre-

sponding .BAM files (with replicates merged and normalized as count per million total read

counts) using featureCounts.

6. Perform integrative analysis on multilayered chromatin profiling data of all four genotype sam-

ples by running custom scripts (‘‘Multiomics_Seurat_analysis_v2022.R’’) to identify clusters of

CREs (accessible chromatin regions) with similar dynamic chromatin states across WT and mutant

conditions.

Note: A prerequisite to dimensionality reduction analysis is a data matrix containing CREs as

column (equivalent to cells in a typical Seurat workflow) and samples as rows (equivalent to

genes in Seurat), filling with normalized read counts (CPM) on merged replicates of each

condition, in a layout format as listed below. An exemplar data matrix (‘‘ATAC_consensus_

summit2kb_adj_cpm_merge_transpose.txt’’) is provided in the key resources table.

Note: By analyzing our exemplar data, this step generates three plots as shown in Figure 1.

Using a heuristic method (ElbowPlot() function in Seurat package), we observe an ‘elbow’

around PC7-8 (Figure 1A), suggesting that the majority of true signal is captured in the first

8 PCs. Subsequent analysis using FindClusters() function outputs 10 communities, followed

by computation of 10 clusters by non-linear dimensionality reduction algorithms: UMAP or

tSNE (Figure 1B). And we found individual clusters were more well separated in tSNE plot

than in UMAP. Therefore, the 10 tSNE-clusters are further subjected to heatmap plotting,

to demonstrate individually dynamic patterns across WT and mutant conditions (Figure 1C).

> awk ’{print $1"\t"$2"\t"$3"\t"$5"\t""[SAMPLE]"}’ [PEAK_FILE] > [SAMPLE_PEAK_SUMMIT_BED]

> cat [ALL_PEAK_SUMMIT_BED] | sort -k1,1 -k2,2n > ATAC_all_summit.bed

> bedtools intersect -a ATAC_consensus_peakmax.bed -b ATAC_all_summit.bed -wa

-wb > ATAC_consensus_peakmax_intersect_summit.bed

> sort -k4,4 -k9,9rn ATAC_consensus_peakmax_intersect_summit.bed | sort -uk4,4 | awk ’{print

$6"\t"$7"\t"$8"\t"$4}’ | sort -k1,1 -k2,2n > ATAC_consensus_peak_summit.bed

# ‘‘ATAC_consensus_peak_summit.bed’’ is the input file for subsequent conversion to .SAF file

> Rscript ATAC_peaksummit_to_saf.R

> featureCounts -a ATAC_consensus_summit2kb_adj.saf -F SAF -t exon -g GeneID –largestOverlap

-o ATAC_consensus_summit2kb_adj_counts.txt [ALL_BAM_FILES]

> Rscript Multiomics_Seurat_analysis_v2022.R

# input files ‘‘ATAC_consensus_summit2kb_adj_counts.txt’’ and ‘‘ATAC_consensus_summit2k-

b_adj_counts.txt.summary’’ were generated in step 5 by featureCounts

CRE_1 CRE_2 CRE_3 . . CRE_N

[SAMPLE] [CPM] [CPM] [CPM] [CPM] [CPM] [CPM]

WT.H3K4me1

NPM1.H3K4me1

.

WT.ATAC

NPM1.ATAC

.
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Furthermore, we extract the genomic coordinates of Cluster-6 CREs as exemplar data to

analyze their associated gene network. This creates a bed file (‘‘Multiomics_Cluster-6_sum-

mit200bp.bed’’) which contains genome coordinates of a 200 bp region surrounding

ATAC-peak summit of Cluster-6 for downstream annotation analysis.

Note: To link a set of CREs (tSNE clusters) with mutation condition, by qualitatively analyzing

the dynamic pattern of chromatin profiles associated with mutation alone or in combination in

the heatmap (Figure 1C), we identified several clusters which demonstrate synergistic impact

of mutations on chromatin modulation. For example, we identified CREs showing gains of

enhancer marks and accessibility by mutations (e.g., Flt3-ITD and DM), which were separated

by marked gain of accessibility (Cluster-5) and H3K27ac (Cluster-6). In comparison, Cluster-8

and Cluster-1 demonstrate mutation-associated loss of enhancer signatures, characterized by

concurrent loss of H3K4me1 and accessibility, with or without evident loss of H3K27ac,

respectively. More molecular information on these specific clusters can be referred to (Yun

et al., 2021) where the exemplar data were generated.

Data integration (ii)—Differential gene network

Timing: 6 h

Figure 1. A multilayered approach to analyze dynamic chromatin marks upon mutational synergy induced leukemia

(A) The elbow plot determines number of PCs to capture the variation in the data.

(B) Non-linear dimensionality reduction by UMAP or tSNE clustering.

(C) Heatmap shows individual clusters of CREs with dynamic patterns of chromatin modifications and accessibility

across WT and mutant conditions.
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In this step, we will link the CREs which demonstrate mutation-specific alteration of chromatin states

to their associated genes with linear or spatial proximity. From step 6, Cluster-6 is selected as an

exemplar group of CREs showing increased chromatin activity induced by mutations. The two mu-

tations (Npm1c and Flt3-ITD) exert a strong synergy to induce a marked gain of H3K27ac, elevated

levels of H3K4me1 and ATAC-seq, indicating the acquisition of enhancer signals by leukemia induc-

tion. Using the promoter-associated chromatin interaction data from pCHiC assays, Cluster-6 CREs

are assigned to target genes when the CREs overlap with bait promoters or interaction fragments

revealed by the pCHiC data. These target genes are then examined for differential expression anal-

ysis between mutant and WT samples, by checking them in the global analysis from step 2b. Since

Cluster-6 CREs represent leukemia-specific gain of chromatin activity, the mutation-induced up-

regulated genes linked to Cluster-6 CREs are further selected for gene ontology analysis, leading

to the identification of leukemia-specific gene network related to chromatin alteration at 3D level.

7. Prepare the CRE annotation file using chromatin interaction information indicated by pCHiC

data.

a. Make a sample list (‘‘makematrixsample.txt’’) indicating the genotypes and the correspondent

.RDS files (created by ‘‘runChicago.R’’ in step 3b) which contain promoter-associated DNA in-

teractions generated by CHiCAGO, using the format below.

Note: For each genotype, interaction data of two replicates are merged by running runChica-

go.R as input samples.

b. Generate a consensus matrix of significant chromatin interactions (CHiCAGO score R5) de-

tected in at least one genotype by running makePeakMatrix.R in CHiCAGO package (output

file: ‘‘pCHiC_matrix.txt’’).

8. Identify specific target genes associated with Cluster-6 CREs which were identified in step 6 by

utilizing chromatin interaction information.

Note: Annotation is achieved by the exploration of pCHiC data (‘‘pCHiC_matrix.txt’’

from step 7b), which include genomic coordinates of gene promoters (as ‘‘bait’’ fragment)

and their interacting regions (as other end ‘‘oe’’ fragment). Next, by intersecting CREs

with either ‘‘bait’’ or ‘‘oe’’ fragments, the target genes associated with specific CREs

can be identified. These genes are further analyzed for altered expression by combined

mutations (DM leukemia) in comparison to WT (Figure 2A, and the output file

‘‘Cluster-6_genes_DMvsWT_diffexp.txt’’). Up- or down-regulation is defined as fold-

change R1.5 and adjP <0.05. This step can be achieved by running custom scripts

(‘‘Cluster_CREs_genes_diffexp.R’’).

9. Select the upregulated genes from previous step (the file ‘‘Cluster-6_DMvsWT_upgenes.txt’’

from step 8) to load into web server ShinyGO v0.76 (http://bioinformatics.sdstate.edu/go/) for

gene network or pathway analysis.

[GENOTYPE] [ GENOTYPE_RDS_FILE]

> Rscript makePeakMatrix.R –twopass ./makematrixsample.txt pCHiC_matrix > pCHiC_matrix.log

> Rscript Cluster_CREs_genes_diffexp.R

# Annotation input files ‘‘Digest.mm10.rmap’’ and ‘‘pCHiC_fragID_Gene.txt’’ are provided in the

KRT, while ‘‘pCHiC_matrix.txt’’ was generated in step 7b. Differential gene expression input

file ‘‘WT.DM.PC.diffExp.csv’’ was generated in step 2b.
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Note: The search species is set for ‘‘Mouse’’ and ‘‘GO Biological Process’’ is selected as target

pathway database, with default parameters (FDR cut-off at 0.05) and setting 10 pathways to

show. The output plot (Figure 2B) is generated under the tab Network.

EXPECTED OUTCOMES

This protocol provides a novel and informative way to analyze multilayered chromatin profiling

data from wildtype and mutant samples and to identify aberrant gene network and pathways

induced by mutational synergy through 3D chromatin alteration. Using exemplar data, this

approach allows the identification of multiple clusters of CREs (open chromatin regions) which

are clearly separated from each other and indicate specific patterns of chromatin dynamics across

WT and mutant conditions as shown in Figure 1. Furthermore, a representative group of CREs

(Cluster-6) demonstrating leukemia-specific gain of chromatin activity are linked to their proximal

genes at both linear and spatial levels. This facilitates the identification of genes which demon-

strate leukemia-specific expression changes and suggest common pathways involved in DM leu-

kemia as illustrated in Figure 2.

Statistical analysis

Statistical analysis in the protocol is specified in detail in each step if relevant. Statistical calculations

for differential gene expression analysis are performed with DESeq2, generating two-tailed andmul-

tiple testing corrected P (with the Benjamini and Hochberg method, adjP), with adjP %0.05 being

considered statistically significant. Other statistical computation involves ATAC-seq peak calling

(p value set for 1e-20 when using MACS2), identification of significant chromatin interaction profiled

by pCHiC (CHiCAGO score R5).

LIMITATIONS

The current protocol has been established and validated for the multiomics data analysis on active

chromatin modifications (the marks for active CREs including enhancers and promoters such as

H3K4m1, H3K4me3 and H3K27ac) at open chromatin regions. However, repressive chromatin marks

(e.g., H3K9me2/3, H3K27me3) may be not a suitable source data for this approach without any opti-

mization. Instead, consensus peak sets pooled from all profiled repressive chromatin marks can be

computed to generate a compendium of repressive chromatin regions using a similar design. There-

fore, though not yet tested, this multilayered analytical approach may serve other type of chromatin

analysis.

Figure 2. Altered expression of genes and gene network linked to DM-specific chromatin alteration

(A) Differential expression of genes associated with Cluster-6 CREs showing leukemia-specific gain of chromatin

activity.

(B) Top 10 enriched network pathways of DM leukemia upregulated genes associated with Cluster-6 CREs.
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TROUBLESHOOTING

Problem 1

Some software and algorithms used in this protocol were installed and tested on their old versions,

leaving potential issues on the compatibility and reproducibility when running on the latest versions.

Potential solution

We commented on this issue in the Note of the software section. In brief, all the R custom scripts run

seamlessly with the latest R packages and latest R version (v.4.1.3), and the same results can be re-

produced. And we anticipate the newer versions of other software and algorithms for NGS reads

processing will retain the main analytical and statistical power with the same key parameters, though

not yet been tested on our exemplar data. Nevertheless, we cannot confirm that any compatibility

issues may not be encountered when running the latest versions of some software or algorithms.

Problem 2

The peak calling for ATAC-seq data using MACS2 was rather simplified and may not reflect the

actual size of nucleosome-free regions, although this might be acceptable for downstream integra-

tive analysis.

Potential solution

We commented on this issue in step 1c. As our exemplar ATAC-seq data are single-end reads and

the fragment size was not determined, we chose to run MACS2 without modeling the fragment

length by adding the parameter –nomodel, which, by default, extends all the reads for 200 bp.

Ideally, this may be less problematic when processing paired-end ATAC-seq data.

Problem 3

The making of the 2-kb bins at ATAC-seq consensus peak sets across all samples requires a complex

processing which is possibly problematic if peak summit is not properly identified (step 4).

Potential solution

The key to identify the consensus peaks summit requires the preparation of two lists: 1) a list indi-

cating which sample has maximal ATAC-seq signal at each peak; 2) a list of all peak summits of in-

dividual samples. Overlapping these two lists will output the exact peak summit for each consensus

peak.

Problem 4

Annotation of specific CREs to target genes using chromatin interaction information requires serial

steps to process pCHiC data. Improper preparation of relevant annotation files (step 8) may occur

and cause problems to identify the right genes.

Potential solution

First of all, instead of using the individual interaction profile of each sample, we use the consensus

profiles to represent all interactions across all four cellular conditions. Second, we separately inter-

sect the CREs with bait promoter fragments as well as other-end (oe) interaction fragments of pCHiC

(being HindIII digestion fragments), and these overlapped oe fragment were further linked to their

associated bait promoters using the interaction data.

Problem 5

All the exemplar data sets include two biological replicates, to reduce the experiment bias and in-

crease the statistical confidence of the analysis performed with this protocol. However, this protocol

did not test data sets either with only a single run or with more replicates of experiment settings,

leaving a potential issue on processing variable number of replicates.
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Potential solution

In the protocol we processed the biological replicates at different stages for different purpose. For

example, for differential expression analysis, the replicates were treated separately for statistical

calling, whereas for the construction of chromatin interaction matrix, replicates were merged to

maximize the power of identifying chromatin interactions. Therefore, the way of dealing with repli-

cate should be individually considered for each experiment stage and analysis purpose.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Dr. Brian J. P. Huntly (bjph2@cam.ac.uk).

Materials availability

This protocol does not require any newly generated materials associated with this protocol.

Data and code availability

This study did not generate any new data. All exemplar source data were published and were down-

loaded from Gene Expression Omnibus (GEO) database (GSE146616, GSE146662, GSE146663,

GSE146668). All computation pipelines or custom code are available at https://github.com/

haiyang-yun/3D_chromatin_in_AML (archived also on Zenodo: https://doi.org/10.5281/zenodo.

7090655).
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