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Abstract: This article describes the implementation of an efficient and fast in-house computed to-
mography (CT) reconstruction framework. The implementation principles of this cone-beam CT
reconstruction tool chain are described here. The article mainly covers the core part of CT reconstruc-
tion, the filtered backprojection and its speed up on GPU hardware. Methods and implementations
of tools for artifact reduction such as ring artifacts, beam hardening, algorithms for the center of
rotation determination and tilted rotation axis correction are presented. The framework allows the
reconstruction of CT images of arbitrary data size. Strategies on data splitting and GPU kernel
optimization techniques applied for the backprojection process are illustrated by a few examples.

Keywords: computed tomography; CT reconstruction software; GPU-based reconstruction; bad
center of rotation correction; data splitting techniques

1. Introduction

At Empa’s Center for X-ray Analytics, different types of Computed Tomography
(CT) scanners are in use. They encompass a cone-beam CT scanner with sub-micrometer
resolution, micro-CT scanners in the higher energy regime (up to 300 keV), X-ray phase
contrast instruments and a high-energy CT system (up to 6 MeV) using a linear accelerator
as an X-ray source. In this article, tools for the complete CT reconstruction chain are
presented. They have been in use for many years for in-house CT reconstruction. The
basic principles and the implementation of artefact reduction methods will be discussed.
Furthermore, we will give insights into implementation and optimization strategies. We
started the development of this in-house software for CT reconstruction to satisfy needs
that could not be covered by commercial software. Since the CT data sets were growing
over time with the increase in detector resolution from approximately 512 × 512 pixels
to 4096 × 4096 pixels today by more than an order of magnitude, an according speed up
in reconstruction time was also becoming mandatory. Therefore, we implemented the
backprojection, the most time-consuming component, on a graphics processing unit (GPU)
using NVIDIA’s CUDA toolkit [1]. This allows fast—a few minutes—backprojection for
large-volume data sets (≈20483 voxels). In the last 10 years, we continuously integrate new
modules capable of handling artefact reduction and geometry correction. Graphical user
interfaces for all modules easily allow parameter configuration and the execution of the
applications. Nevertheless, it is also possible to run the filtered backprojection headless,
which allows batch processing. The reconstruction of phase-contrast CT will be described
elsewhere. Nowadays several free or open source reconstruction tool kits are existing.
TIGRE [2], ASTRA [3], RTK [4] and MuhRec [5] are prominent examples. TIGRE, ASTRA
and RTK providing iterative solvers, which are capable of handling reconstruction problems
that cannot be solved by filtered backprojection. These are, e.g., limited angle CT or the
integration of physical models in the reconstruction procedure. Reviews for the different
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methods are presented in [6,7]. Early examples for CT reconstruction implementation on
the GPU are those from Fang Xu et al. [8] using GPU shaders and Holger Scherl et al. [9]
using CUDA textures. However, the usability was limited due to the small GPU memory
size (NVIDIA GeForce 8800 GT 512 MB). The majority of the tool kits today are using GPUs
for process acceleration. Specific for our implementation is the automated determination
of the center of rotation and the rotation axis tilt. These features are essential in practice
for the reconstruction, especially with high magnification measurements using nano- and
micro-cone-beam CT systems. Our implementation running under Windows is available as
open source at: https://github.com/JueHo/CT-Recon, accessed on 15 December 2021.

2. Methods: Overview of the Reconstruction Framework

Figure 1 gives an overview of the reconstruction framework: the modules, the pro-
cesses and the data flow. The next chapters focus on the method and implementation
description of the two main parts of the CT reconstruction: the pre-processing of the raw
data and the filtered backprojection. These include ring artefact reduction methods, au-
tomatized estimation of the rotation axis offset, tilted axis correction and a simple beam
hardening correction. The basic principles for the Lak-Ram and Shepp-Logan filter design
are explained. For the backprojection step we present details on the implementation of
the Feldkamp–David–Kress algorithm (FDK) [10] on GPU. Furthermore a data-splitting
algorithm is introduced, which enables the reconstruction of arbitrarily sized volumes.

Figure 1. Overview: Workflow of CT reconstruction.

https://github.com/JueHo/CT-Recon
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2.1. Pre-Processing

Pre-processing includes several steps before executing the actual CT reconstruction
with the filtered backprojection. It involves mandatory processing steps such as normaliza-
tion and taking the logarithm of the normalized projection images. Others methods such
as those for ring artifact suppression and beam hardening correction are optional. In the
subsequent paragraphs, we explain all methods in detail.

2.1.1. Normalization and Beam Hardening Correction

Normalization:
Raw projection images have to be corrected by a reference image taken without

the object, the flat-field image and a dark-field image acquired without X-ray radiation.
The dark- and flat-field correction as shown in Equation (1) is normally performed during
the data acquisition. Scanner systems typically provide internally an up-scaling to the
original data range or a fluence correction. Therefore, we introduce the term fluence
(integrated counts on the detector over the exposure time) C f l in Equation (1), which
should make our further statements clearer:

Iϕi
proj(x, y) =

Iϕi
raw(x, y)− Idark(x, y)

I f latraw(x, y)− Idark(x, y)
C f l (1)

with projection at angle ϕi ∈ [0, 2π].
We distinguish between two cases of up-scaling (C f l) performed during data acquisition:

1. The data range after the normalization will be up-scaled to the level of the raw
projections, e.g., in 16-bit representation, before normalization (C f l Equation (2)):

C f l = mean(I f latraw(x, y))− Idark(x, y)); (2)

2. An additional measurement device will gather the fluence of each projection (C f l
Equation (3)):

C f l = Iϕi
f l −mean(Idark(x, y)). (3)

In our implementation, we have three options to consider the different cases (see
Figure 2, options yellow marked):

1. No correction. The projections are already fluence corrected.
2. The projections are only up-scaled, and it is possible to select a background ROI for a

post-fluence correction. Then, we use Equation (4) for the correction.
For that, a region of interest (ROI) of the background is taken for every projection at
the same position. It is used to perform a fluence correction of the current projection
by the mean value of the pixels values within the ROI. The selection of the ROI is
performed interactively, as illustrated in Figure 2. The ROI should not interfere with
the object, which needs to be verified by stepping through all projections:

Iϕi
corr(x, y) =

Iϕi
proj(x, y)

mean(winϕi )
(4)

3. The projections are only up-scaled, but it is not possible to select a background
ROI and perform a fluence correction. This might be because, e.g., projections are
completely filled by the object. Then, we use Equation (5) to re-scale the projections to
make the gray values comparable to those corrected by Equation (4):

Iϕi
corr(x, y) =

Iϕi
proj(x, y)

mean(I f latraw(x, y)− Idark(x, y))
(5)
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Obviously for the in-house scanner where all the images (projection, flat and dark)
are available, the user can provide those to our package and choose from the above
option and use the respective equations. Our package flexibly supports all these input
image options.

Figure 2. ROI selection used for fluence up-scaling.

Beam hardening correction (BHC):
Bremsstrahlung-based X-ray sources typically used in laboratory CT systems have a

polychromatic energy spectrum. Beam hardening occurs when an X-ray beam consisting
of polychromatic energies passes through an object, and the sample material attenuates
more pronounced lower energy photons. The mean value in the X-ray spectrum reaching
the detector is shifted to higher energy. The result is a non-linearity of the attenuation
versus the material thickness. In Figure 3, the artefact caused by beam hardening is
visible in higher gray values in the outer region and lower gray values in the center of the
object’s tomogram, as the lower energy photons preferentially become attenuated over
longer path lengths. We chose a polynomial approach [11,12] for the correction of beam
hardening, which is fast and delivers good results in practice, especially applied to cupping
artifacts. The function-based correction method—e.g., with polynomials—linearizes the
attenuation values in the projections. Equation (6) shows the expression used for the
correction. For the correction of severe beam hardening artifacts such as photon starvation,
an iterative correction algorithm [13] is often more suitable:

f (x) = a · x + b · xc x: image gray value and a, b, c: empirical coefficients (6)

The parameters used for BHC are based on experience. Typically, values for c, the most
sensitive parameter, are in the range of [2.0, 3.0].

2.1.2. Ring Artifact Reduction

Typical ring artifacts can be observed in the CT slice in Figure 4a. We differentiate
between two main types of ring artifact sources. The first is caused by malfunctioned
detector pixels creating severe artifacts. The second is caused by the nonuniform sensitivity
of the detector pixels, which is less severe, but still induces significant ring artifacts in the
reconstructed images. We implemented two methods to mitigate ring artifacts.
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Figure 3. Tomogram of an ammonit. Left (a) without BHC. Right (b) with BHC. Parameters: a = 1.0,
b = 1.0, c = 3.0.

The first method is based on median filtering (MF), which reduces coarse ring artifacts
induced by defect pixel values. As input for this method, we define a threshold value
σth = n ∗ σ for the gray value outliers as a multiple of the standard deviation. In the
projection stack, structures and edges vary from image to image contrary to the defect
pixels, which stay on the same coordinates. Therefore, we sum up all projection images
pixel-wise into an image Isu. This reduces the influence of actual edges in Isu. To detect
the outliers, we build the difference image Idi f f of Isu and the median blurred of Isu. We
build a z-score [14] image from Idi f f and create an outlier image mask Imask, as described in
Algorithm 1. The mask Imask is used in a median filtering procedure for the X-ray projections,
as shown in Algorithm 2. This MF method mitigates coarse ring artifacts caused by defect
pixel values and defect detector lines (See changes in images in Figure 4a,b). The algorithm
utilizes functions from the Open Source library OpenCV [15] for its implementation.

Algorithm 1: Find outliers in X-ray image stack.
Input: Image stack of X-ray projection, Threshold value σth of outliers, window

mask win(w = width, h = height)
Output: Image mask Imask with outlier pixels

// Average pixel wise over X-ray projection stack Pi

P̃ =
1
n

n

∑
i=1

Pi

MI = MedianBlur(P̃, win(w, h))
// Pixel wise absolute difference Image DI between
// averaged projections and median blur image
// => enhance outliers
DI = |P̃ −MI|
// calculate z-score of DI
s = stdev(DI) // standard deviation
m = mean(DI) // mean value

Iz-score =
DI−m

s
// z-score of image

Imask = threshold(Iz-score, σth, BINARY_MODE)
return Imask
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Algorithm 2: Median filtering of defect pixels in X-ray projections.
Input: Image stack Istack of X-ray projection, Image mask Imask with outlier pixels,

window mask win(w = width, h = height)
Output: Smoothed X-ray image projection stack Iscorr with outlier correction

cols← Imask.column
rows← Imask.rows
Coordinate coor
Vector outlier_list
// Get the coordinates of the outlier pixels
for y← 0 to rows-1 do

for x ← 0 to cols-1 do
if Imask(x, y) > 0 then

Push coor(x, y) to outlier_list

// Loop over Projections Pi in X-ray image stack and
// iter list of outliers and replace outlier pixels
// at coordinate with median value in window win
size← count o f projections in Istack
for i← 0 to i = size do

Pi ← Istack[i]
for coor ← pop outlier_list to list_end do

Apply Median at coor using win
Iscorr [i]← Pi

return Iscorr

Figure 4. Tomogram of a coffee bean. Applying outlier and ring artifact reduction methods:
(a) without any corrections (two to three bad pixels next to each other cause severe ring artifacts);
(b) with MF method only; (c) with DLR correction only; (d) with MF and DLR method together.
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The second method is proposed by Y. Kim et al. [16] and is based on ring artifact
correction using detector line ratios (DLR). The objective of this method is the build-up of
a sensitivity correction matrix (SCM) from the projection image stack. The SCM is used
to correct the pixel values of all projections P(ϕ) according to the determined detector
sensitivity. The implementation in our pre-processing application is following closely the
description in the paper.

The best results in ring artifact reduction can be accomplished by combining both
methods, first applying the outlier correction method and afterwards the process projections
detector sensitivity equalization method. An example is shown in Figure 4. Only applying
the MF method (Figure 4b) leads to a reduction of ring artifacts but still leaves significant
rings visible. The DLR method (Figure 4c) alone is not capable of handling defect pixels
well and introduces additional artifacts. Both methods applied together (Figure 4d) show
good results in ring artifact suppression.

2.2. Weighting and Filtering of Projections

Weighting: For cone-beam CT scanners, it is necessary to weight the pixel gray values
in the projection images according to their geometry. We use the geometry notation of
Figure 5 for the weighting shown in Equation (7). When the rotation axis is not centered,
the pixel positions in Xp must be shifted by the offset value determined in Section 2.4.1:

W(Xp, Yp) =
SDD√

X2
p + Y2

p + SDD2 (7)

Weighting of pixel values in a projection.
Filtering: The ramp (Ram-Lak) filter is an integral part of the filtered backprojection

and is therefore mandatory. It has its mathematical origin in the Jacobian determinant
for the Polar to Cartesian transformation, which has to be applied for the derivation of
the backprojection algorithm [10]. The discrete Ram-Lak (Equation (8)) and Shepp and
Logan filter (Equation (9)) are integrated in the reconstruction framework. ∆s represents
the sampling interval. The derivation of the discretized Ram-Lak and Shepp-Logan filters
can be found in [10,17]. The discrete filters are implemented in the spatial domain to avoid
constant offset (DC) errors. This is because the digital measurement of the projections is
band limited due to discrete data sampling. A non-discrete filter would cause a DC offset
error, which cannot be completely eliminated by zero padding [10]. The convolution of the
filter kernel with the projections are processed in Fourier space due to performance reasons.
Filtering is applied row wise. Filter and projections are zero padded. The padding length
is at least N f + Np − 1, where N f is the filter length and Np is the projection length. This
avoids interference errors are caused by acyclic convolution.

HRL(n∆s) =



1
4∆s2 if n = 0.

0 if n is even (n 6= 0).

− 1
(nπ∆s)2 if n is odd

(8)

Discrete Ramachandran and Lakshminarayanan filter kernel in spatial domain.

HSL(n∆s) = − 2
(nπ∆s)2

1
4n2 − 1

(9)

Discrete Shepp and Logan filter kernel in spatial domain.
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2.3. Backprojection

In our framework, we implemented the voxel-driven method for backprojection. A ray
is going from the X-ray source through the center of the voxel under reconstruction and is
intersecting the projection plane afterwards. Code Listing A1 shows the implementation.
The interpolated gray value at the intersection point is taken to sum up the voxel value.
To obtain sub-pixel accuracy, bi-linear interpolation of the gray values in the neighborhood
of the intersection point is performed. We provide two implementations for the bi-linear
interpolation. The first is a fast hardware accelerated method that uses CUDA 2D texture
fetching function tex2DLayered(). This method uses 9-bit fixed point format with 8 bits
of fractional value [18], which givest the best accuracy for values near 1.0. For better
accuracy in case of values far from 1.0, we implemented an interpolation based on a 32 bit
floating point function—tex2DLayeredHighPrec()—running in a CUDA kernel function
fdk_kernel_3DW_HA(). For details on implementation, see source code Listing A2. Using
function tex2DLayeredHighPrec() decreases backprojection speed approximately by a factor
of two. The backprojection instruction is shown in Equation (10). Voxels are reconstructed
slice-wise Si as seen in Figure 5. The input data for the reconstruction are the weighted and
filtered projections as described in Section 2.2.

V
′
(xi, yi, zi) =

2π

∑
ϕ=0

SCD2

(SCD− zi(ϕ))2 I
′
ϕ(Xp, Yp) (10)

zi(ϕ): Projection on z of voxel V
′
i in volume coordinates and an angle ϕ.

I
′
ϕ(Xp, Yp): Weighted and interpolated pixel value of a projection at the angle ϕ.

Discrete backprojection (see Figure 5 and details on implementation in Listing A3).

Figure 5. Voxel-driven backprojection.

One main feature of our framework is the capability to reconstruct tomograms from
arbitrarily sized raw data sets. Neither the input data nor the reconstructed volume have
to fit into CPU or GPU memory. We achieve this by splitting input data and reconstruction
volume size according the available hardware resources. For that, the actual free CPU
and GPU memory must be estimated and compared with the required resources. Figure 6
shows how to split the reconstruction volume so that every chunk fits into the memory.
This partitioning is possible because every voxel can be reconstructed independently
from each other. For the backprojection, the projection data are uploaded to 2D layered
textures on the GPU. However, since the GPU memory compared to the CPU memory is
typically much more limited, the complete projection dataset usually does not fit into the
GPU memory. The backprojection runs over all projections from 0◦ to 360◦. Therefore,
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the complete backprojection process of a voxel can be divided into a sequence of sub-
backprojections using batches of projections which are fitting into the GPU memory (see
Figure 7). The Algorithm 3 shows the workflow of the sub-divided reconstruction process
in more detail.

Figure 6. Splitting reconstruction volume into chunks, which are small enough to fit into CPU memory.

Figure 7. Depending on the available GPU memory and the maximal GPU texture size, the projection
stack used for the reconstruction needs to be split.

2.4. Geometry Correction

Because data acquisition with CT scanners always contains errors regarding the
geometry, post corrections have to be applied for accurate reconstruction results. In our
application, we integrated the correction of the horizontal offset of the rotation axis and the
axis tilt. The presented algorithm can also be applied for other geometry corrections, e.g., a
slanted detector.



J. Imaging 2022, 8, 12 10 of 22

Algorithm 3: Backprojection of arbitrary data size. Reconstruction workflow for
the partitioning of input data not fitting in CPU or GPU memory.

Input: Total number of slices in volume Nstot, Total number of projections in
volume Nptot, Weighted and filtered projection stack: Nptot × Pf ilt, Size of
projection stack SZPS, Size of reconstruction volume SZVol , Fraction value
for CPU (host) memory usage: CPUMF, Fraction value for GPU memory
usage: GPUMF

Output: Reconstructed volume

MCPU = GetAvailableCPUMem() // Available CPU (Host) memory
MCuse = MCPU · CPUMF // Scale memory usage
Nslice = Calculate number o f slices in chunk f rom memory MCuse

MGPU = GetAvailableGPUMem() // Available GPU memory
MGuse = MGPU · GPUMF // Scale memory usage
Nproj = Calculate number o f projections in batch f rom memory MGuse

// Calculate the number of volume chunks,
// and number of the residual slices

NC =
Nstot

Nslice
RC = Nstot mod Nslice

if RC > 0 then
hasChunkRemainder = true
NC = NC + 1

// Calculate the number of projection batches,
// and number of the residual projections

NB =
Nptot

Nproj

RB = Nptot mod Nproj

if RB > 0 then
hasBatchRemainder = true
NB = NB + 1

// Loop over CPU memory chunks
for ic ← 1 to NC do

if hasChunkRemainder = true AND last memory chunk then
Nslice = RC

for ib ← 1 to NB do
if hasBatchRemainder = true AND last projection batch then

Nproj = RB

Upload projections to GPU texture memory for is ← 1 to Nslice do
(Re-)Copy host memory for backprojection to device
Run backprojection on CUDA kernel
Copy to host memory

Write chunk to disk
return Reconstructed Volume

2.4.1. Out of Center Correction for the Rotation Axis

A rotation axis out of center leads to the artifacts seen in Figure 8a. The determination
of the horizontal rotation axis shift is performed on reconstructed tomograms. For a free
selectable slice in the tomogram stack (best near the central slice, because of the absence
of cone-beam artifacts) a sequence of tomograms with increasing rotation axis offsets is
reconstructed. The method to find the correct rotation axis offset is based on the autofocus
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principle known from cameras and is adapted for X-ray CT [19]. By selecting the image
with the sharpest edges, we obtain the correct axis offset. As we see in Figure 8a, an
image without offset correction is blurred. The evaluation of the gray values of the gradient
images is used to determine a qualifying sharpness score. For a successful application of the
method in practice, some additional image processing steps are necessary, e.g., denoising.
For implementation details, see the description of Algorithms 4 and 5. It is crucial to select a
slice with structures and edges. In images with almost no structures or edges, the algorithm
may fail, similar to autofocus cameras.

Algorithm 4: TSCORE Determine sharpness score.
Input: Tomo slice image S, width of tomogram w, margin factor m < 1
Output: Sharpness score of tomo slice Ts
Calculate length L = m · w · 1/

√
2 for processing window

Copy centred processing sub window image Isw with size L × L
Edge preserving smoothing of image Is using Bilateral Filter
Calculate derivative image Isob using Sobel Filter
// Determine sharpness score over all pixels
Tscore = Σ Isob · Isob // Make Pixel-Values ≥ 0 (Isob2) and accumulate
return Tscore

Algorithm 5: Xm Find shift of rotation axis (uses Algorithm 4 “Determine sharp-
ness score”).

Input: Filtered projections, offset interval in Pixel [Is, Ie] , define offset iteration
step ∆x

Output: Offset Xm of the constructed slice with the sharpest edges
xo ← Is
SM ← 0.0 // initialise maximal sharpness score
n = |Ie − Is|/∆x
// Reconstruct tomograms in interval range
for i← 0 to n do

xo = Is + i · ∆x
Reconstruct tomo slice Ti for xo
T[i] = Ti

// Find rotation axis offset in interval range
for i← 0 to n do

Ti = T[i] Find sharpness score in tomo slice Ti
if Si > SM then

Xm ← xo

return Xm
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Figure 8. Detailed view of a tomogram (Cheese with salt particles): (a) Left image without rotation
axis correction; (b) right image rotation axis corrected with −15.2 pixels horizontal shift.

2.4.2. Rotation Axis Tilt Correction

If the rotation axis offset is not constant along all slices in the tomogram stack and
we have a linear dependency of the offset and the position in the tomogram stack zi, we
speak of a tilted rotation axis. We can compensate the tilt by considering the functional
dependency of the tomogram stack position and the axis offset in the slice. For that, we
have to find the parameters of the equation f (x):

f (x) = a + m · x (11)

with

f (x) =


f (x1)
f (x2)
f (x3)

...
f (xm)

, X =


1 x1
1 x2
1 x3
...

...
1 xm

, C =

(
a

m

)

In Equation (11), the parameters a and m are linear with respect to the linear least
square (LLS) problem. Thus, we have to solve the minimisation problem:

C′ = arg m
C

in O(C) (12)

where the objective function O(C) is:

O(C) =
∥∥ f (x)− XC

∥∥2 (13)

in Equation (13). The components of the vector f (x) are the offsets at different positions in
a projection image calculated with Algorithm 5. The least square fitting problem is solved
with Eigen [20]: A C++ template library for linear algebra.

2.5. Optimization

Backprojection is the most time consuming part of the CT reconstruction. Therefore, we
gain the most speed-up if we focus the optimization there. Because the backprojection can
be executed for all voxels independently, the process can easily be parallelized. In the past,
multithreaded programs running on multiple CPUs were used to achieve high performance.
For more than 10 years, programmable GPUs have been available which perfectly fit
with their parallel pipeline processor architecture the needs for parallel programming.
With them, it is possible to perform high-performance computing on a personal computer
at low costs.



J. Imaging 2022, 8, 12 13 of 22

When implementing the backprojection on a GPU using NVIDIA’s CUDA program-
ming extensions for C/C++ we are faced with three main performance bottlenecks having
significant potential for optimization. These are: memory access, arithmetic operation and
transfer of data from CPU to GPU memory and back. In the following, we will take a closer
look at optimization strategies mitigating these bottlenecks.

Memory access: GPU’s memory model knows different types of memory. The biggest
one, the global memory, allows access to the complete GPU memory from all threads
of a kernel program (program running on the GPU) but has the highest latency. Only
global memory provides sufficient memory to upload a stack of projection to GPU memory.
Textures are special GPU memory types which are bound to the global memory. Texture
memory is constant and only read access is allowed. However, because of the fixed address
bounding, it enables L1 caching of memory, which itself boosts global memory bandwidth.
The cache usage for textures can be enhanced if we have nearby spatial locality memory
access by parallel executed GPU threads [21]. In our CT reconstruction, we achieve this by
backprojecting a sub-region of voxels in a slice Si (see Figure 5) in a block of parallel thread.
The projections into the detector plane of them laying all nearby and therefore profit from
L1 caching effect. Additionally, we utilize CUDA’s high speed intrinsic bi-linear on-chip
interpolation of 2D and 3D textures in our implementation.

Register memory is the fastest memory on GPU. The correct utilization of register
variables is a further option to optimize the backprojection speed. Register memory is
dedicated to single threads and is the scarcest memory resource on GPU. An over-usage
will slow down the speed of application.

Arithmetic operations: The CUDA toolkit provides highly optimized mathematical
functions. Because not all of those functions fulfill the IEEE precision standard, tests
should be performed to validate the results. For the usage of intrinsic functions in our
implementation, see source code Listing A1.

Memory transfer: We are using asynchronous memory copy (AMC) from CPU to GPU
and vice versa in the backprojection to speed up the memory transfer. CUDA provides a
Asynchronous Memory Copy API for this purpose. In conjunction with CUDA streams,
memory copying from host to device and vice versa together with kernel execution can run
overlapped in different streams regarding the host. The dependencies on kernel execution
and memory copy within one stream will still remain. The kernel has to wait for data
download and upload [22]. The usage of AMC requires the allocation of non-pageable
resident memory on the CPU (CUDA function: cudaMallocHost()) and an additional
non-default stream. Currently, the API does not support uploading of data to texture
memory. However, we can use it for the transfer of the voxel data from CPU memory to
GPU memory and back (see source code Listing A4).

3. Results and Benchmarks

Based on the results of the benchmarks, we will reveal the parameter settings depen-
dencies regarding backprojection performance. The benchmarks were performed on a stack
of images with 2048 pixel width, 2048 pixel height and 1800 projections with the following
geometry parameters: SCD of 188.0 mm, SDD of 1017.34 mm and a detector pixel size of
0.2 mm. The resulting volume has the size 2048 × 2048 × 2048 voxels. The configurations
and results of the benchmarks are listed in Tables 1 and 2. We perform the benchmarks on
two computing systems:

1. NVIDIA Quadro P4000 8 GB; Processor Intel(R) Xeon(R) W-2133 CPU 3.60 GHz,
3600 MHz, 6 cores, 128 GB;

2. NVIDIA Quadro RTX 8000 48 GB; Processor Intel(R) Xeon(R) Gold 6242 CPU 2.80 GHz,
2793 MHz, 16 Cores, 768 GB.

MAP defines the number of voxel slices processed in one backprojection kernel call.
The upper limit of used register variables can be controlled with the compiler parameter
“Max Used Register” RN. MAP does not only controls how many slice are copied for a
kernel call, it is also used as unrolling parameter in the backprojection kernel (source
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Listing A3). Because unrolling unwinds the loop body, it also increases register variables
usage. Therefore, MAP, together with RN, must carefully be tuned. This is because when the
register memory resource is becoming exhausted, the register variables will automatically
be converted (spilled out) to local variables. Local variables are orders of magnitude
slower than register variables. This will lead to a performance decrease. Furthermore,
with MAP we can control the number of kernel calls and subsequently the total number of
memory copies.

Table 1. Benchmarks types. Asynchronous memory copy is enabled when two streams are activated.

Benchmark # of Streams # Slices Copied to Kernel Max Used Register

B1 default 1 31
B2 default 1 63
B3 default 4 31
B4 default 4 63
B5 default 8 31
B6 default 8 63
B7 2 1 31
B8 2 1 63
B9 2 4 31
B10 2 4 63
B11 2 8 31
B12 2 4 63
B13 2 4 36

There is a maximum upper limit on non-pageable memory allocation, which cannot
be controlled by the application software using Nvidia’s Cuda toolkit SDK function cuda-
HostAlloc() and is on a Windows-based system per default roughly 25% of the CPU memory.
The default maximum limit can be changed by operating-system-specific functions. This
should be done carefully, not to compromise functionality of the system, especially on
multi-user systems. With the default limit, we have to split for system 1 the CPU memory
stack into two parts. Therefore, the projections have to be copied twice to texture memory.
The projection stack itself must be split into five batches for the backprojection and the
kernel is called five times more than for system 2. System 2 needs no split at all, neither for
the CPU nor the GPU memory. Thus, the performance improvement potential of AMC is
higher for system 1 than for those for system 2. For system 1, with AMC alone it is ≈ 38%.
Together with register usage tuning, it is ≈ 48%. For system 2, with AMC alone it is ≈ 25%.
With both, it is ≈ 32%. The timing results of benchmarks B4 and B10 are showing some
anomalies for system 2, which are reproducible, but the exact reason is unclear.

In summary:
We studied the performance dependency of the backprojection for the parameters with

the highest impact. We can conclude that the results of a parameter optimization retrieved
on specific computer system cannot directly transferred to another with a different hardware
configuration. Nonetheless, we can identify trends for optimal parameter configuration
independent of the hardware: Enable AMC and reduce memory copy to/from GPU by
uploading (downloading) multiple voxel slices. Maximize register variable usage by loop
unrolling but avoid over-usage of registers. By applying the benchmarks to both available
computer systems, we found optimization parameters working on both systems as a
compromise quite well with AMC copy in batches of four slices to GPU memory, two
streams and RN = 36.
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Table 2. Processor time of backprojection for different benchmarks. Averaged over four measurements.

Graphics Card Benchmark No. Execution Time [s]

NVIDIA Quadro P4000 B1 264.6
NVIDIA Quadro P4000 B2 269.2
NVIDIA Quadro P4000 B3 200.4
NVIDIA Quadro P4000 B4 200.3
NVIDIA Quadro P4000 B5 186.4
NVIDIA Quadro P4000 B6 188.0
NVIDIA Quadro P4000 B7 223.5
NVIDIA Quadro P4000 B8 224.7
NVIDIA Quadro P4000 B9 148.4
NVIDIA Quadro P4000 B10 144.4
NVIDIA Quadro P4000 B11 139.5
NVIDIA Quadro P4000 B12 140.2
NVIDIA Quadro P4000 B13 140.1
NVIDIA Quadro RTX8000 B1 101.6
NVIDIA Quadro RTX8000 B2 97.2
NVIDIA Quadro RTX8000 B3 86.3
NVIDIA Quadro RTX8000 B4 125.4
NVIDIA Quadro RTX8000 B5 98.1
NVIDIA Quadro RTX8000 B6 89.0
NVIDIA Quadro RTX8000 B7 91.3
NVIDIA Quadro RTX8000 B8 87.3
NVIDIA Quadro RTX8000 B9 73.9
NVIDIA Quadro RTX8000 B10 115.4
NVIDIA Quadro RTX8000 B11 86.8
NVIDIA Quadro RTX8000 B12 76.5
NVIDIA Quadro RTX8000 B13 68.2

4. Discussion

In this article, we presented a tool chain which covers all necessary steps for cone-
beam CT reconstruction from raw projection images. Furthermore, methods for artifact
reduction and geometric error correction were introduced. The work is focused on the
analytical filtered backprojection, which is a fast and reliable method for CT scans without
severe artifacts for a sufficient amount of projections. Although iterative reconstruction
solvers enable new opportunities to resolve problems which are hard to solve with ana-
lytical methods, the latter are still the most frequently used method in every day practice,
especially if very large datasets are involved. Examples of where iterative methods are
beneficial include heavy starvation artifacts, reconstruction techniques using additional
models (CAD, physical, noise, . . . ), reconstruction from real time CT with few projections
and non-uniform distributed projections. However, the main disadvantages of iterative
reconstructions algorithms are low speed, slow or not guaranteed convergence and the
complexity for parallelization of big datasets on commonly used computers with limited
GPU resources (none High Performance Cluster HPC).

Our analytical CT reconstruction tool chain is very efficient and can be applied to
arbitrarily large sized projection datasets. We have extensively benchmarked the tool and
have shown generic trends for optimal hardware parameter configuration to boost the
performance. Although not discussed explicitly, an implementation of the backprojection
for a multi CPU and GPU system is straightforward. Algorithm 3 can be used as a basis.

As we have demonstrated, parameter optimization is an expensive task and hardware
dependent. Therefore implementing auto-tuning of the GPU application parameters would
be beneficial for a more simple adaption to different hardware systems. Examples for
GPU auto-tuning can be found in [23,24]. Optimization by profiling is a further topic not
discussed yet but was performed. It is summarized in Appendix A.
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Abbreviations
The following abbreviations are used in this manuscript:

AMC Asynchronous memory copy
BHC Beam hardening correction
CT Computed Tomography
DLR Detector line ratios
FDK Feldkamp, Davis and Kress reconstruction algorithm
GPU Graphics processing unit
MF Median Filter
ROI Region of interest
SCD Source rotation center distance
SCM sensitivity correction matrix
SDD Source detector distance SDD

Appendix A. Profiling Results

Figure A1 shows the results of profiling the backprojection GPU code using the
application NVIDIA Nsight Compute Version: 2021.1.1.0 on the computer system 1 (see
Section 3). To enable the profiling of benchmark B13, we had to down-sample the input data
by a factor of two and reduce the reconstructed volume size to 1024 × 1024 × 1024 voxels
due to the computing overhead of the profiling tool Nsight Compute.

In the following, we will give a brief interpretation of the result.
As discussed in Section 2.5, crucial for fast texture memory access is the reuse of the

L1 cache. The result for “L1/tex Cache compute utilization” of 94% and a “texture hit
rate” of 98% shows that we achieved a high reuse rate. CUDA’s programming model
defines a thread hierarchy (see details in [25]). A grid contains thread blocks which are
hosts for the threads. These parameters are used for the kernel launch. We configured the
parameters that the kernel runs with the maximal number of 1024 threads per block. This
leads to an Occupancy value of 96%, which indicates a high computing workload of the
GPU processor.
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Figure A1. Backprojection kernel profiling using Nsight Compute on Nvidia Quadro RTX 8000.

Appendix B. Source Code Listing

The essential source code of the backprojection is presented in the following. It is
extracted from the original code and is written in the CUDA specific C++-language.

In Listing A3, we present the code of the default backprojection kernel function
fdk_kernel_3DW() using Nvidias tex2DLayered() function for texture fetching and inter-
polation. For the other kernel functions, please visit the source code. MAP is the number
voxel slices, which is loaded for one kernel call and is used as an unrolling parameter.

Listing A1. Function to retrieve intersection point in projection and determine voxel weight.
_ _ f o r c e i n l i n e _ _ __device__ void G e t I n t e r p o l a t i o n P o i n t

( const VolType &voxel , Point &p t I n t e r p o l ,
const f l o a t &phi , f l o a t &weight ,
f l o a t &winOrigX , f l o a t &winOrigY , f l o a t &winOrigZ )

{
f l o a t x , ry , z , dso , voxSz ;
dso = fdkConst . d i s t S r c O b j ;
voxSz = fdkConst . voxSize ;
// t r a n s l a t e co−ord ina tes from o r i g i n l e f t upper edge to c e n t r e of image
/////////////////////////////////////////////////////////////////////////

x = voxel . x − fdkConst . o f f s e t X + winOrigX ;
ry = fdkConst . o f f s e t Y − voxel . y − winOrigY ;
z = voxel . z − fdkConst . o f f s e t X + winOrigZ ;

f l o a t co , s i ;
_ _ s i n c o s f ( phi ,& s i ,& co ) ;
f l o a t rx = __fmaf_rn ( x , co , z * s i ) ;
f l o a t rz = __fmaf_rn ( −x , s i , z * co ) ;
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f l o a t denominator = __fmaf_rn ( − rz , voxSz , dso ) ;

f l o a t px = _ _ f d i v i d e f ( ( dso * rx ) , denominator ) ;
f l o a t py = _ _ f d i v i d e f ( ( dso * ry ) , denominator ) ;

// 0 . 5 f : CUDA t e x t u r e use middle of p i x e l f o r i n t e r p o l a t i o n
p t I n t e r p o l . x=fdkConst . o f f s e t X + 0 . 5 f − px ;
p t I n t e r p o l . y=fdkConst . o f f s e t Y + 0 . 5 f − py ;

// weight regarding voxel p o s i t i o n
// in r e c o n s t r u c t i o n volume coordinates
weight = _ _ f d i v i d e f ( ( dso * dso ) , ( denominator * denominator ) ) ;

}

Listing A2. Bi-linear interpolation with 32 bit float precision; the used fast intrinsic
__fmaf_rn() is IEEE compliant.
_ _ f o r c e i n l i n e _ _ __device__ f l o a t tex2DLayeredHighPrec

( tex ture < f l o a t , cudaTextureType2DLayered > tex ,
const f l o a t &x_in ,
const f l o a t &y_in ,
const i n t l a y e r )

{

const i n t i x = f l o o r ( x_in ) ;
const i n t iy = f l o o r ( y_in ) ;
const f l o a t x = x_in − i x ;
const f l o a t y = y_in − iy ;

const f l o a t v00 = tex2DLayered ( tex , ix , iy , l a y e r ) ;
const f l o a t v10 = tex2DLayered ( tex , i x + 1 , iy , l a y e r ) ;
const f l o a t v11 = tex2DLayered ( tex , i x + 1 , iy + 1 , l a y e r ) ;
const f l o a t v01 = tex2DLayered ( tex , ix , iy + 1 , l a y e r ) ;

// formula f o r bi − l i n e a r i n t e r p o l a t i o n
// r1 = x * v10 + ( −v00 * x + v00 ) ;
// r2 = x * v11 + ( −v01 * x + v01 ) ;
// using optimized i n t r i n s i c f u n c t i o n s
const f l o a t r1 = __fmaf_rn ( x , v10 , __fmaf_rn ( −v00 , x , v00 ) ) ;
const f l o a t r2 = __fmaf_rn ( x , v11 , __fmaf_rn ( −v01 , x , v01 ) ) ;

//return ( y * r2 + ( − r1 * y + r1 ) ) ;
re turn __fmaf_rn ( y , r2 , __fmaf_rn ( − r1 , y , r1 ) ) ;

}

Listing A3. Source code for default backprojection kernel function.
__global__ void fdk_kernel_3DW ( f l o a t * d_backProj , // pointer to voxel s l i c e

i n t y_c , // current voxel − s l i c e
i n t cuProjBlockIdx , // current p r o j e c t i o n block index to use
i n t volWidth , // width of voxel volume
i n t volDepth , // depth of voxel volume
f l o a t xOffset , // r o t a t i o n a x i s o f f s e t
f l o a t yOffset , // not used yet (= 0 )
f l o a t winOrigX , // x pos of voxel volume
f l o a t winOrigY , // y pos of voxel volume
f l o a t winOrigZ ) // z pos of voxel volume

{
f l o a t vs t [MAP] ; // MAP: Number of voxel s l i c e s
f o r ( i n t i = 0 ; i < MAP; i ++)
{

vs t [ i ] = 0 . 0 f ;
}
// map from threadIdx/BlockIdx to voxel p o s i t i o n
i n t x = threadIdx . x + blockIdx . x * blockDim . x ;
i n t z = threadIdx . y + blockIdx . y * blockDim . y ;

Point i n t e r p o l P o i n t ;
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VolType vox ;

f l o a t phi ; // r o t a t i o n angle
// value from middle of voxel
vox . x = ( f l o a t ) x + 0 . 5 f ;
vox . y = ( f l o a t ) y_c + 0 . 5 f ;
vox . z = ( f l o a t ) z + 0 . 5 f ;

i n t volWidth_loc = volWidth ;
i n t volDepth_loc = volDepth ;
f l o a t x O f f s e t _ l o c = x Of f se t ;

f l o a t y O f f s e t _ l o c = yOffse t ;
f l o a t d i s c r = s q r t f ( ( x−volWidth_loc /2.0 f ) * ( x−volWidth_loc /2.0 f )

+ ( z−volWidth_loc /2.0 f ) * ( z−volWidth_loc /2.0 f ) ) ;
i f ( x < volWidth_loc && z < volDepth_loc && d i s c r < volWidth_loc /2.0 f )
{

f l o a t l_weight = 0 . 0 f ;
// u n r o l l loop to improve r e g i s t e r v a r i a b l e s usage

#pragma u n r o l l MAP
f o r ( i n t i =0 ; i < fdkConst . p r o j P r o c S i z e ; i ++)
{

phi = fdkConst . ang le Incr * ( cuProjBlockIdx * fdkConst . p r o j P r o c S i z e + i ) ;

f o r ( i n t k = 0 ; k < MAP; k++)
{

// get i n t e r p o l a t i o n point on p r o j e c t i o n plane
// and do weighting regarding voxel p o s i t i o n
// in r e c o n s t r u c t i o n volume

G e t I n t e r p o l a t i o n P o i n t ( vox , i n t e r p o l P o i n t ,
phi , l_weight ,
winOrigX , winOrigY , winOrigZ ) ;

// get gray value from p r o j e c t i o n
// using hardware based t e x t u r e i n t e r p o l a t i o n
vs t [ k ] += tex2DLayered ( texSinoLay ,

i n t e r p o l P o i n t . x+xOf fse t_ loc ,
i n t e r p o l P o i n t . y+yOffse t_ loc , i ) * l_weight ;

vox . y = vox . y + 1 . 0 f ;
}
vox . y = ( f l o a t ) y_c + 0 . 5 f ;

}
f o r ( i n t k = 0 ; k < MAP; k++)
{

d_backProj [ x + z * volWidth + k * volWidth * volDepth ] += vst [ k ] ;
} ;

}
}

Listing A4. Code snippet: Asynchronous memory copy handling and kernel calls.
// c r e a t e streams
cudaStream_t * stream =

( cudaStream_t * ) malloc (STREAM_SIZE * s i z e o f ( cudaStream_t ) ) ;

f o r ( i n t i = 0 ; i < STREAM_SIZE ; i ++)
{

cudaStreamCreate (&( stream [ i ] ) ) ;
}

i n t index = 0 ;

f o r ( i n t iy = yChunkStart ; iy < yChunkEnd ; iy = iy + MAP*STREAM_SIZE)
{

// A l l o c a t e and i n i t i a l i z e an array of stream handles
// a l l o c a t e memory f o r MAP* b a c k p r o j e c t i o n s l i c e s on device
f l o a t * d_backProj [STREAM_SIZE ] ;
f o r ( i n t i = 0 ; i < STREAM_SIZE ; i ++)
{

HANDLE_ERROR( cudaMalloc ( ( void **)& d_backProj [ i ] ,
MAP* param . volX * param . volZ * s i z e o f ( f l o a t ) ) ) ;
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}

// loop over stream
///////////////////
unsigned long long o f f s e t [STREAM_SIZE ] ;
f o r ( i n t istm = 0 ; istm < STREAM_SIZE ; istm ++)
{

// ( re −) copy host memory f o r b a c k p r o j e c t i o n to device
// using MAP s l i c e s
o f f s e t [ istm ] = ( unsigned long long ) param . volX *

( unsigned long long ) param . volZ * ( unsigned long long ) ( index + istm *MAP) ;
cudaMemcpyAsync ( d_backProj [ istm ] ,

( char *)& h_backproj_chunk [ o f f s e t [ istm ] ] ,
MAP* param . volX * param . volZ * s i z e o f ( f l o a t ) ,
cudaMemcpyHostToDevice ,
stream [ istm ] ) ;

// run Backpro jec t ion Kernel
/////////////////////////////////
i n t y_c = iy + istm *MAP; // current z~ s l i c e

// 3D−Window volume s e l e c t i o n r e c o n s t r u c t i o n
i f ( param . useVolWin )
{

// process remaining p r o j e c t i o n blocks
i f ( hasRemainder && np == p r o j _ b l c k s − 1)
{

// switch between f a s t and accura te bi − l i n e a r i n t e r p o l a t i o n
////////////////////////////////////////////////////////////
i f ( param . highAcc == 0)
{

// d e f a u l t kernel in case of p r o j e c t i o n batch remainder
fdk_kernel_3DW_R << <blocks , threads >> >(

d_backProj [ istm ] , y_c ,
cuProjBlockIdx , remainProj ,
param . volX , param . volZ ,
param . sh i f tX , param . sh i f tY ,
param . wVolOrigX , param . wVolOrigY , param . wVolOrigZ

) ;
}
e l s e
{

fdk_kernel_3DW_R_HA << <blocks , threads >> >(
d_backProj [ istm ] , y_c ,
cuProjBlockIdx , remainProj ,
param . volX , param . volZ ,
param . sh i f tX , param . sh i f tY ,
param . wVolOrigX , param . wVolOrigY , param . wVolOrigZ

) ;
}

}
e l s e // no remaining p r o j e c t i o n blocks to process
{

// switch between f a s t and accura te bi − l i n e a r i n t e r p o l a t i o n
////////////////////////////////////////////////////////////
i f ( param . highAcc == 0)
{

// d e f a u l t kernel
fdk_kernel_3DW << <blocks , threads >> >(

d_backProj [ istm ] , y_c ,
cuProjBlockIdx ,
param . volX , param . volZ ,
param . sh i f tX , param . sh i f tY ,
param . wVolOrigX , param . wVolOrigY , param . wVolOrigZ

) ;
}
e l s e
{

fdk_kernel_3DW_HA << <blocks , threads >> >(
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d_backProj [ istm ] , y_c ,
cuProjBlockIdx ,
param . volX , param . volZ ,
param . sh i f tX , param . sh i f tY ,
param . wVolOrigX , param . wVolOrigY , param . wVolOrigZ

) ;
}

}
}
getLastCudaError ( " Kernel execut ion f a i l e d " ) ;

cudaMemcpyAsync (
( char *)& h_backproj_chunk [ o f f s e t [ istm ] ] ,
d_backProj [ istm ] ,
MAP* param . volX * param . volZ * s i z e o f ( f l o a t ) ,
cudaMemcpyDeviceToHost ,
stream [ istm ]
) ;

} // streams~end

f o r ( i n t i = 0 ; i < STREAM_SIZE ; i ++)
{

HANDLE_ERROR( cudaFree ( d_backProj [ i ] ) ) ;
}
index = index + MAP*STREAM_SIZE ;

}

// r e l e a s e a l l streams
f o r ( i n t i = 0 ; i < STREAM_SIZE ; i ++)
{

cudaStreamDestroy ( stream [ i ] ) ;
}
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