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Experimental identification of non-
classicality of noisy twin beams and 
other related two-mode states
Ievgen I. Arkhipov & Jan Peřina Jr.

Different non-classicality criteria expressed in the form of inequalities among intensity moments and 
elements of photon-number distributions are applied to noisy twin beams and other two-mode states 
obtained from a twin beam by using a beam splitter. Their performance in revealing the non-classicality 
is judged in comparison with the exact results provided by suitable entanglement and local non-
classicality quantifiers. Whereas the non-classicality of noisy twin beams is always revealed by these 
criteria, not all the nonclassical states obtained at the output of the beam splitter can be identified by 
these experimentally easily reachable criteria.

Nonclassical properties of light have been in the focus of investigations in quantum nonlinear optics for a 
long time. Broad and deep studies of non-classicality of optical fields and especially of entanglement among 
their parts even resulted in establishing a new field in science — quantum information science1,2. Historically, 
discrete- and continuous-variable quantum-optical systems have been distinguished when investigating 
their nonclassical properties. Recently, the so-called hybrid quantum-optical systems composed of both 
discrete- and continuous-variable parts in the mutual interaction have been addressed. Here, we pay atten-
tion to non-classicality of a two-mode optical field that has probably been the most frequently studied sys-
tem described by the continuous variables. It is well known that these fields can exhibit both entanglement 
between their modes3,4 and squeezing inside their modes5,6. Whereas the squeezing of the modes manifests local 
non-classicality of these modes, the entanglement between the modes is responsible for global non-classicality 
of the overall two-mode field. Moreover, the global non-classicality of the overall field is also implied by the local 
non-classicalities of individual modes7.

Different techniques have been developed to experimentally verify non-classicality of optical fields. The most 
elaborated, and also the most experimentally demanding, technique is homodyne tomography that relies on 
homodyne detection8 when reconstructing a quantum state9,10. On the other hand, the usual quadratic optical 
detectors recording just the field’s intensity or the fields’ intensity correlations have undergone fast development 
in the last ten years and their recent variants aimed at detecting weak optical fields provide photon-number 
resolution. This brings the opportunity to identify non-classicality under suitable conditions, even not knowing 
the phases of fields’ complex amplitudes. In principle, an experimental photocount histogram can be used to 
reconstruct the quasi-distribution of integrated intensities (or more exactly its regularized form) and reveal the 
non-classicality through its negative values11,12. Or one can just rely on the application of various non-classicality 
criteria usually in the form of inequalities, as it has been done, e.g., in refs13,14 for single-mode fields and in ref.15 
for two-mode fields.

The importance of identification of non-classicality through the measurement with photon-number-resolving 
detectors is constantly growing as these detectors are becoming more efficient and so more popular. 
Superconducting bolometers are at present the most sophisticated detectors of this kind. They are endowed with 
the best quantum detection efficiencies, but at the expense of their cryogenic operation. On the other hand, the 
oldest fiber-based photon-number-resolving detectors with time multiplexing are relatively cheap and easy to 
operate16–20. Ultra-sensitive cameras21,22, especially intensified CCD (iCCD) cameras11–13,23,24, can also be applied 
as massively spatially-multiplexed photon-number-resolving detectors. Due to large numbers of pixels on their 
photocathodes, these cameras are suitable also for characterizing mesoscopic optical fields25. Hybrid detectors26 
and also silicon multi-pixel detection arrays27 also belong to prospective photon-number-resolving detectors at 
present.
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When applying various non-classicality criteria an important question about their performance arises. 
Namely, how many nonclassical states can be revealed by these criteria. Also mutual comparison of different 
criteria has important consequences for their practical use. Many non-classicality inequalities applied to spe-
cific kinds of both single mode and two-mode optical fields have been mutually compared in refs13–15 using the 
experimental data. The applied non-classicality inequalities have shown good experimental performance in the 
cases of sub-Poissonian states and practically noiseless twin beams. This poses the question about their power in 
the cases of other nonclassical states that can be relatively easily reached in the laboratory. Here, we theoretically 
address two such kinds of states: noisy twin beams and two-mode states derived from the noisy twin beams using, 
in general, an unbalanced beam splitter. Especially the second kind of states is interesting as it allows, via the 
bunching effect of photon pairs at a beam splitter, to obtain squeezed single-mode states3,4,7,28, that exhibit local 
non-classicality. To simulate the experimental identification of non-classicality we apply the non-classicality cri-
teria written in either the normally-ordered intensity moments or the elements of photon-number (photocount) 
distributions that have been developed and summarized in ref.15. To theoretically judge local non-classicality and 
entanglement of the analyzed states we invoke the local non-classicality and entanglement quantifiers derived 
in refs29,30, that are especially suitable for two-mode Gaussian states and their transformations at a beam splitter. 
We show that whereas the applied global non-classicality criteria (GNCCa) allow us to recognize all entangled 
noisy twin beams, not all two-mode nonclassical states occurring beyond the beam splitter can be identified with 
the used GNCCa and local non-classicality criteria (LNCCa). Our analysis also shows that the criteria based on 
the elements of photon-number distributions exhibit better performance compared to those written in intensity 
moments. We also identify the most powerful criteria.

The paper is organized as follows. Section Two-mode optical fields and their properties brings the descrip-
tion of nonclassical properties of optical fields. The analyzed non-classicality criteria are mentioned in section 
Non-classicality criteria. The states originating in the noisy twin beams propagating through an unbalanced beam 
splitter are discussed in section Twin beam and its transformation on a beam splitter. Section Identification of 
non-classicality of twin beams is devoted to the performance of the used non-classicality criteria in revealing the 
entanglement of noisy twin beams. Similarly, different non-classicality criteria are applied in section Identification 
of non-classicality of two-mode states beyond a beam splitter to reveal non-classicality of the addressed states. In 
section Conclusions the main findings are summarized.

Two-mode optical fields and their properties.  Any two-mode state characterized by its density matrix 
ρ̂  can be expressed in the Glauber-Sudarshan (diagonal) representation based on coherent states |α1〉 and |α2〉 
defined in modes 1 and 2, respectively:

^ ⟩ ⟩⟨ ⟨d d1 ( , )
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2
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2
2 1 2 1 2 2 1∫ ∫ρ

π
α α α α α α α α= | | | |⋅

In Eq. (1), α α( , )1 2  stands for the Glauber-Sudarshan quasi-distribution31,32. The quasi-distribution P uniquely 
identifies nonclassical states. If it attains the form of a regular distribution function with non-negative values (or 
has the form of a sum of the Dirac δ-functions) it describes a classical state. However, if it becomes negative or 
even more singular than the Dirac δ-function, it corresponds to a nonclassical state.

If the information about the phase of an optical field is not known, we can restrict our attention to 
quasi-distribution P(W1, W2) of integrated intensities W1 and W2 (Wj = |αj|2, j = 1, 2)6, instead of using the 
Glauber-Sudarshan quasi-distribution α α( , )1 2 . Moments W Wk k

1 2
1 2 , k1, k2 = 0, 1, …, of the integrated intensi-

ties W1 and W2 (farther only intensities) are then easily determined by averaging with the intensity 
quasi-distribution P(W1, W2):
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We note that the intensity moments 〈Wk〉 are just the normally ordered moments ˆ ˆ†a ak k of the photon-number 
operator as 〈 〉 ≡ 〈 〉ˆ ˆ†W a ak k k  and ˆ†a  (â) stands for the creation (annihilation) operator.

According to the Mandel photodetection formula6, photon-number distribution p(n1, n2) for a field with 
intensity quasi-distribution P(W1, W2) is obtained as follows:
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Both the intensity moments given in Eq. (2) and the elements of photon-number distribution p written in Eq. (3)  
can conveniently be derived from the normal generating function G  defined as:
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Whereas the intensity moments W Wk k
1 2

1 2  are obtained along the formula
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the elements p(n1, n2) of photon-number distribution are reached as follows:
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Non-classicality criteria.  We describe non-classicality criteria that have been derived in ref.15 and have 
shown the best performance. The violation of the classical inequality
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21 2

gives us the following GNCCa for k1, k2 ≥ 0:
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Following the correspondence between the GNCCa based on intensity moments and the GNCCa containing the 
elements of photon-number distribution discussed in ref.15. We arrive at the following GNCCa:
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using the modified elements p n n( , )1 2  of photon-number distribution,
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Also the GNCCa MW and MP defined along the relations
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have been found powerful in ref.15 when revealing non-classicality. We note that they originate in the matrix 
approach33–35 that is based upon non-negativity of classical quadratic forms.

The most powerful single-mode LNCCa have been derived in ref.36 using the majorization theory. They have 
been tested on the experimental sub-Poissonian fields in ref.13. They attain the following form for mode j, j = 1, 2:
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The modified elements p n( )j  of marginal photon-number distribution pj(n) of mode j are given asp n( )j =
n p n p! ( )/ (0)j j .

Twin beam and its transformation on a beam splitter.  A twin beam is generated in the process of 
spontaneous parametric down-conversion that generates photon pairs at the expense of annihilated pump pho-
tons5. Twin beams in general contain more photon pairs and they can also contain an additional noise in the form 
of individual photons6. Such general noisy twin beams belong to two-mode Gaussian optical fields that can be 
conveniently described by the normal quantum characteristic function C  defined as6
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using the Glauber-Sudarshan quasi-distribution  .
Both the noisy twin beams and the states arising beyond a beam splitter with an impinging twin beam belong 

to two-mode Gaussian states with the following form of the normal characteristic function C :
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symbol c.c. replaces the complex-conjugated terms. The coefficients BjCj, j = 1,2, D12, and D12 introduced in Eq. 
(14) are defined as follows:

( )B a a C a

D a a D a a

, ,

, , (15)

j j j j j
2

12 1 2 12 1 2

= ∆ ∆ = ∆

= ∆ ∆ = − ∆ ∆

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

†

†

and ∆ ˆ ˆ ˆα α α≡ − 〈 〉j j j .
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The normal characteristic function C  given in Eq. (14) can conveniently be rewritten into the form 
 β β β= †C A( ) exp( /2) using the covariance matrix A  related to normal ordering of the field operators6,37,
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and the column vector β is given as ( , , , )T1 1 2 2β β β β β≡ ∗ ∗ .
The normally-ordered generating function G  from Eq. (4) is then obtained along the formula38:
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Considering the form of the characteristic function C  written in Eq. (14), we arrive at the generating function GN 
for the considered states:
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The considered noisy twin beams are characterized by the following parameters6,39
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where BP is the mean photon-pair number and BS (Bi) stands for the mean signal (idler) noise photon number.
The transformation of a twin beam through the beam splitter can be treated at the level of its covariance matrix 

A . The covariance matrix Aout appropriate for the state at the output of a beam splitter with transmissivity T is 
found as †A U A Uout in

 = , where the covariance matrix Ain  characterizes the impinging twin beam and symbol U 
stands for the following unitary matrix:
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R = 1 − T. The phase φ occurring in Eq. (21) can be set to zero without the loss of generality. The application of the 
beam-splitter transformation (21) to an input noisy twin beam with parameters given in Eq. (20) leaves us with 
the following two-mode Gaussian state:
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= − = +
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Alternatively, we may derive explicit formulas for photon-number distributions of both the impinging noisy twin 
beam and the state at the output of the beam splitter. The photon-number distribution p(n1, n2) of a noisy twin 
beam has been found in ref.39:
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2. On the other hand, the photon-number distribution 

pout(n1, n2) of the state at the beam-splitter output is determined along the formula7:
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and δ means the Kronecker symbol.
The local non-classicality quantifiers I cl

j
n
( ), j = 1, 2 and entanglement quantifier Ient introduced in ref.30 have 

been found suitable as theoretical characteristics for the analyzed two-mode Gaussian states. The reason is that 
these quantifiers together form the global non-classicality invariant Incl,

I I I I2 , (26)ncl ncl
(1)

ncl
(1)

ent= + +

that does not change when any photon-number preserving unitary transformation is applied. According to 
refs.29,30 the local non-classicality quantifier I j

ncl
( ) for mode j is given as:

= − + | | .I B C (27)
j

j jncl
( ) 2 2

On the other hand, both three local and one global invariants of the symmetrically-ordered covariance matrix AS 
are needed to determine the entanglement quantifier Ient. Details can be found in ref.29.

Identification of non-classicality of twin beams.  We first consider the simplest case of a noiseless twin 
beam whose only parameter is the mean photon-pair number BP. Its entanglement, which is responsible for its 
non-classicality, has been theoretically analyzed in ref.39 where negativity N, which is an entanglement measure40, 
has been derived as N B B B( 1)p p p= + + . Thus, the entanglement of a noiseless twin beam increases with the 
photon-pair number BP. In our analysis, we consider the first five GNCCa Ek k

W
,1 2

 and Ek k
p

,1 2
 that contain the inten-

sity moments up to the sixth order and the elements of photon-number distribution for up to six photons. We 
note that the consideration of lower-order intensity moments is natural as the experimental error increases with 
the increasing order of intensity moments.

The GNCCa EW and MW given in Eqs. (8) and (11), respectively, and using intensity moments attain in the case 
of a noiseless twin beam the forms:
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On the other hand, their counterparts EP and MP involving the elements of photon-number distribution and 
written in Eqs. (9) and (11), respectively, are obtained as:
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Mutual comparison of the formulas for GNCCa written in Eqs (28)—(31) reveals qualitatively different behav-
ior of these GNCCa for greater photon-pair numbers BP (see Fig. 1). Whereas the GNCCa based on intensity 
moments tend to go to minus infinity, the GNCCa using the elements of photon-number distributions reach finite 
values for BP→∞.

The GNCCa Ek k
W
, , k = 0, 1, …, E W

0,1, and MW as well as the GNCCa Ek k
p
, , k = 0, 1, …, and MP are entanglement 

monotones, since their absolute values increase with the increasing photon-pair number BP. As such, all of them 
(with the inverted sign) can be chosen as a suitable non-classicality identifier for any noiseless twin beam. We 
note that this ability to reveal the non-classicality is preserved for non-ideal detection with a finite detection 
efficiency.

On the other hand, the GNCC E W
0,2 can be successfully applied only for ∈ ∞B (1/3, )p  and the GNCC E p

0,2 even 
attains positive values for any value of BP A more general analysis has shown that the GNCCa Ek k

W
,1 2

 for |k1−k2| > 1 
reveal non-classicality only for more intense twin beams and the GNCCa Ek k

p
,1 2

 for k1 ≠ k2 cannot indicate 
non-classicality at all.

Now we pay attention to noisy twin beams, first considering the beams with balanced noise for which the 
signal and idler mean noise photon numbers equal (Bs = Bi). The GNCCa Ek k

W
, , k = 0, 1, …, and MW and the 

GNCCa Ek k
p
, , k = 0, 1, …, and MP still fully identify non-classicality of such noisy twin beams, that is, however, 

observed only for twin beams with smaller amount of the noise (see Fig. 2). As it has been found in ref.39, only the 
twin beams with B B B B B( 1)s i p p p= < + −  are nonclassical.

Interestingly, the GNCCa E W
0,2 and E p

0,2 indicate non-classicality of noisy twin beams with photon-pair numbers 
BP for which they failed in the case of noiseless twin beams. This occurs for the GNCC E W

0,2 in region BP ∈ (0,1/3) 
for the noisy twin beams with = ∈ + − + −B B B B B B B B([ ( 1) ]/2, ( 1) )s i p p p p p p  [region II in Fig. 2(a)]. 

Similarly, the GNCC E p
0,2, that is nonnegative for noiseless twin beams, is negative for the noisy twin beams with 

B B B B B B B B B B([ 4 ( 1) 2 ( 1) 1 2 1]/2, ( 1) )s i p p p p p p p p= ∈ + + + + − − + −  [region II in Fig. 2(b)].
Finally, we analyze the performance of the above discussed GNCCa when they are applied to the noisy twin 

beams with unbalanced noise. We assume that the noise is present only in the signal field (BS ≠ 0, Bi = 0). Such 
twin beams have been theoretically investigated in ref.39 with the conclusion that only the twin beams with BS < 1 

Figure 1.  (a) GNCCa E W
0,0 (red dashed curve), E W

1,1 (orange dash-dotted curve), E W
2,2 (blue solid curve), E W

0,1 
(cyan long dotted curve), E W

0,2 (green dotted curve), and MW (purple long dashed curve) and (b) GNCCa E p
0,0 

(red dashed curve), E p
1,1 (orange dash-dotted curve), E p

2,2 (blue solid line), E p
0,2 (green dotted curve), and MP 

(purple long dashed curve) as they depend on photon-pair number BP for noiseless twin beams.
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and arbitrary BP exhibit non-classicality. The GNCCa Ek k
W

,1 2
 and Ek k

p
,1 2

 reveal non-classicality only for some noisy 
twin beams, especially those with smaller amount of the noise [see Fig. 3]. The GNCCa Ek k

W
,1 2

 and Ek k
p

,1 2
 with 

k1 > k2 are more sensitive to non-classicality as they include higher-order signal-field intensity moments and the 
elements of the photon-number distribution for greater signal photon numbers, respectively. This is the conse-
quence of the noise present in the signal field. Contrary to this, the GNCCa MW and Mp are able to indicate 
non-classicality for all noisy twin beams, as documented in Figs. 3(a) and (b). This means that the GNCCa MW 
and MP allow to reveal non-classicality of all analyzed twin beams.

Identification of non-classicality of two-mode states beyond a beam splitter.  In this section, 
we address two-mode states that occur at the output ports of a beam splitter with transmissivity T assuming 
an input noisy twin beam. We note that in the boundary cases T = 0 and T = 1 an input noisy twin beam is just 
transformed to the beam-splitter output without any modification. On the other hand, the balanced beam splitter 
with T = 1/2 is optimal for the generation of squeezed light in both output ports28–30. In general, an arbitrary beam 
splitter has the potential to generate states that may exhibit both local non-classicality and entanglement.

Similarly as in the previous section, we analyze the noiseless states first. It is interesting that the GNCCa Ek k
p

,1 2
 

and MP involving the elements of photon-number distributions factorize as functions of transmissivity T and 
photon-pair number BP, contrary to the GNCCa Ek k

W
,1 2

 and MW based on intensity moments (see the graphs for 
E W

0,0 and E p
0,0 in Fig. 4 and also the non-classicality phase diagrams in Fig. 5).

In particular, the following formulas can be derived:

= − −
+

= − − +
+

= − + − +
+

.

= − +
+

E TR
B

B

E T R TR
B

B

E T R T R TR
B

B

E T R TR
B

B

(1 8 )
2

( 1)
,

(72 21 1)
8

( 1)
,

(800 340 40 1)
72

( 1)

(144 30 1)
4

( 1)
,

(32)

p

p

p

p

0,0
p

p

1,1
2 2 p

2

p
2

2,2
3 3 2 2 p

3

p
3

0,2
2 2 p

2

p
2

M TR
B

B
(1 8 )

( 1) (33)
p p

2

p
2= − −

+
.

Due to the factorization, the corresponding non-classicality regions do not depend on photon-pair number BP. 
Detailed analysis of the non-classicality regions whose results are summarized in Table 1 has shown that the 
GNCCa E p

0,0, E p
1,1, E

p
2,2, and E p

0,2 considered together allow to reveal non-classicality of an arbitrary noiseless 
two-mode state beyond the beam splitter with transmissivity T∈ [1/2, 1] (and also T∈ [0, 1/2] due to the symme-
try reasons). As the phase diagram plotted in Fig. 5(a) documents, the set of GNCCa E W

0,0, E W
1,1, E W

2,2, and E W
0,2 

Figure 2.  Non-classicality phase diagrams for noisy twin beams with balanced noise: (a) GNCCa E W
0,0, E W

1,1, E W
2,2 

(coinciding cyan solid curves), and E W
0,2 (red dotted curve) and (b) GNCCa E p

0,0, E p
1,1, E

p
2,2 (coinciding cyan solid 

curves), and E p
0,2 (red dashed curve) in space (BS,BP). For comparison, phase diagram of theoretical 

entanglement quantifier Ient is plotted in (a) and (b) by cyan solid curve. The GNCCa E W
0,2 and E p

0,2 express non-
classicality only in region II, the remaining GNCCa are negative in regions I and II.
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involving intensity moments allows to detect non-classicality of all considered states only for small photon-pair 
numbers BP. As evident from Figs 4(a) and 5(a), these GNCCa lose their ability to reveal non-classicality with the 
increasing photon-pair number BP .

The GNCCa E p
0,0, E p

2,2 and E p
0,2 shown in the phase diagram in Fig. 5(b) detect entanglement15 and so they lose 

their ability to reveal global non-classicality as T approaches 1/2. The reason is that the entanglement of the con-
sidered states is becoming weaker as T goes to 1/2 and the state is separable for T = 1/2. On the other hand, the 
GNCC E p

1,1 safely indicates global non-classicality in the region around =T 1/2. This is understood by the fact 
that the GNCC E p

1,1 is able to reveal also local non-classicality [E p
1,1 given in Eq. (9) and R p

1,1 defined in Eq. (12) 
coincide for separable symmetric (1↔2) states]. We note that the vanishing entanglement in the vicinity of 
T = 1/2 can only be identified by the GNCCa E k k

p
2 ,2 , k = 1, 2, .... The greater the number k is the two-mode entan-

gled states generated with T closer to 1/2 can be revealed. However, this requires the determination of 
photon-number distributions for greater photon numbers41.

The striking feature of two-mode states beyond the beam splitter is the ability to exhibit local non-classicality. 
This originates in the bunching effect of photons in a photon pair at a beam splitter. Ideally, two 
non-distinguishable photons impinging on a balanced beam splitter leave the beam splitter at the same output 
port. Thus, the original twin beam partly loses its entanglement as it propagates through the beam splitter, but its 
constituting parts can gain their local non-classicalitites, as quantified by relation (26) for the global 
non-classicality invariant Incl. As local non-classicality arises from pairing of photons, only the LNCCa R k k

W
2 ,2  and 

R k k
p

2 ,2 , k = 1, 2, ..., allow for detecting local non-classicality. The phase diagram for the local non-classicality quan-
tifier Inlc

(1) in Fig. 6 shows that the majority of the considered states with smaller photon-pair numbers BP exhibit 
local non-classicality. However, the analyzed LNCCa R k k

W
2 ,2  and R k k

p
2 ,2  for k = 1, 2 and 3, whose phase diagrams are 

Figure 3.  Non-classicality phase diagrams for noisy twin beams with unbalanced noise (Bi = 0): (a) GNCCa 
E W

0,0 (red dashed curve), E W
1,1 (orange dash-dotted curves), E W

2,2 (green dotted curve), and MW (cyan solid curve), 
(b) GNCCa E p

0,0 (red dashed curve), E p
1,1 (orange dash-dotted curve), E p

2,2 (green dotted curve), and MP (cyan 
solid curve), (c) E W

1,0 (red dashed curve), E W
0,1 (grey long dashed curve), E W

2,0 (orange dash-dotted curves), E W
0,2 

(green dotted curve), E W
2,1 (blue space dashed curve), and E W

1,2 (purple solid curve) and (d) GNCCa E p
1,0 (red 

dashed curve), E p
0,1 (grey long dashed curve), E p

2,0 (orange dash-dotted curves), E p
0,2 (green dotted curves), E p

2,1 
(blue space dashed curve), and E p

1,2 (purple solid curve) in space (Bs,Bp). For comparison, phase diagram of 
entanglement quantifier Ient is plotted by cyan solid curve in (a–d). For GNCCa E W

2,0 plotted in (c) and E p
2,0 [E p

0,2] 
drawn in (d), the non-classicality region lies between the lower and upper orange dash-dotted [green dotted] 
curves. For the other GNCCa, the non-classicality region is below the corresponding curves.

Figure 4.  (a) GNCC E W
0,0 and (b) GNCC E p

0,0 as functions of photon-pair number BP and beam-splitter 
transmissivity T for noiseless two-mode states beyond the beam splitter.
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Figure 5.  Non-classicality phase diagrams for noiseless two-mode states beyond the beam splitter: (a) GNCCa 
E W

0,0 (red dashed curve), E W
1,1 (orange dash-dotted curve), E W

2,2 (green dotted curve), E W
2,0 (blue solid curve), and 

MW (red dashed curve) [non-classicality regions are found below the corresponding curves, except that for the 
GNCC E W

2,0 occurring between the blue curves] and (b) E p
0,0 (red dashed line), E p

1,1 (orange dash-dotted lines), 
E p

2,2 (green dotted lines), E p
2,0 (blue solid lines), and Mp (red dashed line) [non-classicality regions for different 

GNCCa are identified in Table 1] in space (BP , T).

GNCC Non-classicality region(s)
Corresponding areas in 
Fig. 5(b)

E p
0,0 T ([1 1/ 2 ]/2,1]∈ + I, II, III, IV

E p
1,1 ∪∈ + − + +T [1/2,[1 15 3 17 /6]/2) ([1 15 3 17 /6]/2,1] I, II, III, VIII, IX

E p
2,2 T ( 0 624, 0 806) ( 0 965,1]∪∈ ≈ . ≈ . ≈ . I, VI, VII, VIII

E p
0,2 T ([1 1/ 3 ]/2,[1 30 /6]/2)∈ + + III, IV, V, VI

Table 1.  Non-classicality regions of GNCCa E p
0,0, E p

1,1, E
p

2,2, and E p
0,2 defined on the beam-splitter transmissivity 

axis T for noiseless two-mode states beyond the beam splitter.

Figure 6.  Non-classicality phase diagrams for noiseless two-mode states beyond the beam splitter: (a) R W
2,2 (red 

dashed curve), RW
4,4 (orange dotted curve) and R W

6,6 (blue dash-dotted curve) and (b) R p
2,2 (red dashed curve), R p

4,4 
(orange dotted curve) and R p

6,6 (blue dash-dotted curve) in space (BP , T). For comparison, phase diagram of 
local non-classicality quantifier I Incl

(1)
ncl
(2)=  is plotted by green solid curve. Non-classicality regions extend from 

line BP = 0 up to the corresponding curves drawn in the diagrams.
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also included in Fig. 6, identify local non-classicality only in some states. As the identifiable states are in the area 
around T = 1/2 they are apparently endowed with stronger local non-classicality. As documented in Fig. 6, the 
LNCCa R k k

W
2 ,2 , k = 1, 2, ..., based on intensity moments are applicable only to weak two-mode fields and they lose 

their power with the increasing index k. Also the LNCCa R k k
p

2 ,2 , k = 1, 2, ..., determined from the elements of 
photon-number distribution gradually lose their power with the increasing index k, but they are suitable for indi-
cating local non-classicality in more intense two-mode fields [see Fig. 6(b)]. The LNCC R p

2,2 is the most powerful 
among the studied LNCCa and, assuming the beam splitter with fixed transmissivity T, it allows to reveal the local 
non-classicality of two-mode states with photon-pair numbers BP lower than

B
TR TR TR

T
4 1 4 [4 (7 33 )] 1

2(2 1) (34)p 2=
− + − + +

−
.

In real experimental identification of both global and local non-classicalities finite detection efficiencies are an 
important issue. The GNCCa as well as LNCCa based on intensity moments are not sensitive to detection effi-
ciency η because the moments in these criteria are only synchronously rescaled with appropriate powers of effi-
ciency η. Contrary to this, the GNCCa and LNCCa containing the elements of photon-number distribution suffer 
from the finite detection efficiency η. Gradual loss of the power to resolve nonclassical states with decreasing 
detection efficiency η is documented in Fig. 7(a) for the GNCCa E p

0,0, E p
1,1, E

p
2,2, E p

2,0, and MP and in Fig. 7(c) for the 
LNCC R p

2,2. Except for the GNCC E p
2,0, the set of nonclassical two-mode states identified by the other analyzed 

GNCCa and LNCCa only diminishes with decreasing detection efficiency η. For the GNCC E p
2,0, nonclassical 

two-mode states with decreasing photon-pair numbers BP are gradually identified as the detection efficiency η 
decreases [compare the corresponding phase diagrams in Figs. 5(a) and (b)].

In the limit η → 0, the phase diagrams of the GNCCa and LNCCa based on the elements of photon-number 
distribution coincide with those written for intensity moments. This property has its origin in the form of the 
Mandel photodetection formula that provides the following relation for small detection efficiencies η:

η≈ 〈 〉.+n n p n n W W! ! ( , ) (35)n n n n
1 2 1 2 1 2

1 2 1 2

The process of gradual loss of the ability to detect non-classicality with decreasing detection efficiency η can be 
treated even analytically for individual GNCCa and LNCCa. For example, we have for the GNCCa E p

0,0 and E W
0,0

η η= − −E K E B[ 2 (2 ) ] (36)
p W

0,0 0,0 p
2

and K B/[1 (2 ) ]2
p

2η η η= + −  is a positive constant. We have η=E Ep W
0,0

2
0,0 for η approaching 0.

Two-mode states occurring beyond the beam splitter with an impinging noisy twin beam can be both locally 
nonclassical and entangled. However, the numbers BS = Bi of noise photons cannot exceed the value 

B B B( 1)p p p+ −  for twin beams with balanced noise. It holds that the entangled two-mode states are generated 
in the areas around T = 1 and T = 0 when the input noise cannot be neglected. With the increasing numbers 
BS = Bi of noise photons the areas containing entangled states shrink towards the points T = 1 and T = 0 [see 
Fig. 8(a)]. On the other hand, two-mode states exhibiting local non-classicality occur in the area around T = 1/2. 
With the increasing numbers BS = Bi of noise photons this area diminishes [see Fig. 8(c)].

Neither the entangled two-mode states nor the locally-nonclassical two-mode states can be completely iden-
tified by the analyzed GNCCa and LNCCa. For example, the LNCC R p

2,2, that performs the best, identifies local 
non-classicality only for two-mode states with the numbers BS = Bi of noise photons below the value

Figure 7.  Non-classicality phase diagrams for noiseless two-mode states beyond the beam splitter: (a) GNCCa 
E p

0,0 (red surface), E p
1,1 (orange contour surface), E p

2,2 (green contour surface), E p
2,0 (blue contour surface), and 

Mp (red surface), (b) plane η = 0.5 in the phase diagrams plotted in (a) and (c) LNCC R p
2,2 in space (Bp, T , η). We 

note that the planes η = 0 and η = 1 in the phase diagrams in (a) [(c)] are plotted in Figs. 5(a) and (b) [Figs. 6(a) 
and (b) by red dashed curves], respectively. Non-classicality regions occur below the corresponding surfaces, 
only that for the GNCC E p

2,0 in (a) is found between blue contour surfaces.
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B B TRB B TRB B B1
2

16 ( 1) 4 33 5 ( 1) 1 2 1
(37)s i p p p p p= =







+ + − + + − −





.

When the noisy twin beams with unbalanced noise (BS ≠ 0, Bi = 0) are assumed at the beam splitter, the gen-
erated two-mode states behave similarly as those analyzed in the case of twin beams with balanced noise. To 
observe non-classicality, the input noisy twin beams cannot contain more than one noise signal photon on aver-
age (BS < 1). Contrary to the case with balanced noise, only the GNCC MP is powerful in identifying entangle-
ment for two-mode states beyond the beam splitter with transmissivity T close to 1 and 0 in this case [see phase 
diagrams in Fig. 9(a)]. Also the GNCCa E p

0,2 and E p
2,0 perform differently. For two-mode states generated for 

∈T (1/2, 1] the GNCC E p
0,2 is more efficient and it allows to reveal the entanglement of all states detectable by 

the GNCC E p
2,0. Also the best performing LNCCa R p

2,2
1  and R p

2,2
2 , that reveal local non-classicality, give different 

results in different areas of their phase diagrams [see Fig. 9(c)]. Whereas the LNCC R p
2,2

1  is more suitable for 
two-mode states generated for T ∈ (0, 1/2], the LNCC R p

2,2
2  is more powerful for indicating local non-classicality 

of two-mode states reached for T ∈ (1/2, 1], as documented in Fig. 9(c). We note that the mean number BS of noise 
signal photons of the input twin beam is divided into the output beam-splitter ports such that TBS mean noise 
photons leave mode 1 and RBS mean noise photons occur in mode 2.

Figure 8.  Non-classicality phase diagrams for two-mode states beyond the beam splitter with input noisy twin 
beams with balanced noise BS = Bi: (a) GNCCa E p

0,0 (red contour surface), E p
1,1 (orange contour surface), E p

2,2 
(green contour surface), E p

2,0 (blue contour surface), MP (red contour surface) and entanglement quantifier Ient 
(cyan surface), (b) plane BP = 0.2 in the phase diagrams plotted in (a) and (c) LNCC R p

2,2 (red contour surface) 
and local non-classicality quantifiers =I Icl cln

(1)
n
(2) (green surface) in space (Bp, T , Bs). Non-classicality regions 

occur in (a) and (c) below the corresponding surfaces, except for the GNCC E p
2,0 in (a) for which the non-

classicality region is surrounded by blue contour surfaces.

Figure 9.  Non-classicality phase diagrams for two-mode states beyond the beam splitter with input noisy twin 
beams with unbalanced noise: (a) GNCCa E p

1,1 (orange contour surface), E p
2,2 (green contour surface), E p

0,2 (blue 
contour surface), MP (red contour surface), and entanglement quantifier Ient (cyan surface), (b) plane BP = 0.2 in 
the phase diagrams plotted in (a) and (c) LNCCa R p

2,2
1  (orange contour surface), R p

2,2
2  (red contour surface) and 

local non-classicality quantifiers Incl
(1) (green surface) and Incl

(2) (cyan surface) in space (Bp,T,Bs). Non-classicality 
regions in (a) and (c) occur below the corresponding surfaces.
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Conclusions
We have analyzed the performance of several local and global non-classicality criteria written for intensity 
moments and elements of photon-number distributions and applied to noisy twin beams and other two-mode 
states derived from noisy twin beams by using a beam splitter. It has been shown that the non-classicality criteria 
based on the elements of photon-number distributions exhibit in general better performance in revealing both 
local and global non-classicalities compared to those containing intensity moments. However, these criteria lose 
their power with decreasing detection efficiencies and they give the same results as the criteria based on intensity 
moments for low detection efficiencies. Both types of criteria contain one criterion that reveals the entanglement 
as one of the forms of global non-classicality for all entangled noisy twin beams. Contrary to this, not all locally 
and globally nonclassical two-mode states occurring beyond the beam splitter are detectable by the analyzed 
non-classicality criteria. However, simultaneous application of several criteria gives a good chance for revealing 
possible non-classicality of an unknown two-mode state generated beyond the beam splitter.
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