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Background. Osteoarthritis (OA) and rheumatoid arthritis (RA) are well-known cause of joint disability. Although they have shown
the analogous clinical features involving chronic synovitis that progresses to cartilage and bone destruction, the pathogenesis that
initiates and perpetuates synovial lesions between RA and OA remains elusive. Objective. This study is aimed at identifying disease-
specific hub genes, exploring immune cell infiltration, and elucidating the underlying mechanisms associated with RA and OA
synovial lesion. Methods. Gene expression profiles (GSE55235, GSE55457, GSE55584, and GSE12021) were selected from Gene
Expression Omnibus for analysis. Differentially expressed genes (DEGs) were identified by the “LIMMA” package in
Bioconductor. The DEGs were identified by Gene Ontology (GO) and KEGG pathway analysis. A protein-protein interaction
network was constructed to identify candidate hub genes by using STRING and Cytoscape. Hub genes were identified by
validating from GSE12021. Furthermore, we employed the CIBERSORT website to assess immune cell infiltration between OA
and RA. Finally, we explored the correlation between the levels of hub genes and relative proportion of immune cells in OA and
RA. Results. We identified 68 DEGs which were mainly enriched in immune response and chemokine signaling pathway. Six
hub genes with a cutoff of AUC > 0:80 by ROC analysis and relative expression of P < 0:05 were identified successfully.
Compared with OA, the RA synovial tissues consisted of a higher proportion of 7 immune cells, whereas 4 immune cells were
found in relatively lower proportion (P < 0:05). In addition, the levels of 6 hub genes were closely associated with relative
proportion of 11 immune cells in OA and RA. Conclusions. We used bioinformatics analysis to identify hub genes and explored
immune cell infiltration of immune microenvironment in synovial tissues. Our results should offer insights into the underlying
molecular mechanisms of synovial lesion and provide potential target for immune-based therapies of OA and RA.

1. Introduction

Rheumatoid arthritis (RA) affects approximately 1% of the
population, has a female :male ratio of 2.5 : 1, and mostly
occurs among adults aged 40–70 years [1]. RA is characterized
by synovitis, synovial inflammation and hyperplasia, inflam-
matory cell infiltration, cartilage and bone destruction, and
other systemic features, which may lead to joint deformity,
severe disability, and even premature mortality [2–5]. Osteo-
arthritis (OA) is the most prevalent chronic degenerative
arthritis. The knee is the most frequently affected joint with
10% ofmen and 13% of women over the age of 60 years suffer-
ing from symptomatic knee OA and a quarter of OA patients

suffering disabilities [6, 7]. Recent studies revealed that syno-
vial lesions make an important role in pathological change of
OA and RA [8, 9]. The immune microenvironment in the
synovium of OA and RA is significantly different. There is
no or little inflammatory cell infiltration in OA, while in RA,
there is a variety of inflammatory cell infiltration and the
release of abnormal cytokines [10]. These clinical features pose
an important mechanistic question that needs to be urgently
determined: Why does synovial inflammation perpetuate?
What is the difference of synovitis between OA and RA?What
causes these biological mechanisms in OA and RA?

With the development of bioinformatics technology,
microarrays based on high-throughput platforms have
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emerged as an efficient tool to investigate gene expression pro-
files and explore molecular mechanisms of various diseases
[11]. Synovial tissues are the important tissue in gene analysis
[12]. The difference in the pathological changes and immune
microenvironment between OA and RA synovial tissues may
be highly related to key genes. The differentially expressed
genes (DEGs) in synovial tissue will bring new insights into
the pathogenesis and precise treatment target of OA and RA.
However, the pathophysiologic mechanisms of arthritis in
RA andOAhave not been investigated thoroughly. The prom-
ising biomarkers for diagnosis, prognosis, and therapeutic
response of OA and RA are lacking. Thus, the purpose of this
study is to employ bioinformatics analysis to identify DEGs,
screen out promising biomarkers and analysis pathways and
immune infiltration patterns between OA and RA, which
may shed light on the understanding of the pathogenesis,
occurrence, development, and consequently provide new
strategies for its diagnosis, prevention, and treatment.

2. Materials and Methods

2.1. Microarray Data Collection and Workflow. The work-
flow of this study is shown in Figure 1. Gene expression pro-

files (see S1 in Supplementary Materials) (GSE55235,
GSE55457, GSE55584, and GSE12021) were downloaded
from Gene Expression Omnibus (https://www.ncbi.nlm.nih
.gov/geo/) [13, 14]. The datasets consisted of a total of 81
synovial membrane samples, including 36 OA tissue samples
and 45 RA samples (Table 1). Platform annotation informa-
tion was downloaded to match the gene probes with gene
names, and the “sva” package of Bioconductor was applied
to remove batch effects. Further, the raw datasets were
preprocessed by performing background correction and nor-
malization using R (version 4.0.2) to delete unrecognized and
duplicate genes.

2.2. Identification of Differentially Expressed Genes (DEGs).
The R package linear models for microarray data (limma)
have been a popular tool for determining DEGs from micro-
array and RNA sequence datasets [15]. Here, the R package
“limma” was applied to the GEO datasets (GSE55235,
GSE55457, and GSE55584) to screen genes that satisfied the
following cutoff criteria: Benjamini-Hochberg adjusted P
value (adj. P) < 0.05 and ∣logFC ∣ ≥2. The P value was
adjusted to control the false discovery rate [16]. Genes that
satisfied the criteria were designated as DEGs and were visu-
alized as a heatmap by using the “pheatmap” package and as
a volcano plot by using the “ggplot2” package of R.

2.3. Functional Annotation of the Intersection Genes. To per-
form Gene Ontology annotation and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment of the intersection
genes, we utilized R packages “clusterProfiler” and “org.h-
s.eg.db” [17–19]. GO annotation enrichment terms were

Datasets (GSE55235, GSE55457, and GSE55584) downloaded from
GEO

Function enrichment analysis of
DEGs

Identification of the candidate hub genes

Identification of the DEGs by “limma” R package

Analysis of immune infiltration between OA and RA synovial tissues

Validation from GSE12021 to screen out the hub genes

PPI

The correlation between hub genes and immune cells in OA and RA

Figure 1: Workflow of this study.

Table 1: Information of datasets acquired from GEO.

Datasets Platform
Total sample

number
OA

sample
RA

sample

GSE55235 GPL96 20 10 10

GSE55457 GPL96 23 10 13

GSE55584 GPL96 16 6 10

GSE12021 GPL96 22 10 12
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Figure 2: (a) DEGs are visualized by volcano plot filtering from GSE55235, GSE55457, and GSE55584 datasets (red means upregulated genes
and green means downregulated genes; ∣logFC ∣ >2 and adjusted P < 0:05). (b) A heatmap of partial DEGs clustering relationship between OA
and RA synovial tissue.
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determined as per biological processes (BP), cellular compo-
nents (CC), and molecular functions (MF) to identify the
biological properties, and KEGG enrichment analysis was
employed to identify the critical signaling pathways associ-
ated with the intersection genes. An adj. P < 0:05 was set as
the threshold significance level.

2.4. Construction of the Protein-Protein Interaction (PPI)
Network and Identification of the Candidate Hub Genes.
The Search Tool for the Retrieval of Interacting Genes
(STRING; https://string-db.org) is an online database for
predicting direct and indirect relationships between proteins
[20]. The intersection genes were chosen to build a PPI net-

work with a minimum interaction score ≥ 0:4 and hiding dis-
connected nodes [21]. Maximal Clique Centrality (MCC),
degree, and closeness algorithms, regarded as the most effec-
tive methods to calculate hub nodes, were used to identify the
candidate hub genes using the “cytoHubba” plugin in Cytos-
cape (version 3.7.2) [22, 23]. The intersection genes of these 3
algorithms were regarded as the candidate hub genes, which
were visualized as an UpSetR diagram using the “UpSetR”
package of R.

2.5. Identification of Hub Genes by Validation from
GSE12021. To evaluate the accuracy of candidate genes,
receiver operating characteristic (ROC) curve analysis was
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Figure 3: GO (a) and KEGG (b) enrichment analysis of DEGs.
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applied by using the R package “pROC” in GSE12021 [24].
Hub genes were identified with a validating criteria of AUC
> 0:80 and relatively expressed levels of P < 0:05 with the
wilcoxTest.

2.6. Determination of Immune Infiltration and Correlation of
the Hub Genes and Immune Cells in OA and RA Synovial
Tissues. The online analysis tool CIBERSORT (https://
cibersort.stanford.edu/), a commonly used tool to assess the
relative content of 22 types of immune cells, was applied to
assess the immune microenvironment in the OA and RA tis-
sues [25–28]. The proportion of these immune cells, calcu-
lated with significance criteria of P value < 0.05, was
visualized as a violin plot using the “vioplot” package in R.
Finally, the correlation between the hub gene expression
and differential proportion of immune cells in OA and RA
synovial tissues was conducted by using R packages “ggEx-
tra” and “ggpubr” (with a cutoff of P < 0:05).

2.7. Statistical Analysis. The collation of original data, statis-
tical analysis, and visualization of the statistical results was
done by using the Report Language (Perl, version 5.32.1)
and R software (version 4.0.2).

3. Results

3.1. Identification of DEGs. A total of 68 DEGs between OA
and RA were screened out from GSE55235, GSE55457, and
GSE55584 datasets, including 45 upregulated and 23 down-
regulated genes (see S2 in Supplementary Materials). The
volcano plot and heatmap that reveal the clustering relation-
ship of the DEGs between OA and RA samples are shown in
Figures 2(a) and Figure 2(b), respectively.

3.2. Functional Enrichment Analyses of the Intersection
Genes. In the GO analysis of the DEGs, the BP-enriched
terms were humoral immune response, lymphocyte-
mediated immunity, and B cell activation; the CC-enriched
terms were immunoglobulin complex, external side of
plasma membrane, and MHC protein complex; and the
MF-enriched terms were antigen binding, immunoglobulin
receptor binding, and chemokine activity (Figure 3(a)).
KEGG enrichment analysis indicated that these genes were
significantly enriched in the cytokine-cytokine receptor
interaction, rheumatoid arthritis, and chemokine signaling
pathway (Figure 3(b)).

3.3. Construction of PPI and Identification of the Candidate
Hub Genes. The protein-protein interaction network of 68
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Figure 4: (a) The protein-protein interaction (PPI) network of DEGs with hiding disconnected nodes in the network (red represents
upregulated genes and green represents downregulated genes). (b) The intersection genes were screened out from 3 common algorithms
(MCC, degree, and closeness).
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DEGs was constructed as shown in Figure 4(a). Top 10 genes
were identified by Maximal Clique Centrality (MCC), degree,
and closeness algorithms, respectively (see S3 in Supplemen-
tary Materials). Seven candidate hub genes from these three
common algorithms were screened out including LEP,

CXCL3, CXCL9, CXCL10, CXCL13, NPY1R, and POU2AF1
(Figure 4(b)).

3.4. Identification of the Hub Genes.GSE12021 was employed
to validate these candidate hub genes. The result of 7
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Figure 5: The ROC curve of 7 candidate hub genes validated by GSE12021.
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candidate genes by ROC analysis were visualized (Figure 5).
Six genes (CXCL3, CXCL9, CXCL10, CXCL13, NPY1R, and
POU2AF1), with AUC score more than 0.80 and relative
expression levels of P < 0:05 by the wilcoxTest, were regarded
as hub genes (Figure 6). In addition, the expression levels of
the six hub genes are shown in S4 in Supplementary
Materials.

3.5. Analysis of Immune Infiltration. Using the CIBERSORT
website, we calculated the relative proportion of subpopula-
tions of different immune cells in the OA and RA synovial

tissues (Figure 7(a)). Compared with the OA samples, the
RA synovial tissues consisted of a higher proportion of 7
immune cells (plasma cells, CD8+ T cells, CD4+ naive T
cells, activated memory CD4+ T cells, follicular helper T
cells, T cells gamma delta, and M1 macrophages), whereas
4 immune cells (T cells regulatory, M2 macrophages, den-
dritic cells resting, and mast cells resting) were found in rel-
atively lower proportion (Figure 7). In addition, the levels
of 6 hub genes were closely associated with relative propor-
tion of 11 immune cells in OA and RA (Figures 8 and 9).
The expression of CXCL3 was positively related to resting
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Figure 7: Analysis of immune infiltration between OA and RA synovial tissues. (a) Relative proportion of 22 subpopulations of immune cells
in 59 samples performed by using the CIBERSORT algorithm. (b) The difference of 22 subpopulations of immune cells among OA and RA
synovial tissues (blue represents OA and red represents RA).
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Figure 8: Continued.
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dendritic cells in OA, whereas it was negatively correlated
with resting dendritic cells in RA (Figures 8(a) and 9(a)).

4. Discussion

Microarray technology and high-throughput technology, the
important approaches to explore the expression levels of
genes, have enabled a deeper understanding of the intrinsic
molecular mechanism of complex disorders [29–31].
Increasing evidence has indicated that pathological changes
in the synovium play a crucial role in the pathogenesis and
progression of OA and RA [32, 33]; thus, it becomes essential
to identify key genes that are differentially regulated and their
target pathways. In this study, six hub genes (CXCL3,
CXCL9, CXCL10, CXCL13, NPY1R, and POU2AF1), with
excellent specificity and sensitivity, were successfully identi-
fied by bioinformatics analysis. CXCL3, one of the hub genes
in our study and a neutrophil-activating chemokine that
belongs to the CXC-type chemokine family, was found highly
expressed in uterine cervical cancer(UCC) tissues. In addi-
tion, overexpression of CXCL3 could promote the tumori-
genic potential of UCC. [34]. In our study, we found that
the correlation of expression of CXCL3 and resting dendritic
cells was diametrically opposite in OA and RA synovial tis-
sues, which may give insights into immune microenviron-
ment of OA and RA. C-X-C motif chemokine 10
(CXCL10), known as interferon γ-induced protein 10, was
reported to increase the migration ability of inflammatory
cells mediated by CXCR3. In Cxcl10 -/- and Cxcr3 -/- mice,
F4/80 macrophages and CD4 T cells that infiltrated into the
synovium are significantly reduced compared to those in
WT mice [35]. CXCL13 is a chemokine for many immune
cells including regulatory T cells, follicular T cells, and B cells.
Serum CXCL13 levels in systemic sclerosis patients were
abnormally elevated, reflecting that CXCL13 has a role in
aberrant activation of the immune system [36, 37]. In addi-
tion, the CXCL9, CXCL10, CXCL11/CXCR3 axis was

reported to regulate immune cell activation, differentiation,
and migration, leading migration of immune cells to focal
targets [38, 39]. Neuropeptide Y receptor Y1 (NPY1R), iden-
tified as a novel peripheral blood biomarker, may predict for
the prognosis and metastasis of breast cancer patients [40].
Another research reported that increasing expression of
NPY1 may promote cartilage matrix degradation and chon-
drocyte hypertrophy, affecting the progression of OA [41].
POU2AF1 known as a B cell transcriptional coactivator was
found to have a significant correlation with disease progres-
sion by assessing gene expression in whole blood from RA
patients [42]. Notably, these previous studies increase the
credibility of the hub genes that were identified in our study.

Further, the functional enrichment analysis of DEGs
revealed that the hub genes were mainly enriched in the
immune response signaling pathway. We explored immune
cell infiltration and the correlation between hub genes and
immune cells in OA and RA. Compared with the OA syno-
vium, the proportion of 7 types of immune cells in RA syno-
vial tissue was increased and 4 types of immune cells
decreased. Previous studies have revealed that immune cells
may produce various soluble mediators that affect disease
progression [43]. Other researchers have found that there
are differential severity of histological synovitis, proportion
of immune cells, varied degrees of immune cell infiltration,
and differential upregulation of genes involved in B and T cell
activation/function during different stages of RA [44, 45].
Are infiltration of different immune cells and their degree
of infiltration related to the clinical stage of OA and RA? Is
the proportion of different immune cells in the synovial
membrane related to the clinical prognosis? Do these differ-
ential parameters provide guidance for the clinical treatment
of OA and RA? These questions need to be investigated in
future studies.

Although our study provides new hub genes as potential
biomarkers between OA and RA, the limitations of our study
must be acknowledged. First, our study mainly focused on
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data mining and analysis, and the results are rather prelimi-
nary; although useful for an initial screening, they must be
validated by analytical approaches and larger groups. In
addition, considering the inconsistency of the depth and
breadth of the datasets from different sequencing platforms,
we selected datasets from only the GPL96 platform for anal-
ysis and validation. Therefore, more data from different plat-
forms should be collected to obtain more solid evidence to
support our results. Furthermore, screening of hub genes is
subject to different sample sizes and calculation methods
[46]. Finally, due to lack of relevant clinical information,
the expression levels of the hub genes in different clinical
stages and the degree of immune cell infiltration could not
be explored. We believe that addressing the above limitations
may provide more insightful results.

5. Conclusions

We utilized bioinformatics analyses to screen out 68 DEGs
and 6 hub genes between OA and RA synovial tissues. We
found different types of immune cell infiltration between
OA and RA synovial tissues, and these hub genes are highly
related to the infiltration of inflammatory cells in the
immune microenvironment of synovial tissues. We believe
that the results of this study increase our understanding of
the underlying molecular pathogenesis between OA and RA
synovial tissues and consequently provide the new detection
and targeting for better therapeutic modalities.
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