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Among the most noteworthy developments in ophthalmology over the last decade
has been the emergence of quantifiable high-resolution imaging modalities, which are
typically non-invasive, rapid and widely available. Such imaging is of unquestionable
utility in the assessment of ocular disease however evidence is also mounting for its
role in identifying ocular biomarkers of systemic disease, which we term oculomics. In
this review, we highlight our current understanding of how retinal morphology evolves
in two leading causes of global morbidity and mortality, cardiovascular disease and
dementia. Population-based analyses have demonstrated the predictive value of retinal
microvascular indices, as measured through fundus photography, in screening for heart
attack and stroke. Similarly, the association between the structure of the neurosensory
retina and prevalent neurodegenerative disease, in particular Alzheimer’s disease, is
now well-established. Given the growing size and complexity of emerging multimodal
datasets, modern artificial intelligence techniques, such as deep learning, may provide
the optimal opportunity to further characterize these associations, enhance our under-
standing of eye-body relationships and secure novel scalable approaches to the risk
stratification of chronic complex disorders of ageing.

Introduction

The convergence of modern multimodal imaging
techniques and large-scale data sets has fostered an
extraordinary opportunity to exhaustively charac-
terize the macroscopic, microscopic, and molecular
ophthalmic features associated with health and disease
(i.e., the oculome). One of the potential avenues of
this oculomics revolution is the leveraging of the retina

to gain insights beyond the eye. As the only human
tissue allowing direct noninvasive in vivo visualization
of the microvascular circulation and central nervous
system, the neurosensory retina affords a unique setting
for the characterization of systemic disease. Microvas-
cular changes precede clinical manifestation, and so
their detection should have predictive value.1 Indeed,
ophthalmoscopic changes in retinal microvasculature
structure have been identified as independent predic-
tors for hypertension, diabetes, coronary disease, renal
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disease, and stroke.2–6 Alterations in the thickness of
the retinal nerve fiber layer and macular volume, most
easily revealed through optical coherence tomography
(OCT), may highlight those individuals most at risk
of developing cognitive decline and neurodegenera-
tive disease.7–10 Furthermore, certain disorders may
exhibit distinct retinal manifestations signifying their
presence—the sea fan neovascularization of sickle cell
anemia, the macular crystals of cystinosis, or the astro-
cytic hamartomas of tuberous sclerosis.11

A major facilitator for this has been the advance-
ment in retinal imaging modalities over the past two
decades. Primitive methods of direct ophthalmoscopy
have evolved to encompass a diverse armamentar-
ium of high-resolution imaging techniques, which are
predominantly easy to acquire, risk free, and often
demanding only nominal expertise and time for acqui-
sition. In particular, both modern retinal photogra-
phy and OCT are now of unprecedented resolution
and increasingly carried out on a routine basis in
both hospital eye settings and within the commu-
nity.12 At Moorfields Eye Hospital NHS Founda-
tion Trust, the largest ophthalmic unit in North
America and Europe, we have seen a 14-fold increase
in the capture of OCT from 23,500 scans in 2008 to
>330,000 in 2016.13 Similarly, the availability of such
cross-sectional imaging has exploded in primary care
settings—the largest optical franchise in the United
Kingdom, Specsavers, announced in 2017 that each of
its >700 branches would have an OCT device by the
end of 2019.14 The primary objective of this transfor-
mation has been to enhance the diagnosis of sight-
threatening retinal disease, but an important paral-
lel opportunity is emerging—the ability to use ocular
biomarkers to detect systemic disease, predict its future
onset, and provide noninvasive surrogates of its sever-
ity and treatment response.

Meaningful quantitative relationships between
retinal structure and systemic disease have now been
established using population-based analyses in cardio-
vascular disease (CVD) and dementia. In the former,
changes in retinal microvasculature, from vascular
caliber to tortuosity indices, have been associated
with CVD risk factors and may have predictive value
for relevant events, such as myocardial infarction
and stroke.4,5,15–17 Traditionally, this has relied upon
onerous manual segmentation of digitized images.
The development of semiautomated retinal imaging
analysis software has alleviated this burden but still
demands significant time and researcher input for
large-scale data sets highlighting the requirement for
fully automated means, which may be addressed by
modern methods of artificial intelligence (AI). One
form of AI, deep learning, may be the answer. In 2018,

researchers at Google Brain not only constructed a
model capable of predicting CVD risk factors with
reasonable accuracy but, more surprisingly, was also
able to predict age and sex with impressive confi-
dence.18 Reassurance of the rationale behind the
model’s output came from interpretability techniques
highlighting retinal vasculature, the optic nerve, and
macular morphology in decision making.

Although our understanding of eye-body relation-
ships has evolved from decades of traditional statistical
modeling in large population-based studies incorporat-
ing ophthalmic assessments, the application of AI to
this field is still in its early stages. In this article, we
focus on where AI-based studies may build on these
traditional analyses to reveal novel insights leveraging
retinal biomarkers of systemic disease. Particular focus
is paid to common chronic disorders of aging, such as
cardiovascular and neurodegenerative disease.

Cardiovascular Disease

The first reported association between systemic
vascular disease and the eye likely comes from the
British nephrologist, Richard Bright, who in 1836
described a series of patients with albuminuria and
vision loss.19 The ophthalmic features of what would
become known as Bright disease, an umbrella term for
all forms of glomerulonephritis, would not be ratio-
nalized until after the invention of the ophthalmo-
scope, when Marcus Gunn noted features of severe
hypertensive retinopathy in a cohort of patients with
chronic renal impairment in 1892.20 The concept of
retinal-based quantification of cardiovascular disease
risk would subsequently come in 1939, when Keith et
al.21 would describe their prominent grading system for
hypertensive retinopathy, which “permitted an intel-
ligent appraisal of the individual patient and has
increased considerably the accuracy of prognosis.”

As CVD is the leading cause of global mortal-
ity, accounting for more than 30% of deaths world-
wide, there has been significant motivation to develop
effective tools to identify those most at risk.22 The
2019 guidelines from the American College of Cardi-
ology and American Heart Association recommend
use of the ASCVD Risk Estimator Plus, which calcu-
lates a 10-year CVD risk score based on certain
risk factors (age, sex, ethnicity), bedside tests (e.g.,
blood pressure), and blood parameters (e.g., total
cholesterol).23 However, even such risk stratifica-
tion algorithms can have limited calibration and
discriminative ability when externally validated.24,25
Moreover, generating these scores depends on signif-
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icant health care professional input and laboratory
testing.

The use of a single noninvasive “eye check” to
assess CVD risk is an attractive alternative, in part
because of the importance that most of the population
places on matters related to their vision and eye health.
When surveyed, the general public ranks sight as our
most important sense.26 This translates into significant
differences between the extent to which members of
the public attend eye checks compared to screening for
CVD. For example, the free “Over-40” check estab-
lished by the UK National Health Service for CVD
risk stratification by primary care physicians in 2009
was attended by only 12.8% of the population from
2009 to 2013.27 In contrast, more than half the popula-
tion attended their community optometric practice for
regular eye checks in 2016.28

A role for retinal photography can therefore be
envisaged in three settings. First, it could be used as
an additional investigation, enabling risk refinement.
There is evidence that the addition of retinal photog-
raphy can positively affect reclassification indices for
current risk stratification scoring systems.29,30 Its use as
a mandated additional investigation would have signif-
icant resource implications, but an alternative would
be the inclusion of data from imaging in those cases
where it is available, in which case the requirement is
primarily one of data integration. Second, there may
be a role for retinal photography as an alternative to
current CVD risk approaches in resource-poor settings.
The emergence of widespread retinal photography in
the developing world through smartphone technology
and improved access for diabetic retinopathy screen-
ing may enable democratization of CVD risk stratifica-
tion to this neglected population. Third, it may be used
as an ad hoc screening test. Deployment in commu-
nity optometry settings could allow identification of
people at risk of CVD who would not otherwise have
attended their primary care physician and are therefore
prompted to have further investigation.

Direct noninvasive visualization of the microvascu-
lar circulation is a unique attribute of the neurosen-
sory retina. The shared anatomical and physiologic
characteristics between retinal vessels and those of
the kidney and heart support the potential utility of
retinal assessment as a conduit to systemic vascular
disease risk stratification. The assessment of the retinal
circulation has evolved from initially being through
direct ophthalmoscopy, which is fraught with substan-
tial intra- and interobserver variability, to the intro-
duction of digital or digitized retinal photography
with greater repeatability and precision.31,32 A large
number of population-based studies have now demon-
strated significant relationships between retinal vascu-

lar features and both cardiovascular disease outcomes,
in particular myocardial infarction and stroke, and
risk factors (age, blood pressure, smoking, presence of
diabetes mellitus).15,16,30,33

The most convincing association has been made
between risk of incident stroke and retinal vascular
morphology. TheAtherosclerosis Risk in Communities
study was the first population-based study to evaluate
the relationship between retinal vasculature and cardio-
vascular disease on a large scale and incorporate retinal
photography.15 Not only were images graded for quali-
tative features suggestive of hypertensive retinopathy,
such as cotton wool spots and arteriovenous nicking,
but, following digitization of the images, semiquantita-
tive measurement of the retinal vessel caliber also was
completed. Controlling for known risk factors, includ-
ing age, sex, diabetes, and blood features, most features
of retinopathy were indeed associated with a higher
relative risk of incident stroke, but it was also noted
that such risk increased in those with smaller arteriole-
to-venule ratios in a proportional scale. This was
reinforced by similar results among diabetic patients
in the Wisconsin Epidemiologic Study of Diabetic
Retinopathy.34 However, interestingly, a meta-analysis
incorporating six studies evaluating retinal vascu-
lar caliber and incident stroke over 5 to 12 years
concluded that wider retinal venular caliber and not
retinal arteriolar caliber predicted stroke with a pooled
hazard ratio of 1.15 (confidence interval, 1.05–1.25 per
20-micron increase in caliber).5 To a certain extent,
this finding persists when considering coronary heart
disease (CHD) but with an important distinction.
Retinal vascularmorphology appears to be helpful only
for risk stratification inwomen.A similarmeta-analysis
by McGeechan and colleagues4 evaluating the same
six population-based cohorts revealed wider retinal
venules, and narrower arterioles predicted 5- to 14-year
risk of CHD events (namely, myocardial infarction,
coronary bypass grafting, and coronary angioplasty)
in women but not inmen. The authors hypothesize that
microvascular dysfunction plays amore prominent role
in CHD risk in women.

Rather than focusing on CVD events, a number of
studies have established links between retinal vascular
characteristics and risk factors. In recent work using
over 5000 participants from the European Prospective
Investigation into Cancer-Norfolk Eye Study, Owen
et al.35 examined retinal vessel caliber and tortuosity
using the fully automated software QUARTZ. Increas-
ing arteriolar tortuosity was associated with rising age
and systolic blood pressure, whereas venular tortuos-
ity was more related to body mass index and preva-
lent type 2 diabetes mellitus. In terms of vascular
caliber, retinal venular caliber was higher in older



Oculomics: An Eye on Systemic Disease TVST | Special Issue | Vol. 9 | No. 2 | Article 6 | 4

patients, smokers, and those with raised triglyceride
levels. Arterioles were narrower in older patients and
those with higher systolic blood pressure and total
cholesterol.

The studies mentioned thus far have centered on
traditional statistical modeling techniques, such as
regression and survival analysis, to draw insights on
how retinal structure changes in CVD. However, these
hypotheses-based methods rely on clinician direction
within a narrow prespecified group of parameters. In
contrast, Poplin et al.18 argue that the plethora of infor-
mationwithin retinal photographs lends itself ideally to
deep learning. The team fromGoogle Research trained
a convolutional neural network on fundus photos of
>280,00 patients from the UK Biobank and EyePACS
to predict CVD risk factors. Not only did the model
indeed predict smoking status andmajor cardiac events
with reasonable accuracy (area under the receiver
operating characteristic curve [AUC] of 0.71 and 0.70
respectively), it surprised many readers in its ability to
identify sex and age with high confidence (AUC of 0.97
and mean absolute error of 3.26 years, respectively).
Importantly, the model performed well when externally
validated on a separate data set of Asian patients by an
independent research group.36 A further novel feature
of their work reflects on the concern of the limited
interpretability inherent in deep learning systems. They
employed the deterministic technique, soft attention, to
illustrate which pixels of the image were most influ-
ential in the model’s decision. Although ophthalmic
researchers may not be surprised to see that systolic
blood pressure predictionwas predominantly predicted
using the retinal vessels, it may fascinate others to learn
that the foveal appearance was instrumental in predict-
ing biological sex. These saliency maps therefore have
the potential to not only reassure us of the biological
plausibility of model decision making but also stimu-
late research into potential novel biomarkers, akin to
phenotype-first genome-wide association studies.

Neurodegenerative Disease

There are over 9.9 million new cases of demen-
tia worldwide each year. The World Alzheimer Report
2015 estimates that the number of affected people
will double every 20 years, equating to >130 million
cases in 2050.37 In the United Kingdom, demen-
tia overtook CVD as the leading cause of death in
2016.38 Yet, despite these alarming figures, it has been
estimated that 50% to 80% of cases of the most
common form of dementia, Alzheimer disease (AD),
remain unrecognized in high-income countries, due to

the challenges in detection and diagnosis.37 Typically,
individuals suspected of having dementia are assessed
by their primary care physician using the usual combi-
nation of medical history, physical examination, and,
in some cases, investigations in conjunction with a
questionnaire regarding cognitive function. However,
not only do these have variable diagnostic accuracy,
but they also depend on an index of suspicion as
well as attendance by the individual. In addition, the
gold-standard diagnosis for some forms of demen-
tia, such as AD, relies on brain biopsy, which is not
appropriate for routine use. Evidence is growing for
less invasive investigations such as cerebrospinal fluid
analysis of amyloid protein and magnetic resonance
imaging (MRI), but again, there are resource impli-
cations to using these tests at scale.39–41 One imaging
protocol increasingly used for AD diagnosis, MRI–
positron emission tomography amyloid, requires a
prescan injection of a radioactive tracer and can take
over an hour to complete. This is in stark contrast to
the seconds needed for acquiring retinal imaging.

In 1986, following on from observations that people
with AD had visual deficits that could not be explained
purely by cortical disease, DavidHinton and colleagues
histologically examined the optic nerves of 10 patients
with AD.42 Their report was the first to conclusively
demonstrate the reduction in retinal nerve fiber layer
and retinal ganglion cell number typical of AD. This
is perhaps unsurprising given the shared embryologic
origin of the cerebral cortex and eye. Emerging initially
as diverticula in the primitive diencephalon in weeks 3
to 4 of development, the primitive optic vesicle under-
goes a series of invaginations in tandem with overly-
ing mesenchyme and surface ectoderm to result in a
partition between the layers of the retina and walls
of the forebrain bounded by the optic nerve. Accord-
ingly, the cerebral cortex and eye share many charac-
teristics, including immune privilege mediated through
a combination of physical barriers, such as the blood-
retinal barrier with its resemblance to the blood-brain
barrier, and inhibitory microenvironments. Optic nerve
morphology also mirrors that of its central nervous
system counterparts ensheathed in myelin and three
meningeal layers.

Before considering the relevant literature in this
field, it is important to appreciate the semantic distinc-
tions within neurodegenerative disease research, which
may not be immediately obvious to visual scien-
tists and ophthalmologists. Rather than describing a
disease, the term dementia is an umbrella term refer-
ring to a constellation of symptoms secondary to
impairment of higher-order cerebral functions such as
memory, language, and problem solving. Accounting
for >60% of cases of dementia in people older than
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65 years, AD is the most common cause of demen-
tia and is classically characterized by the deposition of
amyloid beta oligomers and neurofibrillary tangles.43
In contrast, vascular dementia, the second leading
cause, is intimately linked to cerebrovascular disease
and can be subcategorized depending on the imaging
characteristics of infarcts and white matter changes.
The remaining ∼20% are attributable to rarer forms
such as Lewy body dementia, frontotemporal degener-
ation, and dementia associated with Parkinson disease.
A large proportion of cases may also be mixed, most
commonly AD and vascular dementia, suggesting not
only that both retinal vascular morphology and nerve
fiber layer may be useful but that significant overlap
exists in biomarker measurement.

Much of the current work bridging AD and retinal
morphology revolves around OCT, but meaningful
associations have been reported in other imaging
modalities. As one of the first available modalities,
retinal photography in those with cognitive decline
showed changes in vessel caliber and branching indices,
but this may be accounted for by the shared risk
factors between CVD and certain forms of demen-
tia. The Rotterdam Study demonstrates evidence of
retinopathy in participants with prevalent dementia,
but its presence did not appear to confer an increased
risk of incident dementia.44 The peripheral retina may
also hold clues—patients with AD appear to have
both a higher baseline and an increase in peripheral
hard drusen over two years of follow-up.45 Anatomi-
cally, however, changes in the optic nerve and retinal
nerve fiber layer would seem most plausible represen-
tatives of neurodegenerative disease. Early on, it was
noted that red free retinal nerve fiber layer (RNFL)
photographs reveal a higher proportion of defects
in patients with AD, but this has not always been
consistent, perhaps owing to the limited number of
cases in many studies.46 Trick et al.47 and Berisha et
al.48 directly sought to address previous psychophysical
work revealing inferior visual field defects in patients
with AD, finding that the superior RNFL was prefer-
entially impaired in their cohort.

The most consistent retinal feature of AD is OCT-
measured changes in the RNFL. TheRNFL comprises
the axons of retinal ganglion cells that project directly
to the lateral geniculate nucleus, and thinning has been
shown to correlate with AD and cognitive decline
in two separate meta-analyses.7,10 Individuals with
AD show reductions in the RNFL, ganglion cell–
inner plexiform layer, and overall macular volume.49
The similarity of RNFL thickness between people
with established AD and mild cognitive impairment
suggests that ganglion axonal loss occurs early in
the disease and may therefore have some predic-

tive value.50,51 In 2018, two large population-based
analyses substantially bolstered our understanding
in this field. A study by Ko et al.9 analyzing the
OCTs of >30,000 participants of the UK Biobank
study found that thinner RNFL was not only associ-
ated with lower cognitive testing scores (as measured
by the Mini Mental State Examination), but also
those in the thinner quintiles were more likely to
perform poorly on the test three years later. In the
same month, researchers from the Rotterdam Study
published their findings that thinner RNFLwas associ-
ated with an increased risk of developing dementia,
highlighting the potential role of a biomarker of early
dementia.8

To our knowledge, there is no published work relat-
ing to the use of deep learning in the prediction
of dementia from retinal imaging, but this is likely
to change soon given current research efforts. In a
2019 systematic review, Jo et al.52 appraised 16 studies
employing deep learning in neuroimaging (magnetic
resonance imaging) for the diagnosis of AD. It there-
fore seems likely that similar applications will pervade
the retinal sphere.

Prospects

We have sought to highlight the enormous poten-
tial of leveraging retinal biomarkers for the charac-
terization of systemic disease, particularly those of
rising prevalence within the aging population. Given
the size of emerging data sets and complexity of
imaging techniques, these benefits may be most effec-
tively secured through modern AI techniques, such
as deep learning.53 The role of deep learning in this
field is likely to extend beyond simple risk predic-
tion from an individual’s retinal images. In an attempt
to combat the “black box” issue of limited inter-
pretability in deep learning, groups are leveraging
methods such as saliency maps to highlight image
regions/pixels that most contribute to the model’s
decision. Given the vast quantities of data incor-
porated within modern ophthalmic imaging, such
as volumetric OCT scanning, the identification of
novel biomarkers through these methods is attractive.
Indeed, as per the work of Poplin et al.18 on the predic-
tion of cardiovascular risk factors from retinal photog-
raphy, foveal morphology appeared to be crucial in
the model’s decision of determining sex. This ability
to generate new hypotheses is exciting and should
then be validated on a separate data set. However,
this deviation from traditional hypotheses-led research
must be approached with caution, accounting for the
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well-known issues associatedwith data dredging, which
frequented early genomics research.54

A further application for deep learning in this
field comes from segmentation. Many OCT devices
now come with preinstalled automated segmentation
software, but these are generally designed for the
identification of retinal layers, rather than disease
features, and can be complicated by error. Rather than
providing a global classification for an input image,
deep learning can be employed to label each specific
pixel. This can then be fed into a further neural
network to provide an overall classification. De Fauw
et al.55 employed this technique in OCT classifica-
tion for macular diseases by designing an intermedi-
ate segmentation map, which was then analyzed by
a further model to provide a classification and triage
urgency. This cascade not only standardizes anatom-
ical output independent of the acquiring device but
also permits a degree of interpretability by the clini-
cian, who can more easily discern, for example, the
presence of subretinal fluid in a diagnosis of neovas-
cular age-related macular degeneration. However, the
segmentation map has significant value independent
of a feed-forward process. Segmentation facilitates our
ability to record change more accurately in retinal
morphology and will likely be instrumental in dynamic
risk prediction models, especially given that retinal
imaging is frequently acquired on a regular ongoing
basis. Incorporation of updated cardiovascular risk
factors so as to illustrate a trajectory of change has
shown promise over more conventional risk prediction
methods, and this principle will likely extend to retinal
biomarkers.56

Among the most crucial steps in constructing deep
learning–based models is the acquisition and curation
of a training data set of sufficient magnitude. These
are typically derived from either large prospective
observational cohort studies or retrospective real-world
data. In the former, the data may be available to
researchers either through open access (e.g., MESSI-
DOR: http://www.adcis.net/en/third-party/messidor/)
or upon application (e.g., UK Biobank: https://www.
ukbiobank.ac.uk/). In a recent systematic review evalu-
ating 82 studies comparing the performance of deep
learning models with health care professionals in
disease classification from medical imaging, 25 studies
leveraged data from open-access repositories.57 In the
field of oculomics, retrospective real-world data can be
a more challenging option as the desired labels (such
as myocardial infarction within five years) will not
align with the original purpose for capture, typically
being eye disease. Moreover, ophthalmic care is often
provided in standalone ophthalmic settings. In this
situation, researchers may consider record linkage as a

possible solution. We provide details of a case example
of this in Box 1.

In this article, we have focused on two specific
exemplars, cardiovascular and neurodegenerative
disease, but there is emerging potential for generating
novel hypotheses from linking large-scale ophthalmic
data sets with other specialties. Such is the objec-
tive of initiatives such as Health Data Research UK
(https://www.hdruk.ac.uk), which seeks to unite health
care data nationally to facilitate innovative discovery
with a strong underpinning of public involvement and
engagement. AI-based methods in conjunction with
interdisciplinary expertise will be crucial in tackling
the future health care challenges of common chronic
disorders of the body. Undoubtedly, oculomics will be
one of the keys to these efforts.

Box 1. Case Example: AlzEye—Linking
Ophthalmic Imaging and Systemic Disease
Labels at Scale to Provide New Insights into
Dementia (and Cardiovascular Disease)

When trying to achieve the necessary scale of data
for machine learning approaches, the use of routinely
collected data is an attractive alternative to the
high-cost, researcher-led data sets compiled through
epidemiologic studies or biobanks. One of the aims of
such an approach is to create virtual biobanks much
cheaper than otherwise possible (arguably a “biobank-
on-a-shoestring”) and which may indeed better reflect
the population of interest (vs. the somewhat skewed
population that has been observed in some biobank
programs).

An example of this kind of approach is AlzEye, the
United Kingdom’s first and largest linkage of complex
three-dimensional imaging data (fundus photographs
and retinal OCT) to systemic health diagnostic codes
for the purposes of exploring retinal ultrastruc-
tural associations and predictors of dementia and
its subtypes. AlzEye depends on the combination of
both local and nationally held data sets within the
United Kingdom’s National Health Service (NHS).
Specifically, AlzEye is a pseudonymized data set
linking retinal photographs and OCT scans of all
patients older than 40 years attending Moorfields
Eye Hospital NHSFT with Hospital Episode Statis-
tics (HES), a national database consisting of all admis-
sions, emergency attendances, and outpatient appoint-
ments in England. The appropriate use and linkage of
such data depend on satisfying many criteria, includ-
ing ethical approval, data security, and governance.
Engagement with the public has been pivotal to the
approach. We surveyed 483 participants to canvass

http://www.adcis.net/en/third-party/messidor/
https://www.ukbiobank.ac.uk/
https://www.hdruk.ac.uk
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public opinion on the use of eye scans for research and
the acceptability of large data sets to identify patterns
of systemic disease. Two members of the public sit on
the AlzEye working group, and information regarding
the study is outlined on the funding charity’s website.

This kind of study is complex, and the approval process
that AlzEye underwent was appropriately robust with
a number of different approvals required prior to the
establishment of AlzEye. Although the exact process
will vary from country to country, the processes are
likely to share similar principles, and we therefore
highlight themhere. The first stage required us to secure
a research sponsor, necessitating institutional approval
consisting of research and development, informa-
tion governance, and information technology at both
the NHS data custodian (Moorfields Eye Hospital
NHSFT) and the research institute (University College
London). Important conditions involving third-party
linkage by a “trusted third party,” robust data privacy
measures, and sufficient computing infrastructure were
outlined at this stage. In AlzEye, the linkage process
is as follows: (1) images from Moorfields Eye Hospital
are pseudonymized through the removal of all identi-
fiers and replacement with a unique study ID. These
are then transferred to University College London. (2)
Simultaneously, a spreadsheet of the image identifiers
(date of birth, uniqueNHSnumber, sex) is securely sent
to NHS Digital, the national body overseeing the HES
data warehouse. (3) NHS Digital strips the identifiers
and returns the relevantHES data with pseudonymized
study IDs to University College London, where it is
linked with corresponding images. Thus, HES data
never enter the source of imaging data (Moorfields
Eye Hospital), and conversely, identifiers never enter
University College London (Fig. 1).

Prior to commencement, all research studies in the
United Kingdom require ethical approval through the
Research Ethics Service, but some specific studies may
warrant additional approvals. AlzEye was approved by
the National Health Service Research Ethics Commit-
tee in 2018. Due to the large number of patients
included (more than 250,000), the historical nature
of the data, and the advanced age and difficulty in
contacting patients, it would not be feasible to obtain
consent from patients. Therefore, to use identifiable
data for the linkage, a specific type of approval was
sought involving an application to the Confidential
Advisory Group, who advise the UK Health Research
Authority on whether sufficient justification exists to
access data without consent. In the United Kingdom,
this is known as a “Section 251 approval,” deriving
from the 2006 NHS Act, which provides provision for
this kind of application. The Health Research Author-

Figure 1. The flow of data is such that the Moorfields Eye Hospi-
tal never receives HES data and University College London does not
receive any identifiers. University College London, as a trusted third
party, links images fromMoorfields Eye Hospital with HES data from
NHS Digital based on a unique study ID.

ity, collating the opinions of the respective committees,
granted ultimate approval in late 2018.
Upon these approvals, applications to NHS Digital for
the procurement of HES data can then be processed.
In addition to the external approvals, NHS Digital
has its own internal approval process detailing, in
particular, the legal basis upon which data are being
accessed. When a given application is approved, it is
then presented on behalf of the applicant by NHS
Digital to the Independent Group Advising on the
Release of Data (IGARD), a committee of specialist
and lay members who assess all applications to NHS
Digital for the dissemination of confidential informa-
tion. In January 2019, IGARD gave approval, remark-
ing that the AlzEye application “could be used as an
exemplar to help other researchers with their applica-
tions to the Data Access Request Service.”
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