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model
Carsten Lippe 1, Tanita Klas1, Jana Bender1, Patrick Mischke 1, Thomas Niederprüm 1 & Herwig Ott 1✉

Scientific advance is often driven by identifying conceptually simple models underlying

complex phenomena. This process commonly ignores imperfections which, however, might

give rise to non-trivial collective behavior. For example, already a small amount of disorder

can dramatically change the transport properties of a system compared to the underlying

simple model. While systems with disordered potentials were already studied in detail,

experimental investigations on systems with disordered hopping are still in its infancy. To this

end, we experimentally study a dipole–dipole-interacting three-dimensional Rydberg system

and map it onto a simple XY model with random couplings by spectroscopic evidence. We

discuss the localization–delocalization crossover emerging in the model and present

experimental signatures of it. Our results demonstrate that Rydberg systems are a useful

platform to study random hopping models with the ability to access the microscopic degrees

of freedom. This will allow to study transport processes and localization phenomena in

random hopping models with a high level of control.
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Randomness and disorder have a strong impact on transport
processes in quantum systems and phenomena such
as Anderson localization1–3, many-body localization4 or

glassy dynamics5 occur. Their characteristics depend on the
strength and type of disorder. An important class are hopping
models, where particles or excitations move through a system that
has randomized couplings. This includes, e.g., spin glasses5,
coupled optical waveguides6, or NV center arrays7. They are also
important to understand excitation transport in molecular and
biological systems, such as light-harvesting complexes8. In many
of those systems, the microscopic coupling mechanism is pro-
vided by the dipole–dipole interaction. Rydberg systems with
their strong and controllable dipolar interactions9 are thus an
ideal platform to study energy transport in such random hopping
models10.

A model particularly relevant to particle and energy transport
is the XY model11 that describes coupled two-dimensional spin-12
particles by the Hamiltonian

ĤXY ¼ ∑
n

i<j

Jij
2

σ̂xi σ̂
x
j þ σ̂yi σ̂

y
j

� �
þ ∑

n

i¼1
εiσ̂

z
i ; ð1Þ

where σ̂x=y=zi denote the Pauli matrices and Jij describes the
coupling between spins i and j. Rewriting the term ðσ̂xi σ̂xj þ
σ̂yi σ̂

y
j Þ=2 ¼ σ̂þi σ̂

�
j þ σ̂�i σ̂

þ
j by the ladder operators emphasizes the

hopping character of this model. The second term describes the
on-site energy εi.

For a realistic description of transport processes in solids, the
inclusion of defects and disorders was found to be crucial. Adding
disorder to the on-site energy εi1,12 and restricting the coupling to
nearest neighbors only results in the Anderson model, which laid
the foundations to understand the metal–insulator transition.
Several extensions to the Anderson model have been considered
since then. Most prominently, the additional inclusion of on-site
interactions led to the rapidly growing field of many-body
localization4,13. Also, models with random on-site energy and
long-range interaction were found to show many-body localized
states14,15.

Another class of disordered systems described by Eq. (1) are
hopping models with randomized couplings Jij. Such models have
received broad interest due to a large variety of emerging effects
such as many-body relaxation dynamics16, glassy dynamics17,
localization phenomena18–21, or superfluid stiffness22. In many
systems, random hopping is a consequence of position disorder.
Ultracold Rydberg gases with their disordered particle distribu-
tion and characteristic power-law interaction are therefore an
ideal testbed to study randomized hopping models. Here, we
experimentally study a three-dimensional many-body Rydberg
system with random dipole–dipole couplings. We measure
the spectrum of the many-body system and compare it to
an effective spin model. We discuss the appearance of a
localization–delocalization crossover within our effective spin
model and present experimental indications of such a transition.
Our results pave the way to study transport processes and loca-
lization phenomena in random hopping models in detail.

The resonant dipole–dipole interaction between two atoms in
Rydberg states of opposite parity, say an S- and a P-state, is the
key ingredient to realizing an effective XY exchange interaction.
The effective spin is encoded in the two Rydberg states Sj i � #

�� �
and Pj i � "

�� �
. In the simple two-level system, the anisotropic

dipole–dipole interaction V̂
dd
ij ¼ ðd̂i � d̂j � 3ðd̂i � eRÞðd̂j � eRÞÞ=R3

ij
leads to an XY spin-exchange term23 with the couplings
Jij ¼ C3ð1� 3cos2θijÞ=R3

ij, where Rij is the distance between the
two atoms and θij is the angle between the quantization and the

interparticle axis. The system is governed by the Hamiltonian

Ĥ ¼ ∑
N

i<j

C3 θð Þ
R3
ij

σ̂þi σ̂
�
j þ σ̂�i σ̂

þ
j

� �
þ ∑

ν¼#;"
∑
N

i<j

Cν
6ðθÞ
R6
ij

n̂νi n̂
ν
j ; ð2Þ

where n̂#="i ¼ ð1 ± σ̂zi Þ=2 counts the number of #
�� �

/ "
�� �

-
excitations on site i. To a much lesser extent, the Rydberg system
also realizes an Ising-type term through the van der Waals
interaction between two identical spins ##

�� �
or ""

�� �
, i.e.,

Uij ¼ C6ðθÞ=R6
ij
[ 24. This correction is described by the second

term in Eq. (2).
The experiments are performed in a three-dimensional frozen

Rydberg gas without an underlying regular lattice structure
(Fig. 1). Hence, the R−3 scaling allows that one atom is possibly
coupled to many others. The couplings are not purely random, as
the individual distances in a system with position disorder are still
correlated due to the triangular inequality and Rydberg blockade.
In the experiment, we realize the weak probing limit, where the
C6 term of Eq. (2) effectively simplifies to a random field
∑n

i¼1 εiσ̂
z
i and the Hamiltonian takes the form of the pure XY

model Eq. (1) (see Supplementary Note 1). Note that with a
proper choice of the involved Rydberg states, the relative strength
of the two terms in Eq. (2) can be tuned, thus allowing to study
the crossover from hopping disorder to on-site disorder (Sup-
plementary Note 4).

Results and discussion
Experiment. We study the Hamiltonian Eq. (2) spectroscopically.
This gives access to the density of states of the many-body system
and its scaling properties. This approach allows for a direct
comparison with numerical simulations and helps us to identify
signatures for the appearance of localized and delocalized states.
The experimental realization requires a gas with a high number
density in order to realize a high absolute number of small
interatomic distances such that many closely spaced, strongly
interacting pairs can be excited and detected. For this purpose, we
prepare a Bose-Einstein condensate (BEC) of 87Rb (see Methods).
The experiment is conducted in a pump–probe scheme (Fig. 2a,

Fig. 1 Sketch of the experiment. a Dipole–dipole interaction between two
atoms. One ground state atom gj i (gray) is excited to a Rydberg Sj i-state
(red) with a two-photon transition (red arrow). A second atom is excited to
a Rydberg Pj i-state (blue) with a single-photon transition (blue arrow).
Hopping with strength J (yellow arrows) is induced by resonant
dipole–dipole coupling between the two Rydberg states of opposite parity.
b, c Spatial distribution of Rydberg excitations corresponding to localized
and delocalized states. Seed atoms in the Rydberg Sj i-state (red) are
separated by the Rydberg blockade radius (red dashed circles). Probe
excitations to the Rydberg Pj i-state are shown in blue. Surrounding ground
state atoms are shown in gray. Yellow connections illustrate the strongest
hopping contributions. They can be restricted to two sites only, forming a
localized dimer state (b), or to multiple similarly spaced sites, forming a
delocalized state (c).
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b). In the first step a variable number of atoms is brought into the
#
�� �

-state (labeled as “seeds”) and a subsequent pulse excites on the
order of one ground state atom into the "

�� �
-state. The excitation

to the spin-down state j #i ¼ j51S1=2;mJ ¼ 1=2i is realized by a
1 μs long resonant two-photon pulse. The average number �n and
the spatial distribution of seed excitations are controlled by the
coupling strength ΩS and the Rydberg blockade conditions25,26.
After a variable delay time τ, we apply the 1 μs long probe pulse by
weakly driving (ΩP≪ΩS, detuning ΔP) a single-photon transition
from j5S1=2i to the j "i ¼ j51P3=2;mJ ¼ 1=2i Rydberg state. The
spontaneous decay of Rydberg atoms into ions allows continuous
and time-resolved probing of the Rydberg population. Without
probe pulse, the seed excitations decay on a typical timescale of
τeff≲ 15 μs. The delay between the pump and the probe pulse is
either chosen to be τ= 1 μs≪ τeff to create an "

�� �
-excitation in

the presence of the #
�� �

-seeds (interacting case) or it is chosen to
be τ= 300 μs≫ τeff to obtain a reference measurement of the
temporally separated #

�� �
and "

�� �
excitations (non-interacting

case). By changing the probe laser detuning, we observe the
spectroscopic response of the "

�� �
-excitation in the presence of a

variable number of seeds, thus probing the random XY model.
Note that in our system, the typical dipole–dipole coupling
strength between two Rydberg atoms is much larger than the
estimated decoherence rate stemming from laser noise and
intrinsic decay processes. The spectroscopy therefore pre-
dominantly probes the coherent many-body states (see Supple-
mentary Note 2 for a quantitative estimate).

A series of interacting spectra for increasing pump power is
shown in Fig. 2c–f together with a reference measurement. One can

see that the spectroscopic line shape for the excitation of the
"
�� �

-state significantly broadens. While for small Rabi coupling,
we see only small deviations from the non-interacting case, the line
shape becomes largely modified for strong pump powers. On
the one hand, the C3 Rydberg blockade manifests through the
suppression of the spectroscopic signal on resonance. On the other
hand, the dipole–dipole-induced anti-blockade shows up as a strong
enhancement of the signal far from resonance27,28. For small pump
power, we statistically see many realizations without seed excita-
tions. Here and in the reference spectra, the line shape shows an
increased signal for negative detunings which can be attributed to
the formation of ultralong-range Rydberg molecules29. In the
presence of seeds, however, the molecule formation becomes
strongly suppressed due to the reduced probability to find an atom
that simultaneously has the proper distance to all seeds and a
ground-state atom to form the molecule.

Spin model simulation. To model our experimental spectra we
perform Monte Carlo simulations of the random XY model Eq. (2).
We restrict our treatment to the weak probing limit (ΩP≪ΩS) and
only consider the single-excitation subspace spanned by states ij i ¼
S1; S2; ¼Pi ¼ SnSnþ1

�� �
with the Pj i-excitation sitting on position

i. For a set of parameter combinations of the number of seed
excitations n and the blockade radius rB we numerically diagonalize
the Hamiltonian Eq. (2) in this subspace for 105 realizations and
obtain the eigenstates jξji and eigenenergies Ej. For a single reali-
zation n Sj i-seeds obeying blockade conditions and an additional
randomly positioned particle representing the Pj i-excitation are
drawn from the BEC density distribution. Also accounting for
Poissonian fluctuations in the number of seeds and the appearance

Fig. 2 Spectroscopy of dipole–dipole coupled many-body Rydberg systems. a, b illustrate the pump–probe excitation scheme with delay τ in the non-
interacting (a) and interacting case (b). The first pulse (red) creates seed excitations in the j51S1=2i-state. The second pulse (purple) excites atoms to the
j51P3=2i-state. c–f Spectra for the excitation of the j51P3=2i-state after the creation of different numbers of initial seeds in the j51S1=2i-state with two-photon
Rabi frequencies ΩS (c) 2π × 18 kHz, (d) 2π × 37 kHz, (e) 2π × 74 kHz, (f) 2π × 111 kHz. The interacting (τ= 1 μs, blue) and non-interacting (τ= 300 μs,
green) spectra in (c–f) are obtained by integrating the blue and green shaded area of the time-resolved signals in (a) and (b) for each detuning ΔP,
respectively. The shaded areas in (c–f) denote the standard error of the mean. In the interacting case (b), the signal from the probe pulse (blue shaded
area) is isolated by subtracting the pump signal (gray shaded area) from the non-interacting case (a) (see Supplementary Note 3 for details). The results of
the numerical model are shown as orange lines. We extract average coherently coupled seed excitation numbers �n of (c) 0.6, (d) 2.4, (e) 5.0, and (f) 5.7.
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of Rydberg molecules in the absence of seeds, we obtain simulated
spectra �χ�n;rB ðΔPÞ for an average seed number �n and blockade radius
rB which are fitted to the measured spectra (see Methods).

The resulting fitted line shapes are shown in Fig. 2c–f. A
remarkable quantitative agreement between calculated and
measured spectra is achieved. Both effects, the suppression on
resonance and the strong enhancement at large detunings, are
recovered. The model also correctly predicts the small but
noticeable asymmetry towards negative detunings. It can, there-
fore, not be attributed to the creation of molecules, as they are not
included in the model (except to describe the influence of
measurements without seeds in the weak pumping limit).

The asymmetry is also remarkable as the binary interaction of a
single Sj i- with a single Pj i-excitation creates a strictly symmetric
spectrum. However, beyond this binary regime, which has been
studied previously30–32, the eigenspectrum itself gives rise to an
asymmetry due to correlations in the hopping matrix elements19.
This effect even prevails in the absence of the C3 angular
dependence and the weak C6 interaction.

As expected, the fitted number of coherently coupled seeds �n
increases with the Rabi frequency of the pump pulse, up to
�n ¼ 5:7. For the largest coupling, we, therefore, probe the
simultaneous coherent interaction of one "

�� �
- with six #

�� �
-spins.

Comparing �n with an independent estimate based on the absolute
number of detected ions agrees for small Rabi frequencies. For the
highest prepared seed densities, however, we see deviations that
might originate from fast redistribution processes like l-changing
collisions into states not interacting with the probe excitation.
Additionally, with increasing pump power the seed density
saturates in the center of the cloud due to the Rydberg blockade,
and an increasing fraction of seeds is created in the thermal wings
where they are too far apart to become part of a coherent state.
Compared with a model that does not include the C6 term in Eq.
(2), we see that the van der Waals interaction only provides
minor corrections to the spectral shape.

We also repeated the measurement using a different fine
structure state "0�� � ¼ j51P1=2;mJ ¼ 1=2i (see Supplementary
Note 5). We find the same level of quantitative agreement,
suggesting that the microscopic details of the atomic-level
structure play a minor role and our system is adequately
described by the effective two-level spin Hamiltonian Eq. (2).
Throughout all measurements, we consistently obtain a blockade
radius of rB= 3.4 μm which fits well to the expected value.

Localization–delocalization crossover. The question of locali-
zation in dipole–dipole interacting systems is subtle. For power-
law hopping models in cubic lattices with random on-site energy,
a critical dimension analysis reveals a hopping-induced break-
down of localization in 3D15. Recent studies show, however, that
the addition of hopping disorder can restore localization19,21. In
fact, the eigenstates are expected to show a crossover from a
regime with predominantly delocalized states to pair-localized
states19, depending on the energy of the state.

Having verified the validity of our effective spin model, we can
address these questions for our system by looking at the structure
of the eigenstates and their eigenenergies. We illustrate this
procedure with two descriptive configurations that can occur.
Since the position of the "

�� �
-atom is randomly chosen without

any distance constraints, it can possibly be very close to one of the
seeds (but not to more than one, due to the blockade between the
seeds), as sketched in Fig. 1b. In this limit, two eigenstates ξ ±

�� � �
1=

ffiffiffi
2

p ð ij i± j
�� �Þ exist at high positive and negative energy ± Ji,j/2,

where the "
�� �

-spin is localized on the closely separated pair {i, j}.
In the other limit, all the distances between the spins are similar

and the couplings between them are smaller. Moreover, as they
are also comparable in size, interference of different paths
becomes possible. As a consequence, a set of low-energy, highly
delocalized states (Fig. 1c) emerges. Since the localized states exist
predominantly at high energies and the delocalized states at low
energies, the random hopping model is predicted to show a
localization–delocalization crossover18,19,21,33. In these studies,
indications for the existence of such a crossover have been found,
based on level statistics19, or on the eigenstate properties21.
However, an experimentally accessible criterion to identify the
emergence of a localization–delocalization crossover was missing.

To develop a measure for the degree of localization of the
eigenstates jξji we inspect their coherence

CðjξjiÞ ¼ ∑
i
∑
k≠i

ðcjiÞ
�
cjk

��� ��� ð3Þ

for each eigenstate jξji ¼ ∑cji ij i. Intuitively, the coherence
roughly gives the number of atoms coherently sharing the
"
�� �

-excitation34. Its minimal value C= 1 correponds to a dimer
state while the value C= n is reached for a maximally delocalized
state with equal probability to find the "

�� �
-spin on any of the

sites. In the following, we define an eigenstate with a coherence
below a threshold C < Cthresh= 2 to be localized in Hilbert space.
We checked that in our system, for system sizes n≿ 3, localized
states in Hilbert space also fulfill the notion of localization in real
space. As we are also investigating smaller systems, which trivially
fulfill C < 2, we extend the criterion for localization by a
maximum allowed spatial extent given by the blockade radius
(see Supplementary Note 6 and Supplementary Note 7).

To identify a localization–delocalization crossover, we now
calculate the conditional probability PL(ΔP, n) to find a localized
state at a given excitation energy E for various numbers of seed
excitations n. These probabilities PL(ΔP, n) for seed numbers up
to n= 12 are depicted in Fig. 3a, b for the model Eq. (2) without
and with the weak C6 interaction, respectively. As expected, the
phase diagram clearly shows a crossover from delocalized to
localized eigenstates when increasing the detuning. For a larger
number of seeds n, the crossover shifts to higher energies. This
can be understood by decreasing the average distances between
the seeds. While the addition of the C6 interaction introduces
only minor corrections to the spectral shape, the structure of the
eigenstates changes substantially (Fig. 3b). Compared to the pure
XY model, the transition is shifted towards blue detuning due to
the repulsive nature of the C6 interaction. Additionally, the energy
range, where the states are predominantly delocalized, shrinks.
This originates from the weak probing limit, where the C6

interaction can be mapped to a random longitudinal field εi. The
spectral narrowing can therefore be interpreted as a manifestation
of Anderson localization. This effect is even more prominent for
the other fine structure state "0�� � ¼ j51P1=2;mJ ¼ 1=2i consid-
ered in this work because the weaker dipole–dipole interaction of
this state induces a larger relative strength of the random
longitudinal field (see Supplementary Note 5).

It is not possible to directly measure the coherence in our
system. To gain an experimentally accessible observable, we
investigate the spectral structure of the crossover. Previous studies
have shown that localized pair states manifest in an algebraic
decay in the tails of the spectral density f(∣ΔP∣→∞)∝ ∣ΔP∣−219,35.
Thus, for all the simulated eigenvalue spectra χn;rB ðΔPÞ we identify
the energy ΔCO where the scaling of the spectral density
approaches ∣ΔP∣−2 scaling (Fig. 3, dashed lines). Indeed, ΔCO

qualitatively follows the equiprobability lines of PL(ΔP, n),
rendering the change in scaling behavior an experimentally
accessible indicator for the crossover towards localized states. An
inspection of the experimental data (Fig. 4) shows the predicted

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27243-2

4 NATURE COMMUNICATIONS |         (2021) 12:6976 | https://doi.org/10.1038/s41467-021-27243-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


∣ΔP∣−2 scaling for large detunings. By comparison with the
localization results from the model, we identify this asymptotic
behavior with the crossover to the predominantly pair-localized
regime. In accordance with our simulations and previous
studies19, the energy where the crossover appears increases with
the number of seeds. Compared to the simulations, the crossover
happens already at smaller detunings. A possible reason could be,
that the microscopic details of the excitation process are not fully
captured by the classical rate model.

As a second indicator for localization, we study the lifetimes of
the observed Rydberg states. Since high energetic dimer states are
associated with small interparticle distances, they are subject to
strong acceleration and rapid motion. The giant interaction cross-
section of the moving Rydberg atoms with the surrounding dense
bath of ground state particles leads to efficient ionization36. Due
to the increasing fraction of pair-localized states, we thus expect
the lifetime of the Rydberg excitations to decrease for increasing
laser detuning. To this end, we analyze the lifetime τRbþ of the
Rb+ ion signal after the probe pulse. Figure 5 shows that τRbþ
decreases with increasing laser detuning, signaling the rising
contribution of localized states. For a higher number of seeds the
delocalized states dominate over an increasingly large energy
range. Thus, the extracted lifetimes drop slower with energy as
the pumping strength is increased. Both experimental findings,
the asymptotic ∣ΔP∣−2-scaling of the spectra as well as the reduced
lifetime of the Rydberg excitations, suggest that the system
exhibits a localization–delocalization crossover.

Interacting Rydberg gases are an almost perfect model system
to study the interplay between long-range interactions, random
hopping and localization. Future extensions of our studies are
straightforward: the relative strength of the hopping term and the
onsite energy can be tuned by a proper choice of the involved
Rydberg states. The recent advent of tweezer arrays provides ideal
conditions to look in detail at the emerging spatial structure of the
localized states. Their perfect control over each and every single
atom even in 3D37 allows the reproducible creation of tailored
disordered patterns. The inclusion of local excitation and readout
processes would open up additional ways of probing the
microscopic physics of transport dynamics in the context of
open quantum systems. Eventually, strong correlations are
realized in the strong probing limit, where a comparable number
of both spin states is present in the sample.

Methods
Experimental procedure. Starting from a 3D magneto-optical trap, we prepare a
Bose–Einstein condensate of ≈90 × 103 87Rb atoms with a peak density of
3 × 1014 cm−3, spin polarized in the j5S1=2; F ¼ 2;mF ¼ 2i ground state, by per-
forming forced evaporative cooling in a crossed YAG dipole trap with final trap-
ping frequencies ωr ≈ 2π × 160 Hz and ωa ≈ 2π × 90 Hz in radial and axial direction,
respectively. The j51S1=2;mJ ¼ 1=2i seed excitations are created with a two photon
transition using a combination of continuous-wave lasers at 420 and 1015 nm both
driving a π-transition. Due to a large blue detuning Δint= 160MHz to the inter-
mediate j6P3=2i state, it can be adiabatically eliminated, allowing to describe the
excitation with an effective Rabi frequency ΩS. The power of the infrared coupling
laser is kept constant at 450 mW with a 1/e2 diameter of 150 μm, the power of the
weak blue beam (1/e2 diameter of 1.7 mm) is varied to set effective Rabi frequencies
ΩS between 2π × 18 and 2π × 111 kHz. The coupling of the ground state with the
j51P3=2;mJ ¼ 1=2i state is generated by a frequency-doubled continuous-wave dye
laser at 297 nm with a 1/e2 diameter of 100 μm driving a π-transition. The Rabi

Fig. 3 Localization–delocalization crossover. We plot the probability PL(ΔP, n) to find a localized state for (a) a pure random XY model and (b) with
additional C6 interaction between the seeds as realized in the experiment. The regime of predominantly delocalized states spreads for an increasing
number of seeds n, shifting the localization--delocalization crossover to larger energies. The estimated energies ΔCO where the corresponding calculated
spectra show a transition towards algebraic ∣ΔP∣−2 scaling are denoted by blue dashed lines. For a more detailed explanation of how ΔCO is determined
from the individual calculated spectra, see Methods for a mathematical derivation and Supplementary Fig. 6 for a graphical representation.

Fig. 4 Scaling behavior of the interacting spectra. The measured spectral
density (dots) approaches the expected ∣ΔP∣−2 scaling (dotted lines) for
large detuning. This scaling indicates the occurrence of predominantly
localized states. The arrows indicate the detuning where the transition
toward ∣ΔP∣−2 scaling sets in. This corresponds to the dashed lines in Fig. 3.
For increasing Rabi frequency ΩS and thus increasing seed atom number
the onset of the localization--delocalization crossover shifts to larger
detunings. Horizontal error bars reflect energy bin sizes for the evaluation.
Vertical error bars denote the standard error of the mean of the ion signal
strength.
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frequency is fixed to ΩP ≈ 2π × 4.5 kHz. The quantization axis is set along the
vertical axis, i.e., along a radial direction of the optical dipole trap. Both pump Sj i-
and probe Pj i-excitation pulses have a duration of 1 μs. The probe pulse either
occurs at a delay τ= 1 μs or τ= 300 μs after the pump pulse, corresponding to the
interacting and non-interacting case, respectively. After τ= 1 μs, only 6% of the
seeds are decayed and only a fraction of those into ions. The presence of ions
during the probe pulse can thus be neglected. Using a small electric field
(E ≈ 50 mV cm−1) we continuously guide the few ions created through intrinsic
ionization processes of the Rydberg atoms36 to a discrete dynode detector. This
allows us to record a time-resolved ion signal proportional to the Rydberg
population38. Every 600 μs we repeat the pulse sequence for 1000 repetitions in
total before a new sample is prepared. We evaluate only the first repetitions until
the density of ground-state atoms drops to ≈2/3 of its initial value.

Simulations. For the numerical spin model simulation, we initialize an ensemble
with random particle positions obeying a Thomas-Fermi distribution (N= 90 × 103

and Thomas–Fermi radii rTF= (4.6, 8.2, 4.6) μm). While due to the complex
ionization channels, the exact number of created "

�� �
-excitations is hard to

determine precisely, we estimate it to be on the order of one. Thus, we restrict our
treatment to the weak probing regime (ΩP≪ΩS) and only consider the single-
excitation subspace spanned by the states ij i ¼ S1; S2; ¼Pi ¼ SnSnþ1

�� �
where the

single Pj i-excitation resides on position i. This subspace is simulated by choosing n
particles from the ensemble under blockade condition (representing the seed
Sj i-excitations) and an additional, randomly positioned particle (representing the
Pj i-excitation). For a set of combinations of the two free parameters, i.e., the
number of seed excitations n and the blockade radius rB, the eigenvectors jξji and
eigenvalues Ej of the Hamiltonian Eq. (2) in the considered subspace are numeri-
cally determined for 105 random realizations. While the dipole–dipole interaction
C3 ¼ d2=ð4πϵ0Þ 1� 3cos2ðθÞ� �

is calculated from the dipole matrix element d, the
van der Waals interaction coefficient (C6) is obtained by fitting to pair-state
potentials from an exact diagonalization of the many-level system39. Obviously, in
the single-excitation subspace, the van der Waals interaction between Pj i-states in
Eq. (2) vanishes, i.e., C6 ¼ 0.

Since the Rabi coupling ΩP is much smaller than the interaction energy of the
probed states, we directly couple to the eigenstates of the system. Starting from an
initial state Gj i ¼ SS::Sg

�� �
where the n+ 1st atom is still in the ground state, the

dipole coupling to the eigenstate jξji is given by

Gjd̂jξj
D E

¼ ∑
nþ1

i¼1
Gjd̂nþ1ji

D E
ijξj

D E

¼ Gjd̂nþ1jnþ 1
D E

nþ 1jξj
D E

¼ dgP nþ 1jξj
D E

;

ð4Þ

where we inserted unity in the one-excitation subspace and dgP is the single-particle
dipole matrix element for coupling a 5S ground state atom to the Rydberg P-state.

Thus, the resulting eigenvalue spectrum of the Hamiltonian is projected onto
nþ 1j i to obtain the normalized simulated spectra χn;rB ðνÞ ¼ ∑Ej�hν jhnþ 1jξjij2
for fixed parameters n and rB. Finally, the statistical nature of the seed excitation
process provides a Poisson distributed number of seeds n across multiple
realizations pðnÞ ¼ �nne��n=n!, with the average seed excitation number �n. This is
taken into account in the simulation by taking the Poisson weighted sum of the
calculated spectra �χ�n;rB ðνÞ ¼ ∑1

i¼0 pðiÞχi;rB ðνÞ. The summation is truncated at i= 18
in our simulations. The simulated spectra �χ�n;rB ðνÞ are fitted to the measured spectra
by varying the average number of seed excitations �n, the blockade radius rB and the
amplitude A, using a least-squares method. The p(0) contribution of the Poisson
distribution takes an exceptional role here because in absence of seed excitations
Rydberg molecules have a strong influence on the spectral shape. Thus, χ0;rB ðνÞ is
modeled with the experimentally obtained non-interacting spectrum instead of a
Lorentzian line shape.

Localization–delocalization crossover. To identify indications of a
localization–delocalization crossover based on eigenstate properties we first cal-
culate the coherence Eq. (3) for each eigenvector jξjil ¼ ∑nlþ1

i¼1 cji ij il obtained
according to the previous section. The index l= {n, rB} denotes combinations of the
two free parameters, a number of seed excitations n and blockade radius rB. For
each parameter set, the eigenstates are binned by eigenenergy and for each bin the
conditional probability PL(ΔP, n) to find a localized dimer state under the condition
that excitation at this particular energy E occurs is calculated. Note that this is
different from the probability to find a localized eigenstate since the probability to
couple to the state via the (n+ 1)st atom is taken into account. Localized states are
defined as states with a coherence C < Cthresh= 2. As this condition is fulfilled
trivially for systems with maximally 3 particles, we extend the notion of localization
to the spatial extent of the states

SðjξjilÞ ¼ 2 ∑
nlþ1

i¼1
jcjij2jxi � μξ j j

2

	 
1=2

ð5Þ

around the centroid μξ j ¼ ∑nlþ1
i¼1 jcjij2xi, with the random spatial site distribution xi.

We define a localized pair state to be confined both in Hilbert space (C < 2) and in
real space (S < rB).

Expressing the localization condition with Heaviside functions LðjξjiÞ ¼ Θð2�
CðjξjiÞÞΘ ðrB � SðjξjiÞÞ the conditional probability PL(ΔP, n) is equivalent to the
expected value of LðjξjiÞ within the corresponding energy bin

PLðΔP; nÞ ¼ Pðjξjilocalized j jξjiexcited \ Ej � hΔPÞ

¼ hLðjξjiÞiEj�hΔP
¼ ∑

Ej�hΔP

LðjξjiÞ
jcjnþ1j2
χn;rB ðΔPÞ

:
ð6Þ

Indications for a localization–delocalization crossover based on the
eigenenergies are extracted from the scaling of the spectral density. We estimate the
energies ΔCO where the crossover of the spectral density χn;rB ðΔPÞ to ∣ΔP∣−2 scaling
occurs by assuming an algebraic scaling χn;rB / Δ�α

P with a slowly varying energy
dependent exponent α(ΔP). The scaling exponent is extracted by numerical
differentiation

∂~χn;rB
∂ΔP

ΔP

~χn;rB
� �αðΔPÞ; ð7Þ

where ~χn;rB denotes an approximated spline of degree 5 that is used instead of the
data to ensure numerical stability. To facilitate the convergence of the polynomial
approximation, we shift the negative scaling exponents by multiplying the spectral
density with Δ2

P and fit the spline to ϵðΔPÞ ¼ χn;rBΔ
2
P. We checked that for all

simulated spectra ϵ(∣ΔP∣) is monotonically increasing and asymptotically
approaches a constant value. Thus, the spectral decay is slower than ∝∣ΔP∣−2 for all
ΔP, warranting the above assumptions. The crossover energies ΔCO are estimated
by a threshold scaling exponent of α(ΔCO)= 1.7.

Data availability
The raw data from our experiments is available under https://doi.org/10.26204/data/4.

Code availability
The code that supports the numerical findings of this study is available from the
corresponding author upon request.
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