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Ecological processes occur over multiple spatial, temporal and thematic scales
in three-dimensional (3D) ecosystems. Characterizing and monitoring change
in 3D structure atmultiple scales is challengingwithin the practical constraints
of conventional ecological tools. Remote sensing from satellites and crewed
aircraft has revolutionized broad-scale spatial ecology, but fine-scale patterns
and processes operating at sub-metre resolution have remained understudied
over continuous extents. We introduce two high-resolution remote sensing
tools for rapid and accurate 3Dmapping in ecology—terrestrial laser scanning
and structure-from-motion photogrammetry. These technologies are likely to
become standard sampling tools for mapping and monitoring 3D ecosystem
structure across currently under-sampled scales. We present practical gui-
dance in the use of the tools and address barriers to widespread adoption,
including testing the accuracy of structure-from-motion models for ecologists.
We aim to highlight a new era in spatial ecology that uses high-resolution
remote sensing to interrogate 3D digital ecosystems.
1. Introduction
Understanding how ecosystems vary in space and time underpins land- and
seascape management, but to be effective, accurate and comprehensive infor-
mation must be captured across multiple scales. Our knowledge of ecosystems
represents decades of observations by ecologists using field equipment like
quadrats, to capture biological information, and theodolites or satellite position-
ing systems (e.g. GPS) to record habitat topography. Direct observation field
techniques capture detailed habitat information but are labour and resource
intensive, resulting in trade-offs between three types of scale: spatial, temporal
and thematic, and their components of resolution and extent [1,2]. For example,
an abundance survey of all macro-organisms to species level (high thematic
resolution and extent) with sampling at 1 m intervals (high spatial resolution)
cannot feasibly cover an extent of 1 km2 (limited spatial extent) or if it does,
would take a very long time (limited temporal resolution). The impracticality
of conventional methods for spatially or temporally continuous sampling has
led to an average difference of 5.6 orders of magnitude between the extent
represented and extent actually sampled in ecological studies, necessitating
interpolation or extrapolation with the risk of over-using data [3].

Disruptive remote sensing technologies to rapidly record detailed, spatially
referenced biological and physical information are now accessible to the field
ecologist. These techniques overcome some of the logistical challenges and
trade-offs of direct observation field sampling and extend the scales of
remote sensing capability. This review considers tools able to capture three-
dimensional (3D) ecosystem data at finer scales than can be achieved with
more familiar remote sensing from satellites or crewed aircraft. We present an
introduction to two of the most powerful and accessible high-resolution 3D
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mapping techniques, which hold enormous potential for the
rapid collection of ecologically relevant, spatially continuous
data at multiple scales: terrestrial laser scanning and struc-
ture-from-motion photogrammetry (figure 1). Uptake of
these new technologies varies widely across disciplines and
user groups, and there is a strong case for their increased
adoption in ecology. Our primary audiences are ecologists,
environmental managers and other interested parties who
have limited or no experience with these high-resolution
remote sensing tools. We direct more experienced users to
our analysis of the accuracy of structure-from-motion
photogrammetry models at scales and contexts relevant to
ecological studies, addressing a key barrier to uptake. Our
aim is to shed light on powerful and increasingly user-
friendly tools, encourage innovative and novel analytical
approaches, and highlight the new era of 3D digital
spatial ecology.
Figure 1. An overview of high-resolution three-dimensional (3D) ecosystem
mapping tools, data formats and scales. Tools include terrestrial laser scan-
ning and structure-from-motion photogrammetry. Point cloud data can be
processed into mesh formats by interpolating between points, and raster
formats to produce digital elevation models by averaging point elevations
in a regular two-dimensional grid. 3D information can be analysed at mul-
tiple spatial scales from organism to ecosystem. These tools enable
investigation at spatial scales (resolution and extent) that are understudied
in ecology. Plot shading (adapted from [3]) indicates number of ecological
studies at specific scales, dashed areas represent the approximate sampling
scales for terrestrial laser scanning and structure-from-motion (using
drone-mounted and handheld cameras). (Online version in colour.)
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2. Remote sensing in ecology
Remote sensing from satellite and crewed aircraft has revolu-
tionized spatial ecology with diverse applications that
continue to grow as technology advances in capability, acces-
sibility and familiarity. Passive earth observation from
satellites has enabled global-scale mapping and monitoring
of land cover, ecosystem function and climatic variables [4],
and now offers metre-resolution daily imagery of anywhere
on the globe, presenting new opportunities for ecology, con-
servation and management [5]. Active spaceborne sensors
have facilitated the study of broad-scale (kilometre to
global) ecosystem structure [6], enabling the estimation of
global ocean bathymetry [7] and continuous global topogra-
phy [8]. The ICESat-2 laser altimetry mission will have
ecosystem characterization applications through mapping
heights of ice, vegetation canopy and freshwater bodies [9],
as well as the unanticipated potential for near-shore
bathymetric mapping [10].

Remote sensing from crewed aircraft provides similar
data products to satellite sources at higher resolution over
smaller extents. Airborne laser scanning has become a
widely used tool for characterizing 3D habitat structural com-
plexity and exploring organism–habitat relationships [11,12].
Bespoke or repeat airborne laser scanning surveys are uncom-
mon in academic research owing to high operating costs of
crewed aircraft, and compatibility issues pose challenges for
the analysis of existing available data [13].

Satellite and crewed aircraft remote sensing is irreplace-
able for continuous mapping at up to global extents.
However, the technique becomes logistically inappropriate
when detailed information is required across smaller spatial
extents (metres to hectares) or shorter time periods (hours
to weeks) owing to limits of data resolution, accuracy or
cost. For 3D mapping at these scales, recent technological
advances have led to the emergence of high-resolution
(millimetre to centimetre), rapidly deployable remote sensing
tools that include terrestrial laser scanning and structure-
from-motion photogrammetry (figure 1) [14–16]. Advancement
in sampling technology drives an ever-expanding range of
questions we can ask about the natural world, and the ability
to accurately map ecosystems in three or more dimensions is
changing the way we study their ecology and management
[11,13,17].
3. High-resolution remote sensing tools for
spatial ecology

Terrestrial laser scanning and structure-from-motion photo-
grammetry both generate accurate, high-resolution digital
3D models of the environment in the form of a point cloud
(figure 1). A point cloud is simply a collection of individual
points with X, Y and Z coordinates describing their 3D pos-
ition. Additional attributes can be added to each point to
provide information such as colour or other local statistic.
From point clouds, other topographical data products like
mesh models and rasters can be generated for additional
analyses (figure 1). Although their outputs appear similar,
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Figure 2. Major steps for capturing data with terrestrial laser scanning and structure-from-motion using handheld and drone-mounted cameras. (a) Identify features
of interest and estimate scanning positions or camera angles. (b) Set out reference targets for terrestrial laser scanning, or ground control points, check points and
scaling objects for structure-from-motion. For laser scanning, targets are used to align data from different stations, although scene geometry can sometimes be used
for alignment instead of, or in addition to targets. For structure-from-motion, reference points are used for aligning images and constraining the modelling process,
and for accuracy assessment and scaling. (c) Terrestrial laser scanning collects data from a number of discrete stations, to be combined during processing. For
structure-from-motion, many overlapping photographs are taken, from which a 3D model is generated during processing. (d ) Georeferencing, typically using a
commercial-grade global navigation satellite system, is required to position the resulting 3D models in real-world space, and for scaling in large structure-
from-motion models. (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

287:20192383

3

terrestrial laser scanning and structure-from-motion photo-
grammetry generate point clouds in different ways, resulting
in differences in the point cloud characteristics. For an over-
view of data collection steps using these two techniques
see figure 2.
(a) Terrestrial laser scanning
Using the sameprinciples as airborne laser scanning, terrestrial
laser scanning is a high-precision ground-based survey
technique used extensively in civil engineering. It is an active
remote sensing approach that builds an accurate model of
the surroundings by emitting millions of laser pulses in differ-
ent directions and analysing the reflected signals [18]. Data
collected using calibrated laser scanning equipment have
intrinsic precision and real-word scale.

Terrestrial laser scanning is conducted from a set of discrete
stations using a tripod-mounted instrument, collecting data
radially from a low elevation (generally less than 2 m). This
results in a reduction in both point density and angle of
incidence to the groundwith increasing distance from the scan-
ner, and sectors of missing data behind obstructions like trees.
Regions with low point density are filled bymerging data from
multiple scanning stations (figure 2), introducing a low level of
quantifiable error. Data extent, resolution and coverage must
be balancedwith the survey time needed, especially in complex
ecosystems like forests where many stations are required for
comprehensive coverage of a large extent. Terrestrial laser
scanning typically penetrates through fine-scale features like
vegetation to record points on internal surfaces (e.g. branches)
and the ground, as the independent laser pulses can travel
through small gaps. Compared to crewed airborne systems, ter-
restrial laser scanning offers higher resolution, more accurate
data from a near-ground perspective, with lower operating
costs and responsive deployment capability, but across a
more limited survey extent.

Falling costs and improved portability have increased the
accessibility of terrestrial laser scanning to a wide variety of
users [15,18]. Custom-built versions have lowered costs even
further [19], although the equipment and software required
is still expensive compared to structure-from-motion photo-
grammetry, and may be prohibitively so for some users.
Early adoption of terrestrial laser scanning for natural sciences
was concentrated in the fields of geography and geoscience
[18,20]. More recently it has seen application in ecology [13],
particularly in forest ecology where the below-canopy per-
spective complements airborne data collection. Applications
include quantifying biomass, growth and 3D structure
of forest vegetation [15,21–24], non-destructive estimation of
above-ground grass and mangrove biomass [25,26], assessing
vegetation water content [27], studying cave-dwelling bat
and bird colonies [28,29], mapping freshwater habitats [30]
and exploring the relationships between organisms and
fine-scale topography [31,32].
(b) Structure-from-motion photogrammetry
Structure-from-motion photogrammetry is a low-costmachine
vision technique that enables the reconstruction of a detailed
3D model from a set of overlapping two-dimensional (2D)
digital photographs [33]. The camera may be handheld or
pole-mounted for small scenes, while drone-mounted cameras
are commonly used to capture larger extents [34]. Commercial
adoption of structure-from-motion is increasing as a low-cost,
flexible survey tool, but questions remain over best practices
for producing repeatable and high-quality outputs.

With structure-from-motion photogrammetry, the geome-
try of a scene is reconstructed from the relative positions of
thousands of common features detected in multiple photo-
graphs taken from different vantages. Structure-from-motion
is a passive remote sensing technique because photographs
capture reflected light from an external source like the sun.
While a basic model can be generated entirely automatically,
manual input into the processing stage is required for accurate
outputs. Structure-from-motion models have no inherent
real-world scale, so known coordinates or distances must be
incorporated to generate scale. There is greater opportunity
for error introduction with structure-from-motion compared
to terrestrial laser scanning, and uncertainty in data outputs
varies widely and unpredictably within [35] and among
studies [36]. For example, error can be introduced through
camera lens distortion, poorly focused images, movement of
features in the scene and imprecision in manual processing
stages. Care must be taken to minimize the propagation
of error through the model construction pipeline [36].
Structure-from-motion generates more homogenous and
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comprehensive data coverage compared to terrestrial laser
scanning in less time, because the camera is moved around
the scene, often using an aerial platform. However, multiple
images of a point on a feature are needed to calculate a pos-
ition, so internal surfaces of complex features (e.g. branches
of a dense bush or coral), shaded surfaces andmoving features
(e.g. blades of grass in the wind) are less likely to be captured
or positioned accurately. Structure-from-motion tends to
return a generalized outer surface of such features, lacking
finer details.

The algorithms used for structure-from-motion are
computationally demanding but falling costs of computer
processing power and affordable, user-friendly software are
making this technique increasingly accessible (see [36] for
popular software options). As with terrestrial laser scanning,
structure-from-motion saw early adoption in geography and
geoscience [33]. Ecological applications include modelling
forest and vegetation structure and biomass [25,34,37,38],
and quantifying fine-scale habitat topography and structure
[14,39–41]. Recently, there has been particular interest in
underwater structure-from-motion for measuring and
mapping 3D habitat complexity in coral reef systems [42–44].

(c) Georeferencing
Georeferencing is required to position 3D data generated
using terrestrial laser scanning and structure-from-motion in
real-world space. Positions of equipment (e.g. laser scanner,
drone) or identifiable features (e.g. targets) are typically
recorded using a survey-grade global navigation satellite
system with an accuracy of 1–3 cm. This stage can represent
one of the largest sources of error in the 3D modelling proces-
sing pipeline. The influence of georeferencing error on
terrestrial laser scanning and small-extent structure-from-
motion data (e.g. less than 100 m2) can be minimized by
incorporating it at a late stage in processing, and with low
weighting. However, with large scenes modelled with
structure-from-motion using drones, georeferencing using
well-distributed ground control points must be incorporated
into the process at an earlier stage to provide scale, and
prevent warping of geometry [45]. With sub-centimetre-
resolution 3D data, georeferencing error can be a limiting
factor for the detection of fine-scale change in topography
through time [32], and for estimating the accuracy of survey
techniques [46], demanding positioning technology with
sub-centimetre accuracy (e.g. Total Station).
4. Accuracy of structure-from-motion models in
ecological settings

Structure-from-motion photogrammetry can achieve impress-
ive accuracy, but the flexibility of the technique makes it
vulnerable to the introduction of error that is method and con-
text specific. Most assessments of accuracy in natural settings
have been in the field of geoscience, with measurement error
varying from less than 1 mm to over 3 m and somewhat
dependent on the distance between camera and surface [36].
The spatial scales of ecological patterns often include the
very fine (less than 10 cm), so an estimate of the realistic
achievable accuracy of structure-from-motion photogram-
metry is crucial to assess its usefulness to ecologists and
environmental managers.
We compared structure-from-motion and terrestrial laser
scanning models within three habitats (rocky shore, honey-
comb worm (Sabellaria alveolata) biogenic reef and saltmarsh)
and at three ecologically relevant scales (fine-scale: 25 m2

with less than 1 cm resolution, medium-scale: 2500 m2 with
less than 2 cm resolution and broad-scale: 2500 m2 with 5 cm
resolution). Fine-scale photographs were collected using a
pole-mounted camera (Canon EOS M, 22 mm lens), while
medium- and broad-scale photographs were collected using
a drone (DJI Phantom 3 Pro) flying at 25 m and 90 m altitude,
respectively. Terrestrial laser scanning data were used as
‘truth’ because it is a commercially recognized technique
with known precision (6 mm at 50 m range), and the most
accurate 3D mapping technique we were aware of. Structure-
from-motion and terrestrial laser scanning surveys were
conducted simultaneously using shared reference targets, to
avoid the introduction of georeferencing error. Survey and
data processing protocols were designed to achieve maximum
accuracy. Models were compared as point clouds using the
M3C2 algorithm implemented in the open-source software
CLOUDCOMPARE, designed for comparison of 3D point clouds
from natural scenes containing surface complexity at multiple
scales [47,48]. A comparison of point cloud data avoided the
introduction of error by the more common approach of inter-
polating and averaging data to a raster format digital elevation
model [46]. For detailed methods see the electronic
supplementary material, S1.

We found mean absolute distance (±1 s.d.) between struc-
ture-from-motion and terrestrial laser scanner data ranged
from 4 ± 14 mm (fine-scale, rocky shore) to 56 ± 111 mm
(medium-scale, saltmarsh) (figure 3). In all cases, distances
between the point clouds clustered close to zero, indicating
good average agreement, with positive and negative errors
compensating each other. The spread of measured distances
varied, with fine-scale and stable substrate scenes showing
the least variation, while broad-scale and vegetated scenes
showed the most (figure 3). Visual inspection of model differ-
ence maps and cross-sections revealed that on average
structure-from-motion models were accurate, but as resol-
ution decreased, sharp features became smoothed, with
cuboid reference objects being represented as mounds (elec-
tronic supplementary material, figure S2). Similar results
are reported in other studies, with high agreement between
structure-from-motion and terrestrial laser scanning at fine-
scales of up to 1 m2 [25,49] and centimetre-level accuracy at
broad scales (hectares) [46,50].
5. A case for increased adoption of three-
dimensional mapping techniques in ecology

Terrestrial laser scanning and structure-from-motion photo-
grammetry offer rapid, detailed, continuous extent 3D
mapping of ecosystems. Relieving scale-dependence of
sampling and easing trade-offs in scale presents opportu-
nities to ask new questions of the natural world and revisit
classical paradigms at new scales. The potential applications
for high-resolution 3D mapping techniques are vast, and like
satellite remote sensing and airborne laser scanning, much of
their value will probably only emerge once techniques are
firmly established as standard ecological tools. Unique
insights are already being generated, particularly in forest
and coral reef ecosystems [51], whereas adoption has been
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Figure 3. Accuracy of a structure-from-motion point cloud quantified as the point-by-point distance to a reference terrestrial laser scanning point cloud in three
habitats (rocky shore, biogenic reef and saltmarsh) and at three scales (fine: 25 m2 with less than 1 cm resolution, medium: 2500 m2 with less than 2 cm resolution
and broad: 2500 m2 with 5 cm resolution). Distances were measured at 100 000 points and plotted as density curves, with the area under each curve being equal.
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royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

287:20192383

5

slower in other systems such as intertidal habitats. Multiscale
topography plays a critical structuring role in the intertidal
zone by controlling environmental conditions and field
time is constrained by tidal cycles, making rapid 3D mapping
tools valuable to intertidal field ecologists. In this section, we
identify and discuss several themes of study in which
emerging techniques have either already found innovative
and transformative applications or are likely to have high
impact in the near future (figure 4).

(a) Understanding relationships between organisms
and habitat structure

Analyses of organism–habitat relationships can be hampered
by our ability to quantitatively capture the environment. This
has resulted in a diversity of definitions, metrics and methods
employed to understand the mechanisms behind system-
independent phenomena like habitat complexity–biodiversity
relationships [52]. The analysis of digital representations of 3D
habitat structure to derive system- and scale-independent
metrics, like fractal dimension [53], or novel organism-centric
metrics [54], could lead to improved understanding by redu-
cing the need to simplify 3D habitat structure (e.g. to 2D
profiles) to facilitate analysis [42,43,52,55,56].

Spatial patterning and the patchiness of species across a
landscape can depend on topography at multiple scales. In
tidal flats and flood plains, elevation changes in the order
of centimetres can control species distributions, interactions
and ecosystem services [14]. Understanding fine-scale
relationships can improve species distribution and habitat
suitability modelling, a valuable management tool, and
lead to advances in organism-perspective landscape analysis.
Terrestrial laser scanning was used to estimate topographi-
cally controlled foraging habitat suitability for the black
oystercatcher (Haematopus bachmani) and model how it may
change under future sea-level rise [31]. Fine-scale topography
and 3D structure can control other variables that can be mod-
elled in finer scales than ever before, like microclimate [57],
soil pH [58] and hydrodynamic forces [59]. This can enable
the quantification of environmental variables as continuous
rather than categorical factors, which may lead to alternative
or improved interpretations of organism–environment
relationships [60,61].

(b) Measuring and monitoring small, slow and
complicated variation in three-dimensional form

Improved morphological descriptions of complex natural
shapes can be made with comprehensive 3D data, and vari-
ation in such shapes can be monitored through space and
time at an organism-relevant resolution. Using terrestrial
laser scanning, researchers found that oysters, an ecosystem
engineer, can grow reef structure at a faster rate than current
sea-level rise, with important management and conservation
implications [62]. The coral reef structure is difficult to quan-
tify and previous methods known to poorly capture detailed
topography, like the chain-and-tape method, can now be
replaced with more repeatable structure-from-motion surveys
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design with high-resolution 3D mapping across large extents. (2) Mapping fine-scale variation in topography across tidal flats and wetlands. (3) Automated species
identification and biometric measurement in forests. (4) Comparing topographic variation in natural and artificial hard coastal substrates. (5) Digital archiving of 3D
habitat structure in inaccessible ecosystems. (6) Monitoring variation in reef topography in space and time. (7) Modelling growth in complex 3D organisms like
mangrove trees. (8) Mapping 3D structure in habitats with canopy cover and overhangs. (Online version in colour.)
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with similar in-water effort [42,43]. Through accurate feature
modelling, terrestrial laser scanning can improve on
traditional allometric equation methods to estimate above-
ground biomass in trees (9.68% overestimation compared to
36.57–29.85% underestimation) [63]. The low cost of oper-
ation and rapid deployment capability of terrestrial laser
scanning and structure-from-motion make them suitable for
opportunistic pre- and post-event change detection [64] and
environmental impact assessment monitoring.
(c) Virtual sampling, digital archiving and addressing
problems of scale in ecology

With sampling now achievable at sub-centimetre resolutions,
ecosystems can be digitally captured to a degree that in some
instances exceeds the resolution possible using in situ human
observation. There are, however, still limitations of comple-
tely removing the human observer element. Macroalgal
canopy cover estimates on rocky shores are indistinguishable
between ‘virtual quadrats’ from drone-derived image
mosaics and in situ human observers using field quadrats,
but understory turfing algal species are under-sampled in
virtual quadrats [65]. A sampling of cryptic species and
multi-layered features will remain challenging to sample
using remote sensing. Despite some limitations, the potential
advantages of sub-centimetre digital mapping of ecosystems
are hugely exciting, including automated species detection
and identification using machine learning [66], entire extent
sampling that removes interpolation issues when scaling up
from replicate samples [3] and simultaneous biological
and environmental sampling [65] (figure 4). Capturing and
archiving detailed digital snapshots of ecosystems in a
rapidly changing world is likely to prove invaluable for the
future, currently unknowable analytical approaches.

Organisms interact with their environment at a range of
scales, but understanding scale-dependent patterns and pro-
cesses is a long-standing challenge in ecology [67,68].
Observation of organisms and their environment is often
conducted at spatial, temporal and thematic scales that are
human-centric and chosen arbitrarily or logistically, rather
than guided by the ecological processes being studied
[1,67,68]. Owing to the versatility of high-resolution remote
sensing methods like terrestrial laser scanning and struc-
ture-from-motion, studies can now be conducted at scales
that have previously been underexplored in ecology (figure 1)
[3]. One of the difficulties in the multiscale analysis is the time
and resource constraints of sampling the same extent at
different resolutions [1]. With the ability to rapidly sample
large extents at high-resolution, multiscale data can be
digitally generated by resampling. We have increasing
flexibility to move away from arbitrarily chosen sampling
scales and observe ecosystems at ecologically relevant and
mechanistic scales.

(d) Value to managers, policymakers and the public
In a rapidly changingworld, tools to efficiently record accurate,
detailed snapshots of the environment and monitor ecosystem
health are extremely valuable to environmental managers and



royalsocietypublishing.org/journal/rspb
Proc.R.Soc

7
policymakers. Policymakers require high-quality environ-
mental information to make evidence-based decisions aimed
at limiting environmental impact, conserving ecosystems and
maintaining ecosystem services, to the benefit of the public.
Often, availability of technology to environmental managers
is not limiting, but without practical information on how to
efficiently use tools, and analyse and interpret new data types
with confidence, there may be a lag in adoption of emerging
technologies in favour of more familiar methods, despite
their known limitations [69,70]. A benefit of high-resolution
3D mapping technologies for public-facing research groups
and environmental bodies is the easily interpreted visual
data products generated. Photo-realistic 3D models of ecosys-
tems aid explanation of ecological processes and issues,
improving public communication and education through
digitally annotated still images, animations or virtual
reality systems.
.B
287:20192383
6. Barriers to wider uptake in ecology
While some sub-disciplines of ecology are making headway
in using high-resolution remote sensing methods to answer
questions and test ecological paradigms across scales, in gen-
eral, the methods remain underused across the discipline. A
Web of Science search conducted in December 2019 found
that just 1.4% (59 out of 4348) of articles about terrestrial
laser scanning or structure-from-motion were categorized as
‘ecology’ compared to 23.7% (1031) categorized as ‘geos-
ciences multidisciplinary’. Further, 67.8% of these articles
were published in the last 3 years (2017–2019), highlighting
the emerging adoption of these techniques. Here, we identify
four perceived barriers to wider uptake in ecology.

Firstly, potential users may be unaware that such tech-
niques exist, so a major aim of this article is to introduce
ecologists and environmental managers to two of the most
common and powerful techniques in an accessible manner.
Second, potential users may be somewhat aware of the
techniques discussed, but perceive them to be specialized
tools and inaccessible owing to high expertize, cost or time
requirements. Technological advances in hardware and user-
friendly software mean non-specialists can now be using
these techniques in a basic form within a day with a small
amount of training or self-learning. Equipment, software and
training costs can still be significant, especially for terrestrial
laser scanning, with further costs incurred for maintenance
and insurance. However, the multidisciplinary applications
of the techniques mean many institutions will already have
access to suitable equipment and software, or can gain access
to shared resources. Structure-from-motion costs can be
comparable to many other field techniques, especially if
using a handheld camera and open-source software. Practical
field time requirements are context dependent. In coastal habi-
tats, we found that terrestrial laser scanning took 15–20 min
between stations for a typical medium resolution (10 cm
point spacing at 100 m range) survey. Structure-from-motion
time requirements ranged from approximately 20 min for a
25 m2 area surveyed using a pole-mounted camera, to 2 h for
a 10 ha area surveyed at 2 cm resolution using a multi-rotor
drone (45 m altitude). As a photographic technique, struc-
ture-from-motion is slowed or halted in low-light, while
terrestrial laser scanning can be conducted in darkness.
Processing of terrestrial laser scanning data is rapid (1–2 h)
and can even be conducted on a laptop in the field directly
after surveying. Processing a basic structure-from-motion
model can be achieved in a similar amount of time, but an
accurate, detailed model typically takes a day or more to pro-
cess depending on processing power and number of images.
For a comparison of practical considerations for terrestrial
laser scanning and structure-from-motion for geoscience
see [71].

A third possible barrier to uptake in ecology is that poten-
tial users are aware of 3D mapping tools and understand
how they are conducted but do not see value in their use,
or are resistant to exploring technology-based alternatives
to traditional field methods. Technology is unlikely to ever
completely replace a human ecologist in the field for direct
observation and interpretation, but can augment data collec-
tion and improve efficiency and quantification of specific
variables if used appropriately [72]. By separating tasks that
require human engagement from those that are more
efficiently performed using technology, field time can be
optimized [65]. These technologies allow us to test existing
ecological concepts at novel scales and inspire new questions
that could result in novel paradigms and understanding.

Finally, potential users may be aware of the techniques and
understand how they are conducted but are sceptical about
the accuracy of the outputs at their spatial scales of interest;
this is especially relevant for structure-from-motion photo-
grammetry. To address this, in this paper we have presented
results from an assessment specifically to test the realistic
accuracy and characteristics of structure-from-motion models
in contexts and at spatial scales relevant to ecologists and
environmental managers (figure 3). Our results demonstrate
that millimetre to centimetre scale variation in topography
can be measured in space and time using high-resolution 3D
mapping techniques in the field, making them valuable for
numerous ecological applications (figure 4).

The perceived barriers to the adoption of 3D mapping
techniques for ecological data collection are now low.
However, system-specific challenges remain in survey
design, data processing and interpretation. With terrestrial
laser scanning in complex environments, line-of-sight
obstructions and moving vegetation combined with the
spatial characteristics of the point cloud data generates chal-
lenges for interpretation and analysis [49,73,74]. While the
moving vantage aspect of structure-from-motion data capture
means more homogenous data coverage, repeatability of
coral reef rugosity measurements were impacted by high
habitat complexity, environmental conditions and variation
in methods [75]. The use of drone-mounted sensors for
field ecology comes with an additional suite of considerations
for training, permissions and constantly evolving regulations
that govern their safe and legal usage [76]. Data processing
still requires manual input at various stages, and automated
workflows can be computationally demanding, especially for
structure-from-motion. Various algorithms and software
packages are being developed for 3D point cloud processing,
including open-source projects like CLOUDCOMPARE [48]. After
the initial processing stages required to generate a 3D model,
further processing and analysis currently requires non-trivial
technical skill or novel approaches specific to the task. As
3D methods become more common in ecology, an increase
in demand and funding for user-friendly and powerful
processing techniques, including packages for open-source
platforms like Python and R, can be expected.



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

28

8
7. Conclusion
Technology is available and accessible to non-specialist
ecologists that enables the detailed mapping of habitats and
organisms accurately in 3D. These techniques unlock a
wealth of new spatial and temporal ecological questions
that were logistically impossible to ask only a few years
ago. As with any sampling method, the limitations should
be understood as uncertainty may not be readily detected,
and there is a need for standardization of protocols. The
power of these techniques mean they are rapidly becoming
standard and essential tools in various disciplines. By embra-
cing emerging technologies, modern ecologists can overcome
long-standing challenges in studying scale-dependent
organism–environment relationships. Digital ecosystem
analysis and multiscale 3D spatial ecology are continuing to
evolve, and high-resolution remote sensing techniques
are becoming instrumental as part of the modern spatial
ecologist’s tool kit.
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