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Abstract: The unconventional yeast Yarrowia lipolytica is extensively applied in bioproduction fields
owing to its excellent metabolite and protein production ability. Nonetheless, utilization of this
promising host is still restricted by the limited availability of precise and effective gene integration
tools. In this study, a novel and efficient genetic tool was developed for targeted, repeated, and mark-
erless gene integration based on Cre/lox site-specific recombination system. The developed tool
required only a single selection marker and could completely excise the unnecessary sequences.
A total of three plasmids were created and seven rounds of marker-free gene integration were exam-
ined in Y. lipolytica. All the integration efficiencies remained above 90%, and analysis of the protein
production and growth characteristics of the engineered strains confirmed that genome modification
via the novel genetic tool was feasible. Further work also confirmed that the genetic tool was effective
for the integration of other genes, loci, and strains. Thus, this study significantly promotes the
application of the Cre/lox system and presents a powerful tool for genome engineering in Y. lipolytica.

Keywords: genetic tool; Cre/lox; repeatedly targeted and markerless integration; Yarrowia lipolytica

1. Introduction

With the development of synthetic biology, various molecular genetic tools are being
increasingly designed for precise genome modification in yeasts. As a promising host,
the generally regarded as safe (GRAS) yeast, Yarrowia lipolytica, has been employed in a
wide range of fields such as protein production, metabolic engineering, degradation of
n-alkanes, and dimorphism [1–6]. Nevertheless, only a small number of effective genetic
tools have been developed for repeatedly targeted gene integration in this host, which still
restricts the further exploitation and application of Y. lipolytica.

In traditional methods, heterologous and endogenous genes are transformed into
the Y. lipolytica genome via the insertion of the whole plasmid at target loci or the inte-
gration of gene fragments and selection markers at zeta loci, and many copies of the zeta
sequence present in the Ylt1-carrying host provide a large number of potential sites for the
construction of multi-copy transformants [7–9]. However, the introduction of dispensable
DNA fragments, especially antibiotics resistance genes, may harm the GRAS status of
Y. lipolytica and hinder its application in the food and medicine industries. Furthermore,
the bioproduction of Y. lipolytica usually requires multi-round integrations or co-expression
of various genes [3,10–13], which are difficult to realize via these conventional methods
owing to the limited availability of selection markers. Consequently, there is an urgent need
to develop efficient genetic tool(s) for targeted, repeatable, and markerless gene integration
in Y. lipolytica.
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To date, several site-specific nuclease technologies have been established for genome
modification in various species [14–17]. Among them, the CRISPR-Cas9 system can ac-
complish relatively high-efficiency gene disruption and marker-free gene integration in
Y. lipolytica [18–20]. A previous study examined 17 loci for targeted and markerless gene
integration in Y. lipolytica, among which only five loci exhibited gene integration, with the
highest integration efficiency being 68.9% ± 25.5% [21]. Another study accomplished gene
integration into the PEX10 locus in Y. lipolytica via a dual CRISPR-Cas9 cleavage strategy
directed by paired sgRNAs; the integration efficiencies of the homologous recombination
(HR)-based method, using a circular plasmid as the repair template, and of the homology-
mediated end-joining based method, using a linear template, were 16.7% ± 3.6% and 37.5%
± 8.8%, respectively [22]. These studies indicate the need for further improvements in
terms of achieving more desirable gene integration efficiency (similar to gene disruption
efficiencies of about 90%) via CRISPR-Cas9-based tools. Furthermore, gene insertion
via homologous recombination, initiated by repair or double-stranded DNA breakages
introduced by CRISPR-Cas9, usually demands the synchronous introduction of plasmid-
harboring CRISPR-Cas9-related elements and a repair template [21,22], resulting in a
reduction in transformation efficiency and the need for an additional procedure to remove
CRISPR-Cas9-related elements.

The Cre/lox-site-specific recombination system derived from bacteriophage P1 is
known to be appropriate for genome modification [23–26], and its mechanism of action has
been clearly described [27–29]. Cre recombinase can recognize and bind to the loxP site,
and can catalyze recombination, resulting in insertion, translocation, inversion, and dele-
tion [27]. However, these reactions can retain the redundant loxP site in the genome, result-
ing in genome instability, and also making strain construction more difficult. To address
this issue, some mutated lox sites have been successfully designed [28,29]. For example,
the recombination between a left element-mutant lox site (LE), lox71, and a right element-
mutant lox site (RE), lox66, can generate a double element-mutant lox site (LE + RE), lox72,
and a loxP site [28,29]. Meanwhile, the loxP site can be deleted and the lox72 site can be re-
tained in the genome through rational design. In particular, the lox72 site, which can weakly
bind to Cre recombinase, is less likely to participate in subsequent recombination [28,29].
As a result, mutated lox sequences can exhibit enhanced controllability of recombination
and accelerate the utilization of the Cre/lox system in yeasts [30–33]. Although this method
can employ marker-free genome modification, it often presents low efficiency or is time-
consuming. In addition, a few studies have attempted markerless gene integration via the
Cre/lox system in Y. lipolytica. Among them, an inspired method combining the Cre/lox
system and 26S rDNA achieved 79.2% integration efficiency in Y. lipolytica [34]; however,
the integration loci were random and the gene copy numbers were uncontrollable, requir-
ing a lot of time for the selection and evaluation of transformants. Moreover, to rescue
the selection marker in the genome, an additional plasmid-harboring cre gene must be
introduced into the recombinants via another transformation, and this plasmid should
subsequently be recovered. These procedures require two different selection markers and
further extend the experimental period.

Therefore, in the present study, a novel and effective genetic tool was designed
based on the Cre/lox system. Only a single selection marker was adequate to enable
repeated, targeted, and markerless gene integration, and the unnecessary fragments could
be excised. To demonstrate the efficacy of the developed tool, the Rhizomucor miehei lipase
gene (rml) was chosen as a reporter gene, and three new plasmids were constructed.
A total of seven rounds of marker-recyclable integration were implemented, and the
positive colony proportions reached 90.63%–100%. The experimental conditions, feasibility,
and controllability of the genetic tool were evaluated and optimized. Moreover, to confirm
the universality of the developed tool, another six genes (the ire1, kar2, pdi, sls1, hac1, and
vgb genes) were further integrated into the LEU2 locus, and a derived tool was successfully
employed to integrate another gene (Rhizopus oryzae lipase gene, rol) into the axp1-2 locus.
The results obtained reveal that the Cre/lox-based genetic tool could resolve the limitations
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of the existing methods and bring significant advancement in the targeted modification of
the genome in Y. lipolytica.

2. Results
2.1. Genetic Tool Design

The novel Cre/lox-based genetic tool comprised three plasmids, namely Cre-Y1,
Cre-Y2, and Cre-Y3 (Figure 1A). Plasmid Cre-Y1 was applied to introduce a single lox71
fragment into the host genome DNA, and plasmids Cre-Y2 and Cre-Y3 were employed to
iteratively introduce the rml gene into the host strain. Plasmid Cre-Y1 consisted of the URA3
(UniProtKB, Q12724) auxotroph selection marker gene, the cre gene expression cassette
pPOX2-cre-lip2t (pPOX2 promoter, cre gene, and lip2 terminator; GenBank: AJ001300.1,
AB449974.1, and AJ012632.1), the ampicillin resistance gene and the origin of replication in
Escherichia coli (Amp-ori), a 964 bp fragment located at the upstream region of the LEU2
gene (GenBank: AF260230.1, named Upleu), and two lox71 sites oriented in the same
direction. Plasmid Cre-Y2 was derived from Cre-Y1 by replacing Upleu and two lox71 sites
with the LEU2 gene homologous fragment, a lox66 site and its reverse complement (rclox66
site), and an rml gene expression cassette. Plasmid Cre-Y3 was similar to Cre-Y2, but with
the lox71 and rclox71 (the reverse complement of the lox71 site) sites.

Figure 1. (A) Plasmid design of the novel genetic tool. (B) The legend of Figure 1. (C) Schematic diagram of first-round
integration to obtain the FY1 strain. (D) Schematic diagram of second-round integration to generate the FY2-rml/FY2-rcrml
strain. (E) Schematic diagram of third-round integration to construct the FY3-2rml/FY3-rml-rcrml strain. Primers used for
PCR amplification are labeled in the figure and described in Table S1.
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2.2. First-Round Integration to Construct the FY1 Strain

To construct strain harboring of a single lox71 fragment, the plasmid Cre-Y1 was
inserted into the auxotrophic host Po1f (Ura− Leu−) (Figure 1C). The transformed cell pellet
was screened twice in 5 mL of MD-Leu medium (MD medium supplemented with leucine)
to enrich the Ura+ recombinant strain Po1f/Cre-Y1 (Ura+ Leu−) and avoid interference
from untransformed Po1f cells (Figure S1). Subsequently, the culture solution containing the
Po1f/Cre-Y1 strain was transferred into MO-Leu-Ura medium (MO medium supplemented
with leucine and uracil) for 12 h with oleic acid as the sole carbon source, which could
activate pPOX2 to induce the expression of the cre gene. In this case, the produced Cre
recombinase could mediate the deletion reactions between the two repeat lox71 sites in the
Po1f/Cre-Y1 genome, causing excision of the Amp-ori, URA3, and cre expression cassette,
and thus, further generating Ura− recombinants. Meanwhile, the extra added uracil
allowed Ura− recombinants to grow normally. The induced cell suspension was streaked
on a YPD plate to isolate a single colony with the Ura− genotype, and the phenotypes of
the isolated colonies were determined on YPD and MD-Leu media. As shown in Figure
2A, a total of 32 recombinants were randomly chosen and all of them could not grow
on the MD-Leu plate, proving that the selection marker URA3 was recycled successfully.
Moreover, 10 positive colonies were picked up randomly and identified by genome PCR
(Figure 2B), and the PCR product obtained via the primers Upleu-F3/Upleu-R3 was further
sequenced. The results shown in Figure 2C indicate that only a single lox71 site was retained
in the Upleu locus of the eventually obtained strain, named FY1 (Ura− Leu−). This finding
also reveals that all recombination and integration events occurred as expected (Figure 1C),
and the adopted plasmid elements of the novel genetic tool were sufficiently suitable for Y.
lipolytica.

2.3. Second-Round Integration and Analysis

To evaluate whether the designed plasmids could realize markerless gene integration,
plasmid Cre-Y2 was linearized within LEU2 and introduced into FY1, to obtain the strain
FY1/Cre-Y2 (Ura+ Leu+). As shown in Figure 1D, three lox sites (lox71, lox66, and rclox66)
were noted in the FY1/Cre-Y2 genome, and three kinds of recombination reactions could
occur when Cre recombinase was expressed. In the first-type recombination (d1), deletion
reaction occurred between the lox71 and lox66 sites in the FY1/Cre-Y2 genome, and the
strain FY2-rml (Ura− Leu+), carrying the rml expression cassette, was obtained. In the
second-type recombination (d2), the lox71 and rclox66 sites were combined with Cre pro-
teins, producing a lox72 site and a reverse complement of the loxP site (rcloxP). The lox72 site
was hardly bound to Cre recombinase, and the rcloxP site could not stably coexist with the
unreacted rclox66 site in the genome, which could recombine with Cre recombinase again,
generating FY2-rcrml (Ura− Leu+), a derived strain carrying the reverse complement of the
rml gene expression cassette (rcrml). In the third-type recombination (d3), the lox66 and
rclox66 sites were recombined for an inversion reaction, forming a strain that also contained
three lox sites that were similar to those of the FY1/Cre-Y2 strain. The recombination
reaction among the three lox sites continued until the first or second type of recombina-
tion occurred, and the strain FY2-rml or FY2-rcrml was finally generated. Consequently,
two kinds of stable strains were obtained from three types of recombination reactions in
second-round integration. Here, the unnecessary and redundant fragments, including
Upleu, leu2-270, Amp-ori, URA3, and the cre expression cassette, were completely deleted,
and only the gene expression cassette and the rclox66 site remained in the genome.
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Figure 2. (A) Isolation of positive colonies in the first-round integration. A total of 32 recombinants
were randomly selected and inoculated onto YPD and MD-Leu media, and none of them could grow
on MD-Leu medium. (B) PCR amplification to identify positive colonies in the first-round integration.
Lane M, Marker; lane C, ddH2O. PCR products of about 2400 bp (corresponding to Upleu-lox71-
Upleu-partial leu2-270 in FY1 genome) and about 1300 bp (corresponding to Upleu-partial leu2-270
in Po1f genome) were, respectively, amplified by primer pair Upleu-F2/Apa-R6. The PCR product
corresponding to Upleu-lox71-Upleu (about 1000 bp) was obtained using primers Upleu-F3/Upleu-
R3 in the FY1 strain; however, no product was obtained in the Po1f strain. (C) Partial sequencing
result for the Upleu-lox71-Upleu PCR product from the FY1 strain.

2.4. Induction Time Optimization in Second-Round Integration

In this study, the oleic acid-induced pPOX2 promoter controlled the production of
Cre recombinase in MO liquid medium. Therein, the induction time affected the Cre
protein concentration in the cell, and further influenced the recombination efficiency in
the engineered strains. In the first-round gene integration, there were two lox sites in the
yeast genome. The recombinants were induced for sufficiently long time periods to obtain
a high proportion of positive colonies. However, in subsequent gene integrations, there
were three or more lox sites in the genome and the recombination reaction was complex
and diverse. As reported in previous studies [27,35], a high concentration of Cre protein is
more likely to mediate recombination in the lox72 site, resulting in the removal of the rml
gene expression cassette from the engineering strain genome. Therefore, the induction of
cre gene expression should be controlled in an appropriate time range. In the present study,
to determine the optimal induction time, the recombinant strain FY1/Cre-Y2 was incubated
in MO-Ura liquid medium (MO medium supplemented with uracil) for 4–16 h and streaked
onto YPD medium every 2 h (approximately one cell generation cycle). Furthermore, 32
recombinants were randomly selected from each YPD medium and then transferred onto
MD and BMSY media. The proportions of positive colonies under different induction
times were examined, and the results are shown in Table 1 and Figure 3A. All the selected
recombinants could complete the recombination reaction process after 12 h of induction.
For more accurate confirmation, 64 colonies induced for 12 h were chosen and none of
them could grow in a normal manner on MD medium. Consequently, the induction time
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was set as 12 h, which could be further increased if the proportion of positive colonies
decreased in multi-round integrations.

A total of 10 positive colonies were randomly chosen for identification via PCR se-
quencing (Figure 3B). The rml/rcrml expression cassette and rclox66 site in all of the selected
colonies matched with the genome of the FY2-rml/FY2-rcrml strains (Figure 3C), demon-
strating that the second-round gene integration was performed according to the predictive
analysis (Figure 1D). In addition, for the convenience of subsequent protein production
evaluation, strains that did not carry the rcrml expression cassette were employed for fur-
ther gene integration, because the existing plasmids and method [36] are more applicable
to construct strains harboring only rml expression cassettes.

Table 1. Positive colony proportion, genotype rate, and rml copy number determined in this study.

Integration
Round

Induction
Time (h)

Positive
Colonies/All
Colonies

Proportion
(%)

Selected Colonies

Genotype Rate rml Copy
Number

1 12 32/32 100 FY1 - 0

2

4 2/32 6.25

FY2-rml,
FY2-rcrml

5/5 0.93

6 2/32 6.25
8 14/32 43.75
10 24/32 75
12 32/32 100
14 32/32 100

3 12 32/32 100
FY3-2rml,
FY3-rml-

rcrml
17/13 1.99

4 12 31/32 96.88
FY4-3rml,
FY4-2rml-

rcrml
4/2 3.10

5 12 29/32 90.63
FY5-4rml,
FY5-3rml-

rcrml
3/3 4.08

6
12 17/32 53.12 FY6-5rml,

FY6-4rml-
rcrml

4/2 5.1214 28/32 87.5
16 32/32 100

7 16 32/32 100
FY7-6rml,
FY7-5rml-

rcrml
3/3 5.94
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Figure 3. (A) Positive colonies induced for 4–14 h in the second-round integration. The corresponding BMSY plates
are not shown. (B) PCR amplification to identify positive colonies in the second-round integration. Lane M, Marker.
The fragment partial rml-rclox66-partial LEU2 (about 650 bp) was amplified with the primer pair KNC-F2/Apa-R6 only
in FY2-rml strains. The segment partial rcrml-rclox66-partial LEU2 (about 800 bp) was cloned by SXB-R2/Apa-R3 only in
FY2-rcrml strains. Different PCR products were obtained in four types of strains via amplification with Upleu-F3/Apa-R6:
Upleu-lox72-rml/rcrml-rclox66-partial LEU2 (about 3500 bp) in FY2-rml/FY2-rcrml, Upleu-lox71-Upleu-partial LEU2 (about
1300 bp) in FY1, and Upleu-partial LEU2 (about 300 bp) in the FY1 and Po1f strains. (C) Partial sequencing result of the PCR
products rml-rclox66-LEU2 from FY2-rml and rcrml-rclox66-LEU2 from FY2-rcrml strains.

2.5. Iterative Insertion of Cre-Y3 and Cre-Y2 Plasmids

To achieve third-round integration, plasmid Cre-Y3 was utilized to transform the
FY2-rml strains, and the schematic diagram is presented in Figure 1E. Similar to the second-
round integration, there were three mutated lox sequences (rclox66, rclox71, and lox71) and
a lox72 site in the FY2-rml/Cre-Y3 (Ura+ Leu+) genome, resulting in three different recom-
bination reactions and eventually generating two genotypes of the recombinant strains
FY3-2rml (Ura− Leu+) and FY3-rml-rcrml (Ura− Leu+). Subsequently, FY3-2rml and FY3-
rml-rcrml were distinguished by PCR amplification with the primer pairs KNC-F2/Apa-R6
and SXB-R2/Apa-R3 (Figure S2A). The obtained products were further sequenced and
the results (Figure S2B) were consistent with the prediction presented in Figure 1E. Thus,
another copy of the rml gene was targeted on the LEU2 locus and the unnecessary DNA
fragments were excised in the third-round integration.

Similarly, plasmid Cre-Y2 was introduced into the FY3-2rml to generate the FY4-
3rml/FY4-2rml-rcrml (Ura− Leu+) strains, and plasmid Cre-Y3 was used to transform
FY4-3rml to construct the FY5-4rml/FY5-3rml-rcrml (Ura− Leu+) strains (Figure S3A). Sub-
sequently, Cre-Y2 and Cre-Y3 were iteratively integrated into the corresponding recombi-
nant strains to obtain FY6-5rml/FY6-4rml-rcrml (Ura− Leu+) and FY7-6rml/FY7-5rml-rcrml
(Ura− Leu+). The genome PCR identification results (Figure S3B) prove that repeated,
targeted, and markerless gene integration was successfully implemented by the novel
genetic tool.
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2.6. Increasing Induction Time in Sixth and Seventh Rounds of Integration

As shown in Table 1, the positive colony proportions slightly decreased in multi-round
integration processes, which might have been due to the following possibility: an additional
lox72 site or rclox72 site (reverse complement of the lox72 site) could have been inserted
into the genome in each round of gene integration, except in the first-round integration,
and all of the lox sites were able to bind to Cre recombinase [27–29]. Thus, the lox72 site
might have disturbed the recognition between the LE or RE sites and Cre recombinase,
resulting in less recombination frequency during the induction process and a decrease in
efficiency in multi-round integrations. Nevertheless, an increase in induction time caused
higher accumulation of Cre protein in the cell, and more Cre recombinase could recognize
LE or RE sites and mediate effective recombination.

Accordingly, the transformants were induced for longer time periods to obtain higher
recombination efficiency in the sixth-round integration. As a result, the proportion of
positive colonies was enhanced, and 16 h was adequate to complete recombination in the
engineered strains (Table 1 and Figure S3C). In the seventh-round integration, 16 h was
employed as the induction time and all of the chosen colonies were unable to grow on MD
medium (Figure S3C). Therefore, recombination efficiency might be roughly inversely pro-
portional to the integration round; however, this problem could be alleviated by increasing
the induction time in MO-Ura liquid medium. Finally, seven rounds of gene integration
were implemented in this study, and the positive colony proportions reached 90.63%–100%
with an induction time of 12–16 h (Table 1). In fact, the realized integration rounds were
adequate to meet the demands of the construction of engineering strains, and the potential
of the developed genetic tool could also be explored in future research.

2.7. Protein Expression Level and Growth Characteristics Evaluation

Recombinants harboring different rml gene copies were cultured in BMSY liquid
medium for protein production, and the results are presented in Figure 4A. The recom-
binant strains FY5-4rml 31# showed the highest RML expression level, while the lipase
activities of FY6-5rml/FY6-4rml-rcrml and FY7-6rml/FY7-5rml-rcrml strains were slightly
lower. Thus, gene integration was terminated in the seventh round. Moreover, several
colonies were chosen as representatives for each type of the recombinant strain, and their
rml gene copies were determined via qPCR. As shown in Table 1, all of the transformants
carried the same gene copy number as previously predicted, indicating that no rml expres-
sion cassette was excised from the genome, and also confirming the excellent controllability
and stability of the genetic tool.

To evaluate the protein expression level of the recombinant strains generated via
the developed genetic tool, the plasmids hp12d-5rml and hp12d-6rml were constructed
according to the previous method [36]. Subsequently, the hp12d-nrml plasmids (n = 1–6)
were linearized and introduced into Po1f to form the recombinant strains Po1f/hp12d-nrml
(carrying n copies of the rml expression cassette, n = 1–6). Then, Po1f/hp12d-nrml (n = 1–6)
and engineered strains from seven rounds of gene integration were, respectively, inoculated
into the BMSY medium under the same culture conditions, and their lipase activity was
measured (Figure 4B), which reveals that the two types of recombinant strains showed
similar protein expression levels. Therefore, it can be concluded that genome modification
via the developed genetic tool did not affect the target protein production of the engineering
strains. When compared with the previous method [36], the developed genetic tool has
many advantages such as the utilization of reusable markers, the requirement of three
plasmids, the absence of gene redundancy, and the capacity for flexible direction of the
gene expression cassette. Moreover, the novel genetic tool could assemble engineering
strains harboring any number of copies of the rml gene, only requiring increases/decreases
in integration rounds.
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Figure 4. (A) Lipase activity of recombinant strains harboring different copies of rml expression cassettes. (B) Comparison of
lipase activity of recombinant strains obtained via different methods. Data are the mean values of each kind of recombinant
strain. The strains Po1f and FY1 show low lipase activity owing to expression of autologous lipase genes. Weakly significant
difference is observed between the strains FY7-6rml/FY7-5rml-rcrml and Po1f/hp12d-6rml (p = 0.044). (C) Lipase activity of
transformants from third-round integration. (D) Transcriptional level analysis of rml mRNA from FY3-2rml and FY3-rml-
rcrml. The endogenous act1 was adopted as a reference gene, and the rml transcriptional level of FY3-2rml 4# was defined
as 1. (E) Growth curves of Po1f, FY1, FY5-4rml 31#, and FY7-6rml 13# in YPD medium. (F) Growth curves of Po1f, FY1,
FY5-4rml 31#, and FY7-6rml 13# strains in BMSY medium. NS, *, **, and *** indicate non-significant, p < 0.05, p < 0.01,
and p < 0.001, respectively.

Furthermore, the strains Po1f, FY1, FY5-4rml 31#, and FY7-6rml 13# were cultivated
in YPD and BMSY media, respectively, and their growth characteristics were tested by
measuring the optical density at 600 nm (OD600) at different incubation times (Figure 4C,D).
The results reveal no observable differences in the growth curves of the four types of strains,
indicating that the genome modification in the LEU2 locus via the Cre/lox-based genetic
tool did not influence cell growth.

2.8. Comparison of Two-Genotype Recombinant Strains

Two genotypes of the recombinant strains were generated in each round of integration
(except for the first round), and their numbers are presented in Table 1. The rates of the two
forms of strains were approximately equal, suggesting that there was nearly equal possibil-
ity to choose a strain with a certain genotype. The colonies with high lipase activities were
selected for protein production evaluation. The results shown in Table 1 also imply that
the protein expression levels of the recombinant strains in each round of integration were
similar, which is confirmed in Figure 4A. In contrast, some previous studies have reported
that the relative arrangement of multiple genes might affect the corresponding transcrip-
tion and protein production in host cells [37,38]. Thus, a total of 30 positive colonies from
the third-round integration were identified via the primer pairs KNC-F2/Apa-R6 and
SXB-R2/Apa-R3 (data not shown), and their lipase activities were measured. The results
presented in Figure 4E show that the RML activity of each recombinant randomly changed
within a proper range. Moreover, transcriptional level analysis further indicates that there
was no significant difference in the transcriptional quantity of rml mRNA isolated from
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FY3-2rml and FY3-rml-rcrml cells (Figure 4F). Thus, the relative direction of rml expression
cassettes had no observable effect on protein production in this study, which might have
been due to the difference in the host type. Accordingly, both the genotypes of the strains
were concluded to be suitable for RML production in Y. lipolytica.

2.9. Successfully Expanding to Six Different Genes and axp1-2 Locus

To evaluate the universality of the novel genetic tool, six genes with varied lengths and
two resources were additionally integrated into the engineered strain FY5-4rml. The genes
ire1, kar2, pdi, sls1, and hac1 are the homologous genes of Y. lipolytica, and vgb is the coding
gene of Vitreoscilla hemoglobin. These genes may differentially affect RML expression
levels, which determine the number of integration rounds required to increase their gene
dosage to facilitate the expression of RML. The corresponding plasmids were derived
from Cre-Y2 and Cre-Y3 by replacing the rml gene with different genes (Figure S4A),
and then used to transform FY5-4rml. The subsequent integration processes were similar
to those of Cre-Y2 and Cre-Y3, and the proportions of positive colonies were all above 90%
(Table 2), confirming the availability of the developed genetic tool for repeated, targeted,
and markerless integration of different genes.

Table 2. Integration rates of various genes, loci and strains in this study.

Gene GenBank Lenth (bp) Integration
Round

Positive
Colonies/All

Colonies

Proportion
(%)

Integration locus: LEU2 gene of FY5-4rml; induction time: 16 h

ire1 XM_002142952.1 3663 1 32/32 100

kar2 U63136.1 2013
1 32/32 100
2 32/32 100
3 32/32 100

pdi XM_503481.1 1515

1 32/32 100
2 32/32 100
3 31/32 96.88
4 31/32 96.88

sls1 Z50154.1 1281
1 32/32 100
2 32/32 100

hac1 XM_500811.1 918 1 32/32 100

vgb AF292694.1 441
1 32/32 100
2 32/32 100

Integration locus: axp1-2 of Po1h; induction time: 12 h

rol AF229435.1 1101
1 31/32 96.88
2 32/32 100
3 32/32 100

Furthermore, a derived tool was established to verify whether the developed genetic
tool could be applied for other genes, integration loci, and strains. For this purpose, three
plasmids containing rol gene were, respectively, constructed based on Cre-Y1, Cre-Y2,
and Cre-Y3 (Figure S4B), and integrated into a defective acid extracellular protease gene
(AXP, GenBank: XM_500538.1) locus (axp1-2) of Y. lipolytica Po1h (Ura− Leu+). The transfor-
mation, screening and induction, isolation of positive colonies, and identification processes
were similar to those employed for rml gene integration into the leu2-270 locus of the Po1f
strain. First, the Cre-axp1 plasmid was linearized by NsiI and inserted into the Upaxp
locus (a 1059 bp fragment located at the upstream region of AXP gene) to generate a strain
carrying a single lox71 site. Then, the Cre-axp2 and Cre-axp3 plasmids were digested with
ClaI and iteratively introduced into the axp1-2 locus for repeated, targeted, and markerless
integration of rol in Po1h. As a result, three rounds of integration were conducted and all
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of the integration rates were above 96%. These findings reveal that such extension of the
novel genetic tool is feasible and convenient.

3. Discussion

In the present study, a Cre/lox-based genetic tool was precisely and skillfully de-
signed. The plasmids Cre-Y2 and Cre-Y3 adopted two inversely oriented lox sites, and the
URA3 marker gene could not be removed from the genome if the strain did not undergo
integration process as expected. Thus, the Ura+ strain could be distinguished by isolating
positive colonies on the MD medium. It must be noted that except for the cre gene and
the lox sites, all of the genetic tool elements were nonspecific and replaceable. Any DNA
sequence could be chosen as the homologous fragment as long as no gene was disrupted,
and the length of the homologous fragment was very flexible because of the excision of
unnecessary sequences. The rml gene in plasmids Cre-Y2 and Cre-Y3 could be replaced
by heterologous and endogenous genes of Y. lipolytica to accomplish repeated markerless
integration, and the plasmid construction process was simple and convenient. In addi-
tion, the Cre/lox-based genetic tool could also be applied to other genes and loci if the
corresponding plasmid elements were available.

Recently, several genetic tools have been developed for the markerless gene integration
of Y. lipolytica based on the CRISPR-Cas9 system, Cre/lox system and Ura/5-fluoroorotic
acid resistance method (Figure S5) [19,21,22,34]. The integration efficiency markedly
fluctuates with different genome loci and single-guide RNAs (sgRNAs) for CRISPR-Cas9-
mediated gene integrations [19,21]. According to most of the existing Cre/lox-based
methods [19,34], the DNA fragment can be integrated into the host genome via gene
insertion or gene replacement. However, insertion events may introduce unnecessary
DNA segments into the genome, whereas replacement events, which occur occasionally,
can avoid this issue, but require substantial screening of target transformants. Furthermore,
while the Ura/5-fluoroorotic acid resistance method (Ura pop-in/pop-out method) can also
accomplish markerless gene integration, reverse mutation is difficult to avoid in the marker
recovery process. In addition, new plasmids carrying different sgRNA or homologous
fragments must be constructed to repeatedly realize gene integration in a specific genome
locus via the three above-mentioned genetic tools. These limitations can be completely
overcome using the novel genetic tool designed in the present study. The rml gene is
integrated into the host genome via an efficient, targeted, and repeatable gene insertion
event, and the introduced dispensable sequences can be deleted via the recombination
reaction of the lox sites. Moreover, despite the occurrence of inefficient insertion events
in the integration process, a few recombinants can be enriched via double auxotroph
screening. The existing methods, based on the CRISPR-Cas9 and Cre/lox systems, require
two different selection markers and an additional plasmid recovery procedure [19,21,22,34].
In contrast, only a single marker is required for the novel Cre/lox-based genetic tool, and the
processes of gene integration, marker reuse, and plasmid recovery can be combined and
accomplished simultaneously, which can significantly reduce the experimental period and
workload. Overall, the novel genetic tool developed in this study can overcome many
limitations such as low HR rates, limited selection markers, random integration sites,
and additional plasmid recovery.

In conclusion, a powerful and efficient Cre/lox-based genetic tool for repeated, tar-
geted, and markerless gene integration was developed in this study. In practice, only a
single selection marker can enable the iterative integration of various genes into the genome,
which can facilitate genetic modifications of the host strains. Furthermore, in each round
of integration, the unnecessary segments are removed, the relative direction of each gene
expression cassette is controllable, and the gene recombination on genome is foreseeable.
These characteristics can significantly decrease gene redundancy in the engineering strain,
making it convenient for the use of the host strain in pharmaceutical, food, and other
health-related areas. Besides, the developed genetic tool is also suitable for various other
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genes and loci. The findings of this study significantly broaden the application of the
Cre/lox system and strengthen the capabilities for genome modification in Y. lipolytica.

4. Materials and Methods
4.1. Strains and Media

E. coli TOP10 and TOP10 F’ (Shanghai Weidi Biotechnology Co., Ltd., Shanghai, China)
were applied for plasmid amplification. The plasmid hp12d-rml [36] and auxotrophic
Y. lipolytica Po1f [39] and Po1h [40] were, respectively, utilized for plasmid construction
and transformation. The T4 DNA ligase, Phanta Max Master Mix polymerase, Rapid Taq
Master Mix polymerase, and ClonExpress II One Step Cloning Kit were obtained from
Vazyme Biotech Co., Ltd. (Nanjing, China) and used for gene amplification and genome
identification. The E. coli and Y. lipolytica strains were, respectively, cultured at 37 ◦C and
28 ◦C. All strains and plasmids used in this study are listed in Table S2. The LB, YPD, MD,
and BMSY media have been previously described [36]. The MO medium (20 mL/L oleic
acid, 0.5 mL/L Tween 80, 13.4 g/L yeast nitrogen base, with no amino acids and 0.4 mg/L
biotin), was derived from MD medium, and leucine (final concentration, 262 mg/L) or
uracil (final concentration, 22.4 mg/L) was added for auxotrophic strains.

4.2. Plasmid Construction

Figure S6 illustrates plasmid Cre-Y1 construction. The pPOX2 promoter, cre gene, tan-
dem fragment of lip2t and lox71, and fusion segment of Upleu and lox71 were, respectively,
cloned via corresponding primer pairs (Pox2-F1/Pox2-R1, Cre-F1/Cre-R1, lip2t-F1/lip2t-
R1, and Upleu-F1/Upleu-R1). The four amplified products were assembled by overlap
extension PCR and then double-digested with NdeI/ApaI. Subsequently, the digested prod-
uct was inserted into NdeI/ApaI-digested plasmid hp12d-rml to construct plasmid 1296-cre.
Furthermore, the URA3 gene (amplified using Ura-F1/Ura-R1) was subcloned into NdeI-
linearized 1296-cre by HR, generating plasmid Cre-Y1. All the plasmids were confirmed
via DNA sequencing by TsingKe Biological Technology Co., Ltd. (Wuhan, China), and all
of the primers and lox sites used in this study are presented in Table S1.

As shown in Figure S7, the plasmids Cre-Y1 and hp12d-rml were, respectively, double-
digested using ApaI/NheI and ApaI/XbaI, and the two digestion products with the same
cohesive ends were ligated to generate the plasmid hp12d-rml-cre. Subsequently, the gene
segment lip2t-lox66 was cloned by lip2t-F1/lip2t-R2 and recombined into AvrII/MluI-
digested hp12d-rml-cre, forming hp12d-rml-cre-lox66. Furthermore, the fusion fragment of
rclox66 and partial LEU2 was amplified by leu-F2/leu-R2 and recombined with NdeI/ApaI-
opened hp12d-rml-cre-lox66 to generate plasmid Cre-Y2. Similarly, the gene segment
lip2t-rclox71 was amplified by lip2t-F1/lip2t-R3 and used for the construction of hp12d-rml-
cre-rclox71, and hp12d-rml-cre-rclox71 was recombined with lox71-partial LEU2 to obtain
plasmid Cre-Y3 (Figure S8).

The rml gene of the Cre-Y2 and Cre-Y3 plasmids was replaced with six different genes
(ire1, kar2, pdi, sls1, hac1, and vgb) to assemble the corresponding plasmids, and their struc-
tures are presented in Figure S4A. Moreover, the homologous fragments of the Upleu, LEU2,
and rml genes were, respectively, substituted with Upaxp, axp1-2, and rol to generate the
plasmids Cre-axp1, Cre-axp2, and Cre-axp3 (Figure S4B). The above-mentioned procedures
were achieved by conventional PCR amplification, enzyme digestion, and ligation.

4.3. Yeast Transformation, Screening and Induction

The integration process was performed as follows (Figure S1). The SalI-linearized
plasmid Cre-Y1 was integrated into the Po1f genome following the previously described
method [41]. Then, the transformants were screened twice in 5 mL of MD-Leu liquid
medium. Subsequently, the derivatives were inoculated into MO-Leu-Ura liquid medium
for inducible expression of the cre gene. To isolate single colonies, the cell suspension
solution was streaked onto a YPD plate, and the selected colonies were, respectively,
transferred onto YPD and MD-Leu plates for phenotype verification, where the positive
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colonies could only grow on YPD medium. In addition, the genomic DNA of positive
colonies was extracted for further identification via PCR amplification with appropriate
primers and DNA sequencing by TsingKe Biological Technology Co., Ltd. (Wuhan, China).
Thus, the FY1 strain was obtained. The subsequent integration was almost similar to the
first-round integration; however, Cre-Y2 or Cre-Y3 plasmid was linearized by ApaI, leucine
was not required in MD or MO medium, and YPD medium was replaced with BMSY
medium containing 10 mL/L glyceryl tributyrate to select colonies with high RML activity.

4.4. Shaking Flask Culture and Lipase Activity Determination

Transformants harboring clear and large transparent halos were inoculated into 5 mL
of YPD for 24 h. Then, the cultures were transferred into 500-mL shake flasks containing
30 mL of BMSY medium and incubated for 120 h to produce RML. The RML activity in the
cell culture supernatant was evaluated using a previously described method [36]. All of
the experiments were performed in triplicate, and the results were analyzed by ANOVA
with Duncan’s multiple range test at p < 0.05.

4.5. Determination of Gene Copy Number and Transcriptional Analysis

Based on the protocol of ChanQTM Universal SYBR qPCR Master Mix (Vazyme Biotech
Co., Ltd., Nanjing, China), the rml gene copy numbers were determined by real-time qPCR
performed using the StepOnePlus apparatus with StepOne software version 2.3 (Applied
Biosystems, Foster City, CA, USA). The endogenous act1 was set as the reference gene,
and the plasmids pMD19-act1 and hp4d-rml [36] were utilized for establishing standard
curves, respectively. The rml gene transcriptional level analysis was conducted by TsingKe
Biological Technology Co., Ltd. (Wuhan, China). Each sample was collected in triplicate.
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