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Abstract

Background: The development of clinical -omic biomarkers for predicting patient prognosis has mostly focused on
multi-gene models. However, several studies have described significant weaknesses of multi-gene biomarkers.
Indeed, some high-profile reports have even indicated that multi-gene biomarkers fail to consistently outperform
simple single-gene ones. Given the continual improvements in -omics technologies and the availability of larger,
better-powered datasets, we revisited this “single-gene hypothesis” using new techniques and datasets.

Results: By deeply sampling the population of available gene sets, we compare the intrinsic properties of
single-gene biomarkers to multi-gene biomarkers in twelve different partitions of a large breast cancer meta-dataset.
We show that simple multi-gene models consistently outperformed single-gene biomarkers in all twelve partitions.
We found 270 multi-gene biomarkers (one per ~11,111 sampled) that always made better predictions than the best

single-gene model.

Conclusions: The single-gene hypothesis for breast cancer does not appear to retain its validity in the face of
improved statistical models, lower-noise genomic technology and better-powered patient cohorts. These results
highlight that it is critical to revisit older hypotheses in the light of newer techniques and datasets.
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Background

The abundance of cheap and accurate genomic technolo-
gies has led to a multitude of different approaches for
classifying breast cancer patients into different prognos-
tic groups based on their transcriptomic profiles. These
risk classifications are clinically useful because they allow
the targeting of aggressive treatment on patients most vul-
nerable to tumour recurrence or mortality while avoiding
exposing those with lower risk to associated side-effects.
Prognostic signatures, also referred to as biomarkers, are
a popular class of tools for converting mRNA abundance
data into patient risk scores that can serve as proxies for
clinical outcome. Several particularly proficient biomark-
ers for breast cancer have already proven to be commer-
cially viable [1-3].
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A biomarker generally consists of two parts: a gene set
chosen for association with prognosis using a supervised
or unsupervised feature selection algorithm and a risk
score model that transforms the mRNA abundance lev-
els from these genes into risk scores for a given patient
cohort. Many biomarkers developed for breast cancer rely
on complex algorithms for feature selection and risk score
calculation [4-9]. However, it has been demonstrated that
gene sets selected for prognostic ability using such meth-
ods often fail to outperform randomly chosen gene sets
of the same size [10, 11]. This is concordant with a pre-
vious finding that large numbers of non-overlapping gene
sets are associated with breast cancer prognosis [12, 13].
This appears to be a general characteristic of multiple
tumour types [14, 15]. If the background or “null” level
of gene set prognostic performance is relatively high, it
makes it more challenging for feature selection algorithms
to identify groups of genes that perform significantly bet-
ter than random chance. It is therefore apparent that the

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

B BMC

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver

(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2430-9&domain=pdf
mailto: paul.boutros@oicr.on.ca
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Grzadkowski et al. BMC Bioinformatics (2018) 19:400

fundamental properties of multi-gene biomarkers must
be fully elucidated in order to identify optimal biomark-
ers, which is difficult to do even when the feature-size
is pre-set.

Haibe-Kains et al. [16] cast further doubt on the useful-
ness of multi-gene biomarkers for breast cancer outcome
prognosis by suggesting that they do not consistently
outperform the simplest possible model: one based on
a single, well-chosen gene. They found that a sim-
ple biomarker that dichotomizes patients based on the
expression of the gene AURKA fared roughly as well
as much more complex methods that attempt to lever-
age the mRNA abundance data of many genes or even
the whole genome. Haibe-Kains et al. [16] thus put for-
ward a “single-gene hypothesis”: there is little marginal
utility in implementing multi-gene prognostic biomark-
ers with complex feature selection and patient risk scoring
components in breast cancer. Given the other difficulties
inherent in using multi-gene biomarkers outlined above,
it would seem that single-gene biomarkers based on bio-
logical intuition confer an advantage in interpretability
and ease of discovery without compromising prognostic
performance.

However, in the decade since the single-gene hypoth-
esis was formulated, there have been many advances in
both genomics technology itself and in the analytical tech-
niques used for biomarker development. The drop in cost
of measuring mRNA abundance has led to the availability
of a much greater number of datasets. One of the largest
of these is the Metabric dataset, comprising nearly two
thousand patients [17]. The improved fidelity of transcip-
tomics technologies has also led to smaller levels of noise
in newer expression datasets. Furthermore, bioinformati-
cians are continually finding new and improved ways of
applying insights from the field of machine learning to
biomarker development.

Given these new developments, we revisited the single-
gene hypothesis, testing it on a meta-dataset of 4960
breast cancer patient expression profiles. We tested the
prognostic performance of single-gene models, including
AURKA, and two different types of multi-gene mod-
els on a deep sample of the biomarker population. This
approach allowed us to draw generalizable insights into
the relative performance of multi-gene and single-gene
transcriptomic biomarkers for predicting breast cancer
patient prognosis.

Methods

Figure 1 is a schematic outline of the analysis in which we
comprehensively tested the stability and prognostic abil-
ity of single-, paired- and multi-gene biomarkers sampled
from a pool of 7997 genes on various partitions of a 4960
patient gene expression meta-dataset. All computations
were performed in the R statistical environment (v3.0.1)
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except for dataset pre-processing which was performed in
R v2.13.0. All visualizations were created using the lattice
(v0.20-15), latticeExtra (v0.6-24) and RColorBrewer (v1.0-
5) packages, except for Fig. 1 which was created using
Inkscape v0.48.

Meta-dataset preparation and partition

We collected eighteen publicly-available raw breast can-
cer mRNA abundance datasets for which patient survival
data was included (Table 1). Training and testing
sample cohorts obtained from the same study were
treated as separate datasets. Pre-processing and nor-
malization techniques were applied independently to
each of the eighteen datasets, including those origi-
nating from the same chip type. For all except the
two Metabric datasets, mRNA abundance levels were
normalized using the RMA algorithm [18], as imple-
mented in the R package affy (v1.28.0). Probes were
mapped to Entrez IDs using custom CDFs (R packages
hgul33ahsentrezgedf v12.1.0, hgul33bhsentrezgcdfv12.1.0,
hgul33plus2hsentrezgedf v12.1.0, hthgul33ahsentrezgcdf
v12.1.0 and hgu95av2hsentrezgedf v12.1.0) [19]. For the
Metabric datasets, pre-processing, summarization and
quantile-normalization was performed on raw expres-
sion files generated by Illumina BeadStudio (R packages
beadarray v2.4.2 and illuminaHuman v3.db-1.12.2). Any
genes that did not have mRNA abundance measurements
in all eighteen datasets were removed from the study. This
resulted in a single meta-dataset of 7997 genes and 4960
patients.

We created twelve balanced partitions of this meta-
dataset, each partition dividing the total patient cohort
into a training set and a testing set such that neither cohort
contained fewer than 46% (i.e. 2,282/4,960) of the total
number of patients (Additional file 1: Table S1). All pos-
sible partitions meeting this criteria were identified and
twelve partitions were chosen at random. Note that par-
titioning was done without splitting individual datasets
between training and testing cohorts so that each dataset
was entirely within one cohort or the other.

Outcome prognosis models

Let P be a set of patients and let G be a set of genes,
with e, ¢ denoting the mRNA abundance level of gene
g € G in patient p € P. The goal of a prognostic
biomarker is to divide P into a low-risk group P; and a
high-risk group P, such that the difference in survival
between the two groups is maximized. Biomarkers con-
sist of a subset of G used to assign patients to one of the
two risk groups. To identify the most successful biomark-
ers we consider the hazard ratio. This is calculated
by fitting a univariate Cox proportional hazards model
(R package survival v2.37-4) to the survival data of the
Pj and Py, patients.
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Purpose
To assess the stability and performance of three algorithms
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Fig. 1 A summary of the experiment design

single-gene

The single-gene model uses one gene g* as G. Patients
are ranked in descending order of ey g, and then split at
the median expression level to produce Py and P;. This
is analogous to the AURKA gene model described by
Haibe-Kains et al. [16].

pairDifference
The pairDifference model uses two genes (g1,g2), with
patients divided according to the rule:

Py, ife,p,>e
p { h 082~ Cp.g1 (1)

P;, otherwise

PairDifference is a rank-based method that classifies
samples by the mRNA abundance score ratios of gene
pairs, creating a simple multi-gene model that remains
easily biologically interpretable. This method is based
on the well-studied top scoring pairs classifier which
was previously tested on breast cancer expression data
[20, 21].

geneSIMMS

As a prototypical multi-gene model, we used the geneS-
IMMS approach, which can incorporate a set of genes G*
of arbitrary size. It also requires an independent training
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Table 1 The eighteen breast cancer datasets used in this study,
with the total number of unique patients and the microarray
platform used in each

Study PubMedID  Patient Count  Platform

Bild 16273092 158 HG-U95AV2
Chin 17157792 129 HTHG-U133A
Desmedt-1 17545524 198 HG-U133A
Desmedt-2 21422418 107 HG-U133-PLUS2
Hatzis-1 21558518 310 HG-U133A
Hatzis-2 21558518 198 HG-U133A
Ivshina 17079448 249 HG-U133A/B

22522925 996
22522925 992

HumanHT-12-v3
HumanHT-12-v3

Metabric-Training
Metabric-Validation

Miller 16141321 236 HG-U133A/B
Pawitan 16280042 159 HG-U133A/B
Sabatier 20490655 252 HG-U133-PLUS2
Schmidt 18593943 200 HG-U133A
Sotiriou 16478745 94 HG-U133A
Symmans-JBI 20697068 65 HG-U133A
Symmans-MDA 20697068 195 HG-U133A
Wang 15721472 286 HG-U133A
Zhang 18821012 136 HG-U133A

patient cohort PT". GeneSIMMS takes the normalized
mRNA abundance levels of each gene for all patients
(training and testing cohorts combined) and scales them
to z-scores. For each g € G*, it then median dichotomizes
PT" by the transformed mRNA abundance score and fits
a univariate Cox proportional hazards model using only
the training cohort’s survival information to get a hazard
ratio HRg. A risk score is calculated for each combination
of patient and gene using the formula:

risky,s = log, (HRg) X e, (2)

A multivariate Cox proportional hazards model is then
fit using these risk scores and training cohort survival data
to get a Cox beta g, for each g € G*. These betas are used
to calculate risk scores for each patient p € PT" U P using
the formula:

risk, = Z (Bg x riskpg) (3)

geG*

The testing cohort patients are then dichotomized into
P; and Py, using the median of the risk scores calculated
from the training cohort patients. geneSIMMS is imple-
mented in the R package SIMMS v(0.0.1) and is easily
scaled to a sub-network approach, as outlined elsewhere
by Haider et al. [9], although this aspect is not evaluated
in the present study to retain the focus on the single-gene
hypothesis.
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Choosing and testing biomarkers

To thoroughly assess the performance of the three model
types under consideration, we tested as many sets of
genes as possible with each. Since the single-gene and
pairDifference approaches are computationally inexpen-
sive, we were able to test all possible gene sets for both
of these algorithms: i.e. 7997 single-gene biomarkers and
31,872,006 two-gene biomarkers. Due to the massive pop-
ulation of possible gene sets and the computational com-
plexity associated with geneSIMMS, we were unable to
test all possible gene combinations and instead selected
a random subset of gene sets to analyze. We thus sam-
pled, without replacement, a million gene sets of sizes
5, 50 and 100 from the set of 7997 common genes for
a total of 3,000,000 unique geneSIMMS biomarkers. For
the purposes of exploring the effect of gene set size on
biomarker performance we considered these three sets
separately in our analysis, labelling them geneSIMMS-5,
geneSIMMS-50, and geneSIMMS-100.

For each model, the corresponding biomarkers were
tested on each of the twelve partitions described above.
For single-gene and pairDifference, only the testing
cohorts were used as these models do not require train-
ing data. This resulted in twelve matching performance
measurements for each gene set for a given model.

Comparison of single-gene and multi-gene methods

To assess the performance of methods yielding single gene
biomarkers against those yielding multi-gene biomarkers,
we compared AURKA to geneSIMMS on random sets
of five genes. To ensure a fair comparison, rather than
testing millions of gene sets, we restricted the number
of random five gene sets to the number of genes eval-
uated by AURKA across 12 partitions. For the AURKA
method, the cut point was determined using training set
and performance was evaluated on the test set. Similarly,
geneSIMMS was performed as described above but with
some alterations. Specifically, z-scoring was performed
independently on each cohort of data before being com-
bined into their respective training and test sets, and to
prevent information leakage, log, (HR,) and g, were cal-
culated using only the training set and used to determine
patient risk scores for the test set. We labelled this set of
geneSIMMS models geneSIMMS5-R.

The best performing biomarker in terms of |log2HR|
was retrieved from each partition for both AURKA and
geneSIMMS5-R. A two-tailed, homoscedastic paired T-
test was used to determine if the two sets of hazard ratios
are significantly different.

Measuring biomarker performance stability

To compare the concordance of biomarker performance
between the twelve meta-dataset partitions tested, we
used the Concordance Correlation Coefficient (CCC) as
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introduced by Lin (1989) and further amended in Lin
(2000). Biomarker performance was defined by the unad-
justed hazard ratio returned by a univariate Cox propor-
tional hazards model as described above. The formula for
CCC for a given set of biomarkers and n meta-dataset
partitions is:

n n
2> i j=19ij

Y1 <(m—2u,)> +m—DYL, o}

(4)

where o;; is the covariance of biomarker performance
between partitions i and j, u; is the mean of biomarker
performance on partition i, and aiz is the variance of
biomarker performance on partition .

A confidence interval for the CCC of each set of
biomarkers was bootstrapped by re-calculating the CCC
using subsets of the available partitions. In particular, we
considered all 924 possible subsets of the twelve partitions
of size six, and took the range from the 2.5th to the 97.5th
percentiles of subset CCC for each biomarker set to derive
a 95% confidence interval.
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Results

Multi-gene biomarkers confer advantage in prognostic
performance

As shown in four representative partitions (Fig. 2) and in
the remaining eight partitions (Additional file 1: Figure
S1), we found significant variation in the distribution
of single-gene biomarker performance between differ-
ent partitions of the meta-dataset. That is, even using
a minimum of 2282 patients was insufficient to elim-
inate generalization error. In some cases, the popula-
tion of single-gene biomarkers had a unimodal distribu-
tion of performance, with most genes performing very
poorly. In other cases, single-gene biomarker perfor-
mance was not unimodal and many genes performed well
compared to multi-gene biomarkers. But despite these
differences, single-gene and pairDifference biomarkers
performed worse than multi-gene biomarkers across all
partitions. Multi-gene biomarkers also exhibited a much
more stable distribution of performance across partitions,
with the same unimodal behaviour recurring at roughly
the same level of prognostic ability in every meta-dataset
partition. This trend was consistent across all signature
sizes. Furthermore, larger geneSIMMS biomarkers always
outperformed their smaller geneSIMMS counterparts,
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Fig. 2 The distribution of biomarker performance on each of the three models tested in four selected meta-dataset partitions. GeneSIMMS
biomarkers are separated according to size and the performance of the single-gene AURKA model is displayed. Highlighted datasets comprise the
testing cohort in each partition. The total number of patients in the testing cohort is also provided. The plots for the remaining eight partitions can
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suggesting some advantage in using more features in a
prognostic model.

Although the AURKA single-gene biomarker was within
the top percentile of performance distributions among its
single-gene peers in each partition, it was consistently out-
performed by geneSIMMS biomarkers, especially those
of larger sizes (Table 2). The proportion of pairDiffer-
ence biomarkers offering better prognostic accuracy than
AURKA alone was very low. However, thanks to the large
number of two-gene models we tested, the total number
of models outperforming AURKA was very high: at least
1000 such models in eight out of the twelve partitions and
as many as 182,019 models in one partition. By contrast,
the number of multi-gene models outperforming AURKA
was very large, reaching 7.2% of all 5-gene models in one
partition. Indeed the median partition showed ~45% of
100-gene models surpassing AURKA performance. It is
thus clear that large numbers of multi-gene models can
outperform the best univariate models.

Because most biomarker discovery studies report and
recommend a single ‘best’ biomarker for use, we reran
AURKA and geneSIMMS-5 with a more restrictive
method to directly compare the best reported biomarker
from each of the 12 partitions. The |log2HR| was sig-
nificantly higher for the best geneSIMMS-5 biomarkers
(Paired T-Test; P = 2.33 x 10712 mean |log2HR’ =
0.952) than AURKA (mean ’longR‘ = 0.384). This con-
sistent gain in biomarker performance supports the usage
of multi-gene methods over the single-gene approach.

Using multi-gene biomarkers does not compromise
performance stability

We observed a large number of multi-gene biomarkers
outperforming the AURKA single-gene biomarker in each
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of the twelve partitions we tested. However, this does not
necessarily imply that multi-gene biomarkers are more
useful than using AURKA alone for outcome prognosis.
The vulnerability of multi-gene models to over-fitting is
well-known, which means that the stability of an indi-
vidual biomarkers’ performance across different meta-
dataset partitions is just as important as their performance
in any particular partition. As such, we tested the repli-
cability of biomarker performance using the Concordance
Correlation Coefficient metric (CCC) and calculated the
corresponding bootstrapped confidence interval of stabil-
ity as described in the Methods section.

Biomarker stability showed clear variation between dif-
ferent models when all partitions were considered as
well as when subsets of partitions were tested (Fig. 3).
PairDifference biomarkers and geneSIMMS-5 biomarkers
exhibited the most consistent performance in different par-
titions. GeneSIMMS-50 and geneSIMMS-100 biomarkers
fared the most poorly in this regard, suggesting there is
an optimal size for multi-gene biomarkers. The stability
of single-gene biomarkers fell between these two groups.
Using a paired Mann-Whitney rank test, we found that the
924 CCCs calculated for each biomarker set were signifi-
cantly different at the p = 1 x 107* level from that of all
other sets. This suggests multi-gene markers, specifically
signatures of five genes, can be both more prognostic and
more stable than single-gene markers. On the other hand,
multi-gene signatures of 50 or 100 genes attain enhanced
accuracy at the expense of greater potential to over-fit.

We also considered the biomarkers that outperformed
the AURKA single-gene model in all twelve partitions.
No such biomarkers were found using the single-gene
and pairDifference models. However, one geneSIMMS-
5 biomarker, 56 geneSIMMS-50 biomarkers, and 213

Table 2 The proportion of biomarkers outperforming the AURKA single-gene biomarker on each of the twelve meta-dataset partitions

by model

Partition single-gene pairDifference geneSIMMS-5 geneSIMMS-50 geneSIMMS-100
P1 375 x 1074 225%x107° 122%x 1073 0.0289 0.070

P2 7.50 x 1074 175 %x 1074 6.96 x 1073 0.268 0570

P3 113 x 1073 918 x 107 460 x 1073 0.208 0488

P4 6.50 x 1073 983 x 1074 0.0178 0.380 0.635

P5 875 x 1074 244 x 107° 636 x 1074 0.129 0334

P6 3.13x 1073 143 x 1073 0.0217 0407 0624

P7 7.50 x 10~4 131 x107° 115 x 1074 772 x 1073 0.0292

P8 138 x 1073 569 x 1073 0.0721 0.925 0.992

P9 125%x 1074 3.72 x 1072 103 x 1073 0.199 0483

P10 0 0 3.00 x 1076 123 x 107 427 x 10~*
P11 6.25 x 1074 211 %x 1074 539 x 1073 0.191 0451

P12 363 x 1073 668 x 107° 397 x 1073 0.180 0445

Note that in the case of geneSIMMS, each biomarker size is considered separately
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Fig. 3 Concordance correlation coefficients of biomarker performance.
CCCs from all partitions are displayed by biomarker type (bars). CCCs
were re-calculated for all 924 possible subsets of partitions of size six
to obtain the 2.5th - 97.5th percentile ranges (whiskers)

geneSIMMS-100 biomarkers satisfied this criterion. Inter-
estingly, only three of these 270 geneSIMMS biomarkers
included the AURKA gene, indicating that using combina-
tions of genes that are individually less strongly associated
with outcome prognosis can still lead to superior prog-
nostic performance. These 270 biomarkers are listed in
Additional file 2.

Discussion

We comprehensively tested the population of possible
biomarkers on twelve unique meta-dataset partitions,
which allowed us to observe several intrinsic properties of
breast cancer prognostic models. Risk scores calculated by
geneSIMMS tended to be much more closely associated
with patient outcome than those calculated by models
using only one or two genes. However, when larger gene
sets were used with geneSIMMS, an over-fitting effect
was evident and the performance of individual biomarkers
showed less stability across different training and test-
ing patient cohorts. High performance and high stability
were found to be optimally balanced in biomarkers of
five genes, which outperformed single-gene and gene-pair
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biomarkers across all metrics. However, it is important
to note that the optimal signature size may vary across
disease types.

The single-gene hypothesis proposed by Haibe-Kains
et al. [16] has been influential having been cited 101 times
in the last 10 years. It is therefore critical to re-evaluate
important hypotheses like this in the light of technolog-
ical and analytical advancements. While it is clear that
AURKA is one of the best single genes for predicting
breast cancer prognosis, it does not necessarily represent
the optimal biomarker. To the contrary, many randomly
selected gene sets consistently outperform AURKA. This
result highlights the critical need for continued devel-
opment of feature selection algorithms that can max-
imize this information content. Similarly, our results
highlight the importance of considering generalization
error carefully when making distributional claims, as any
single dataset or partition of training/testing datasets may
obscure general trends.

Nevertheless, the single-gene hypothesis may remain
valid for other diseases, or even for specific breast
cancer subtypes. Multi-gene biomarkers may be better
suited to capturing the complex effects of heteroge-
neous diseases such as breast cancer on mRNA abun-
dance levels, but this may not be true for diseases
that only affect a small number of loci or transcrip-
tomic pathways. The judicious comparison of the perfor-
mance of single-gene and multi-gene biomarkers across
many different diseases would greatly aid in the develop-
ment of clinically useful outcome prognoses from gene
expression data.

Conclusions

Overall, this study highlights the importance of continu-
ally re-evaluating older genomic hypotheses in the context
of new data and methods (i.e. geneSIMMS). We were able
to test our models on a meta-dataset of 4960 patients,
over four times the size of the 1,089 patient cohort used
by Haibe-Kains et al. [16]. Furthermore, our access to
a sizeable compute cluster allowed us to test a large
number of all possible gene combinations rather than
relying solely on gene sets identified using unproven fea-
ture selection algorithms. Future advances in computing
and biotechnology will enable even deeper probes and
characterization of prognostic biomarker properties.
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