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Abstract
Astrocytes are the most abundant cell type in the central nervous system
and have diverse functions in blood–brain barrier maintenance, neural
circuitry formation and function, and metabolic regulation. To better
understand the diverse roles of astrocytes, we will summarize what is
known about astrocyte development and the challenges limiting our
understanding of this process. We will also discuss new approaches and
technologies advancing the field.
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Introduction
The central nervous system (CNS) is composed of multiple 
highly specialized cell types, including neurons, astrocytes,  
oligodendrocytes, microglia, and endothelial cells, each with  
different functions that are highly adapted to local circuitries1–3.  
Astrocytes are the most abundant glial cells in the CNS, repre-
senting between 20 and 40% of total cells in the brain4,5. Astro-
cytes were first described by Rudolf Virchow as a homogenous 
connective tissue supporting nervous system elements. Later, 
Ramon y Cajal and others investigated the cellular structure of the  
brain and observed that different brain regions contain  
morphologically distinct neuronal and glial cell types.

Over the past century, astrocytes have emerged as a bridge to 
the outside world for neurons with diverse physiological roles in 
neural development, neural circuit function, neurotransmission, 
blood–brain barrier formation, and metabolic support. Astrocytes 
form the neurovascular unit between neurons and endothelial 
cells, and their end-feet structure maintains brain homeostasis by  
regulating water, amino acid, and neurotransmitter uptake. Astro-
cytes also have the ability to monitor the ongoing local activity 
of synaptic circuits with their elaborate processes ensheathing 
synapses and forming tripartite synapses. Astrocytes express neu-
rotransmitter receptors that sense synaptic activity and respond 
to it by elevating astrocytic Ca2+ and secreting neuroactive  
molecules back to synapses. Despite these known roles, how 
astrocytes develop and mature to form functional neurovascu-
lar circuits to carry out these diverse functions remains relatively  
unknown1–4.

Previous studies have shed light on how neurons and oligodendro-
cytes develop in a stepwise fashion, where they specify, undergo 
terminal differentiation, and enter the postmitotic stage. Since 
the initial observation by Ramon y Cajal, hundreds of types of 
neurons have been identified and functionally characterized,  
while astrocytes are still broadly classified as either protoplasmic 
or fibrous. The lack of markers and tools to access the precursor 
and intermediate stages of astrocyte development has hindered  
characterization of their development and heterogeneity. Further 
complicating their characterization, astrocytes are more plastic 
than neurons and proliferate after specification. However, with 
their critical and diverse functions that actively regulate neuronal  
function, it is essential to understand where, when, and how  
astrocytes are generated during development.

Stages of astrocyte development
Neural stem cells (NSCs), or radial glia, generate astrocytes 
through complex intrinsic and extrinsic cellular processes. This 
sequential series of events results in mature astrocytes that 
actively participate in CNS physiology. Conserved mechanisms  
regulate gliogenesis in the spinal cord and brain, although the 
process begins early, at embryonic day 11.5 (E11.5), in the spinal 
cord and later, at E18, in the brain. Whereas spinal cord astrocytes 
are derived from the ventricular zone (VZ), forebrain astrocytes 
are from the ventricular–subventricular zone (V-SVZ)6. Below,  
we discuss recent progress toward understanding astrocyte 
development and maturation, beginning with patterning and  
specification, proliferation, and maturation.

Astrocyte specification and developmental 
patterning
During CNS development, neurons are specified from NSCs before 
glial cells, and radial glia serve as a scaffold for this process. 
Signaling pathways and dynamic transcription factor expression  
control these cell fate decisions. Previous studies have focused 
on the spinal cord VZ, where the timing of the gliogenic switch 
in NSCs is clearly defined. In the VZ, neurogenesis ceases at 
E11.5 and gliogenesis commences at E12.5, and transcription fac-
tors sex-determining region Y-box 9 (Sox9) and nuclear factor-I 
A (NFIA) play critical roles during this developmental interval. 
Sox9 and brain-specific homeobox/POU domain protein 2 (Brn2)  
regulate NFIA induction and glial specification7. NFIA is both 
necessary and sufficient for embryonic gliogenesis8, and the asso-
ciation between Sox9 and NFIA regulates genes essential for 
astrocyte migration and maturation9 (Figure 1). In neocortical  
development, zinc finger- and BTB domain-containing protein 20 
(Zbtb20) was shown to promote astrocyte specification while sup-
pressing the production of oligodendrocyte precursors (OPCs), 
and knockdown of either NFIA or Sox9 suppresses Zbtb20  
activity10.

Notch signaling is another important regulator of cell differen-
tiation. In early development, Notch activation maintains the 
NSC pool in addition to inducing NFIA. NFIA maintains the 
continued inhibition of neurogenesis through induction of the  
Notch effector Hes5, further clarifying the role of Notch signal-
ing in early gliogenesis8. NFIA associates with astrocytic gene  
promoters such as GFAP to disrupt their methylation through 
association with DNA methylating dissociation of the DNA  
methylating enzyme 1 (Dnmt1)11,12. Loss of function of Notch 
effectors such as Hes5 leads to loss of glia, and gain of function 
produces more glia; however, Notch activity alone is insufficient 
to drive precocious astrocytic differentiation; thus, Notch signaling  
is permissive and not instructive for gliogenesis13 (Figure 1).

During early development, the embryonic spinal cord is pat-
terned throughout the dorsoventral axis by a combination of  
morphogens—sonic hedgehog (Shh), BMPs, and Wnts—which 
regulate the combinatorial expression of homeodomain tran-
scription factors14. These patterning principles govern what type  
of progenitor cells will be generated from.

The first evidence of patterning during astrocyte development 
emerged in 2005, when Muroyama et al. showed that the 
basic helix-loop-helix (bHLH) transcription factor Scl/tal1  
(stem cell leukemia, Tal) promotes astrogenesis via a cross- 
antagonistic relationship with the oligodendrocyte transcrip-
tion factor Olig215. At the p2 and pMN domain boundary, 
the interaction between Scl and Olig2 allowed p2 domain to  
generate astrocyte precursors while the pMN domain produced  
oligodendrocyte precursors15.

When expressed in different VZ domains, the transcription  
factors Pax6 and Nkx6.1 yield three distinct astrocyte subtypes 
(VA1, VA2, and VA3, dorsal to ventral) that arise from the p1,  
p2, and p3 progenitor domains, respectively16. These populations 
are further demarcated by differential expression of Reelin and 
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Slit. Tsai et al. used lineage tracing with Cre recombinases  
to specifically target these domains and demonstrated that astro-
cytes arise from different segmental domains throughout the 
brain and spinal cord17. When specific astrocyte populations 
were ablated with a Cre-dependent diphtheria toxin A (DTA)  
approach, the authors observed that neighboring astrocytes 
from other progenitor domains were unable to migrate, suggest-
ing that there are region-specific neuron–astrocyte interactions 
following developmental patters. This domain-specific identity 
is also observed in forebrain astrocytes, which showed dorsal- 
ventral restriction depending on the developing region they  
derived from, as a result of strictly radial migration17. Overall, 
these studies illuminate the transcriptional code determining  
astrocytes’ regional identity and suggest that patterning also  
may lead to functional diversity.

Before terminal differentiation, astrocyte precursors migrate 
from VZ and SVZ along the radial glial processes. Newborn 
astrocytes continue to divide locally after migration. Initial stud-
ies identified these targeted precursor astrocytes with Glast18,  
a glutamate aspartate transporter whose induction coincides with 
the gliogenic switch. A recent study identified new glial mark-
ers for the intermediate stages of astrocyte development using 
a Glast reporter mouse, including Asef, Gpr37l1, Mfge8, and  
Tom1l119. Asef is a guanine exchange factor that has a role in cell 
migration, and functional studies in vivo have shown that Asef 
is required for AQP4 expression on the end-feet of spinal cord  
astrocytes19.

Our understanding of the stepwise specification and migration of 
astrocytes is improving with newly developed tools for cell line-
age mapping, spatial and temporal profiling, and functional stud-
ies. However, several important questions remain. For instance, 
which other factors trigger the gliogenic switch in NSCs is  
an ongoing area of investigation. Furthermore, owing to the lack 
of markers for astrocyte precursors, it has been difficult to dissect 
the signaling mechanisms responsible for astrocyte specification 
and migration. Whether we can use the recently identified and  
functionally characterized intermediate markers to address  
these remains an open question.

Astrocyte differentiation
The differentiation trajectory of astrocytes in the postnatal mouse 
brain remains somewhat controversial10,20,21. In one study, Nagao 
et al. identified astrocyte-lineage restricted progenitors using 
astrocyte lineage-specific marker Zbtb20 along with markers that 
label both astrocyte and oligodendrocyte precursors, Sox9 and  
Olig210. Using immune co-staining, the group identified the 
presence of Zbtb20+/Sox9+/Olig2+ triple-positive cells in the 
mouse postnatal day 3 (P3) neocortex and demonstrated that  
Zbtb20+/Olig2+ cells were devoid of Sox10, a marker of  
OPCs10. However, in other studies, several groups have iden-
tified progenitor cells that exhibited bipotent signatures,  
expressing cell markers of both the astrocytic (Aldh1l1, AldoC, 
Aqp4, and Slc1a3) and oligodendrocytic (Pdgfra, Olig1, and 
Olig2) lineages by microarray, immunofluorescent co-staining, 
and single-cell sequencing20,21. This inconsistency may stem 

Figure 1. Molecular signaling pathways involved in astrocytogenesis. Neural stem cells (NSCs) express astrocytic genes in response 
to several signaling molecules, including bone morphogenic protein (BMP) families, the leukemia inhibitory factor/ciliary neurotrophic factor 
(LIF/CNTF), and Notch pathway. BMPs signal primarily through SMAD, whereas LIF/CNTF activates the JAK/STAT pathways. The active 
SMAD–STAT complex bridged by p300 goes directly into the nucleus, binds to the promoter, and activates astrocytic genes such as GFAP 
and S100. Another important pathway that regulates astrocytogenesis is the Notch pathway. Notch ligands will activate Notch receptors and 
activate the expression of Hes genes, Hes1/5. Hes1, Hes5, and activated forms of Notch receptors induce the expression of astrocytic genes 
and glial promoting transcription factor nuclear factor-I A (NFIA). In early development, a pre-formed gliogenic loop serves to facilitate the 
association between sex-determining region Y-box 9 (Sox9) and brain-specific homeobox/POU domain protein 2 (Brn2), which also drives 
expression of NFIA. NFIA is both necessary and sufficient for the induction of astrocytic genes.
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from the current use of a single marker (for example, Aldh1l1 
only or GFAP only) to identify astrocytes. Similar to the hemat-
opoietic system, specific lineages may be better character-
ized by combinatorial codes of multiple cell markers. Recent 
advances in single-cell sequencing technology should enable us 
to discover and validate combinations of cell markers that better  
demarcate the intermediate stages of the astrocyte lineage.

Astrocytes express canonical markers before initiating  
terminal differentiation. One of the markers expressed at a later 
stage is glial fibrillary acidic protein (GFAP), which provides 
structural stability and motility to astrocytes. Several groups 
generated GFAP-Cre mouse lines to target astrocytes, but these 
lines also target neural progenitor cells11–13,18,22. Although GFAP 
is commonly used as a marker, it is weakly expressed in proto-
plasmic astrocytes in rodents. Other currently used astrocytic  
markers include calcium-binding protein S10023, glutamate trans-
porter GLAST24, aldolase C25, CD4426, glutamine synthase (GS), 
and fatty acid-binding protein FABP7. Aquaporin 4 (AQP4) and  
connexins 30 (Cx30) have been used as astrocyte end-feet  
markers27,28. These markers are less specific than GFAP, as all of 
them also can be expressed in neurons, oligodendrocytes, or epend-
ymal cells14. Glutamate transporter, EAAT2, also known as GLT-1, 
is expressed in astrocytes and neurons, although 80% of total 
EAAT2 protein is expressed in astrocytes in the hippocampus29.  
These markers can be used in a combinatorial approach. For 
example, Miller et al. used a specific promoter region of  
GLT-1 to generate a reporter mouse that targets gray  
matter astrocytes in the cerebral cortex, which interestingly are 
absent in the hippocampus30. The authors further analyzed the  
transcriptome of this astrocytic population and determined its 
unique molecular profile, identifying a pathway-specific to it 
with the expression of the genes norrin and LRG6, which have 
roles in dendritic spine maintenance in this population30. (Also,  
see the “Molecular maturation” section).

Recent genetic profiling studies identified aldehyde dehydroge-
nase family 1, member L1 (ALDH1L1), a metabolic enzyme, as 
the most homogenously expressed astrocyte marker throughout 
the brain. Aldh1L1 was reportedly used to stain cortical astro-
cytes, whereas hippocampal astrocytes are widely stained with  
GFAP31. Morel et al. also used a combinatorial approach with 
the Aldh1L1-GFP transgene reporter mouse with the EAAT2- 
tdtomato mouse line and identified a tdT−eGFP+ astrocyte popula-
tion that is selectively localized at layers I and II in the cortex31. 
Furthermore, this population of cells showed increased resting 
membrane potential and resistance and reduced potassium chan-
nel Kir4.1 expression31. The recently developed Aldh1L1-CreER  
transgenic mice should allow astrocyte-specific manipulations32.

Transcription factors NFIA and SOX9 are also non–stage-spe-
cific astrocytes markers, although NFIA also is expressed in 
oligodendrocyte precursor cells and some neurons. On the 
other hand, Sox9 is not expressed in neurons and recently was  
identified as an astrocyte-specific marker in the adult brain. Hence-
forth, Sox9 may be an important tool to access astrocytes in the 
adult brain32–34.

GFAP expression is used as an indicator of astrocyte matu-
ration and has given significant insight into the mechanisms  
regulating astrocyte differentiation. Previously, it was used to 
identify the JAK-STAT pathway and BMPs and Notch signal-
ing as central players controlling astrocyte differentiation from 
precursor cells35,36. Recently, a large-scale interchromosomal  
interaction study identified Brahma-related gene 1 (BRG1), an 
ATP-dependent chromatin remodeling factor, as clustering with  
the GFAP gene and regulating GFAP expression37.

In addition to these general astrocyte markers, astrocyte mark-
ers for anatomically distinct populations have been identified in 
recent studies. Molofsky et al. used the Aldhl1L1-GFP transgene 
reporter mouse to identify distinct molecular differences between 
dorsal and ventral astrocytes and identified Sema3a, an axon guid-
ance protein, as being highly expressed in ventral astrocytes38. 
Ventral region motor neurons α–MN failed to maintain axon initial  
segment orientation following loss of astrocytic Sema3a, affecting 
their survival and function. That study was the first to show how 
positional cues by diverse astrocytes maintain specific circuitry38. 
Inwardly rectifying potassium channel, Kir4.1, also was shown 
to be enriched in astrocytes of the spinal cord ventral horn, which 
support the survival and function of motor neurons39. Another 
study compared adult striatal and hippocampal astrocytes and  
identified μ-crystallin Crym as a striatal astrocyte-specific marker2. 
Although the functional significance of this protein is unknown, 
it is the first marker that defines a region-specific astrocyte popu-
lation in the brain. These studies indicate that the molecular and 
anatomical properties of astrocyte subpopulations may yield  
insight into their function.

Although our knowledge of astrocyte biology continues to 
expand, how mature astrocytes are formed and differentiate to 
carry out their diverse roles remains unclear. Historically, GFAP 
has been used to understand how external inputs affect astro-
cyte maturation, even though it is not the most comprehensive  
astrocyte marker in rodents. In the future, identifying region-
specific astrocyte markers may allow us to study specific 
circuits. In addition, we have not yet identified a develop-
mental endpoint for astrocytes. In the CNS, terminally differ-
entiated neurons and oligodendrocytes are postmitotic while  
GFAP-expressing astrocytes retain their ability to proliferate  
(discussed in further detail in the next section).

Astrocyte proliferation
Neurogenesis is complete in most regions of the brain at birth, and 
the same number of neurons is maintained throughout life40. On 
the other hand, concurrent with brain growth during this period, 
the number of glial cells increases six- to eight-fold during the 
first three weeks of postnatal development41. Given the diverse  
functions of astrocytes, which facilitate maturation of the  
neuronal network during this critical developmental period42,  
it is important to understand where, when, and how astrocytes  
proliferate to reach their final population size.

Over the past few decades, it has become clear that cortical 
astrocytes are generated from four main sources in successive 
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yet overlapping chronological order43–45. Each stage of  
development takes place in a specific anatomical region; astro-
cyte differentiation first occurs from radial glia in the VZ of late  
embryonic-perinatal brain (1), followed by astrocytes in the cor-
tex of postnatal brain (2), progenitor cells in the SVZ of postna-
tal and adult brain (3), and NG2 cells in the cortex of postnatal 
or adult brain or both (4). However, as discussed above, astro-
cytes in the developing spinal cord are generated mainly from 
radial glia and astrocyte progenitors derived from radial glia at an  
earlier developmental stage. Below, we will focus on develop-
mental astrocytogenesis from the VZ and local proliferation in the 
cortex, which are major sources of astrocytogenesis and together 
contribute to about 80% of cortical astrocytes45. Meanwhile,  
we will briefly describe the process of astrocyte proliferation in 
the spinal cord. For SVZ and NG2 cell-derived astrocytes in the  
cortex, please see reviews43–45.

Astrocyte generation in the ventricular zone
Radial glia are bipolar cells with their soma residing in the VZ of 
the embryonic CNS. Radial glia extend and anchor one branch 
to the ventricular wall and the other to either the pial surface or  
blood vessels46–50. During the late embryonic stage, radial glia 

are the major source of astrocytogenesis, and their bipolar struc-
ture provides a scaffold for the migration of newborn astrocyte  
precursor cells50.

Astrocytogenesis from radial glia in the developing cortex occurs 
in two waves. In the first wave, glia progenitors or glioblasts are 
derived from the asymmetrical division of radial glia. Glioblasts 
are proliferative glia progenitors found between the late embry-
onic (E16–E18) and perinatal stage in the mouse cortex50,51.  
Upon generation, these glia progenitors migrate radially from 
the VZ/SVZ and undergo several rounds of proliferation on their 
way out, giving rise to multiple clusters of astrocytes in the same 
cortical column of the postnatal cortex52–54. The second wave, 
which occurs at the terminal stage of differentiation, results 
from the direct transformation of radial glia. Between the late  
embryonic and early perinatal stage, radial glia detach their 
anchorage from VZ and lift their soma toward the pial surface,  
resulting in unipolar transitional radial glia (tRG). These tRG  
undergo terminal differentiation to give rise to protoplas-
mic and fibrous astrocytes in the gray matter and white  
matter of cortex, respectively (Figure 2a). Using retroviral- 
mediated lineage tracing, organotypic slice culture, and confocal 

Figure 2. Astrocytogenesis from the ventricular/subventricular zones and outer cortical layers in the mouse developing central 
nervous system (CNS). (a) In the developing cortex, radial glia (RG) first give rise to glioblasts (GBs) during the late embryonic to perinatal 
period. Glioblasts undergo several rounds of division while migrating out along radial glia, resulting in clusters of astrocytes in the developing 
cortex. At the terminal stage of radial glial differentiation, radial glia detach from the ventricular zone and form unipolar transitional radial glia 
(tRG), which give rise to protoplasmic and fibrous astrocytes in the gray matter and white matter of the cortex, respectively. During the early 
postnatal period, differentiated astrocytes in the outer cortical layer undergo symmetric division and generate daughter astrocytes that exhibit 
astrocytic morphology and functions. (b) In the developing spinal cord, radial glia first proliferate during embryonic day 12 (E12) to 13, giving 
rise to radial glial pool which differentiates into astrocytes between E14 and postnatal day 3 (P3). Alternatively, radial glial cells differentiate 
into intermediate astrocyte precursors (IAPs), which proliferate during E14 to P3 and undergo terminal differentiation, ultimately giving rise to 
astrocytes. The progression from embryonic stage to adult is shown from left to right below each panel. Straight arrows indicate differentiation 
or maturation from one cell type to another. Circular arrows indicate proliferation. Dashed arrows indicate migration. CP, cortical plate; fAstro, 
fibrous astrocyte; GM, gray matter; iAstro, immature astrocyte; P, pia mater; pAstro, protoplasmic astrocyte; SVZ, subventricular zone; VZ, 
ventricular zone; WM, white matter.
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time-lapse imaging on rat brain slices at E16, Noctor et al. dem-
onstrated direct evidence that individual radial glial cells trans-
form into astrocytes at the terminal stage of differentiation49. The  
presence of tRG-derived astrocytes has been seen across  
several different species, including monkey, ferret, human, and 
rodents, suggesting an evolutionarily conserved mechanism that  
controls terminal differentiation of radial glia into astrocytes46–50.

Parallel to findings in the developing cortex, astrocytes in the 
spinal cord are also derived from radial glia, albeit earlier, 
between E14 and P317,55,56. Using Aldh1L1-GFP labeling, Tien 
et al. found two types of proliferative astrocyte precursors that  
exhibit distinct morphology56. Radial glia in the VZ were the 
first precursors identified, and the second were astrocyte pro-
genitors called intermediate astrocyte precursors (IAP)56. These  
IAPs are generated first from radial glia before migrating out of 
the VZ into the mantle zone, where they undergo several rounds 
of division before terminally differentiating into spinal cord  
astrocytes (Figure 2b).

Overall, these studies demonstrate that a conserved mecha-
nism exists between the embryonic cortex and spinal cord,  
wherein radial glial cells first give rise to lineage-restricted glia 
progenitors, which then undergo multiple rounds of division to  
give rise to astrocytes in the postnatal CNS.

Astrocyte proliferation in the outer cortical layer
Early lineage-tracing studies with VZ/SVZ progenitors iden-
tified clusters of astrocytes in the postnatal cortex, indicating 
local proliferation of cells during or after migration or both51,52,57. 
Although the field long hypothesized that these clusters derived 
from glioblasts50,51,56, one study found that local proliferation of 
terminally differentiated astrocytes in the outer cortical layer  
(I–IV) of the early mouse postnatal brain (P0–P2) may have 
contributed to some of these clusters58 (Figure 2a). These paren-
tal cells exhibited astrocyte characteristics, including mor-
phology, gap junction connectivity, and expression of astro-
cyte markers; however, they underwent symmetrical division 
to give rise to two functional daughter astrocytes. This sym-
metrical division was at its highest rate before P6 and decreases 
over time, resulting in the generation of 50% of total astrocytes  
at P2858. Consistently, Moroni et al. identified, in the rat postnatal 
cortex, astrocytes that expressed differentiated astrocyte markers 
S100b or Aldh1L1 that co-expressed proliferation marker Ki6759. 
The proliferation rate of these cells increased from P1 to P10 and 
decreased thereafter59. The consistent timeline between mouse 
and rat suggests a conserved mechanism regulating the prolifera-
tive potential of these differentiated astrocytes. Conversely, in the 
adult SVZ, lineage tracing demonstrated that adult SVZ-derived 
astrocytes are mostly postmitotic with no signs of local prolif-
eration60. These studies suggested that astrocytes derived from 
different sources may have different proliferative potential once 
differentiated. Henceforth, it will be important to delineate the  
mechanisms that endow postnatal astrocytes with their unique  
proliferative potential.

Despite the above discoveries, several unanswered questions remain 
in the field. For example, since not all differentiated astrocytes 
proliferate58, it will be important to uncover which mechanisms  

drive the transition between dividing to non-dividing astrocytes. 
Interestingly, Ge et al. demonstrated that dividing astrocytes 
exhibit slight changes in their membrane properties compared 
with surrounding non-dividing astrocytes, suggesting that dividing 
astrocytes retain or regain proliferative activity, which could result 
from local environmental cues or cell-intrinsic molecular mecha-
nisms or both58. Indeed, several previous studies identified clus-
ters of astrocytes residing around specific structures of the brain, 
including blood vessels, the pial surface, and corpus callosum,  
or specific layers of the cortex58,61, indicating the presence of 
local environmental cues. As of today, we still know very little 
about the cell-intrinsic mechanisms underlying the local prolif-
eration of differentiated astrocytes. Recent studies identified that 
YAP (yes-associated protein), a transcription co-factor of the  
Hippo signaling pathway, is required for the proliferation of 
astrocytes in postnatal neocortex via cooperation with the BMP-
SMAD signaling pathway62. However, more detailed study on 
the in vivo brain is needed. With new single-cell sequencing 
techniques, we should be able to delineate the transcriptomes of  
these dividing astrocytes and thus identify signaling pathways 
and associated environmental cues that alter gene expression to  
confer these dividing astrocytes with proliferative activity.

Studies during the embryonic stage have delineated gliogen-
esis during development, but our understanding of postna-
tal astrocytogenesis is still in the early stage. Answering the  
above questions should shed light on the mechanisms controlling 
postnatal astrocyte proliferation, which may be further applied  
in different contexts, including reactive gliosis and glioma.

Astrocyte maturation
For more than 100 years, astrocytes have been divided into 
two main subtypes—protoplasmic or fibrous—on the basis of 
differences in their cellular morphologies and location. Dur-
ing the late phase of astrocyte proliferation, astrocytes undergo 
morphological and molecular maturation to develop their  
characteristic “spongiform” morphology and tiny distal processes 
called perisynaptic astrocytic processes (PAPs). Protoplasmic 
astrocytes of the gray matter have PAPs with several stem branches, 
giving rise to fine branches that ensheathe neural synapses 
and form direct contact with blood vessels. Fibrous astrocytes of 
white matter have an elongated morphology and are in contact 
with myelinated axonal tracts and nodes of Ranvier63. Concur-
rent with morphological maturation, both astrocyte types begin to  
express functional proteins, including channels and receptors 
in their membrane, and secrete synaptogenic factors. Below, 
we summarize the current understanding of morphological and  
molecular astrocyte maturation and discuss their functional impli-
cations.

Morphological maturation
Early studies in postnatal rats delineated the stages of astrocyte 
morphogenesis in the hippocampus by using intracellular dye 
filling in fixed brain slices64. At P7 and P14, astrocytes appear 
smaller and less ramified, and a dozen long processes stick out 
from soma and end with filopodia-like structures. The territory of  
these astrocytes is not well defined, and long extending branches 
often invade the “territory” of neighboring astrocytes. By P21, 
most of the filopodia-like structures disappear and fine distal 
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processes appear, resulting in more ramified astrocytes with 
clear territories and processes with limited overlap among  
neighboring cells. Concurrently, from P7 to P14, astrocyte mor-
phology becomes more homogeneous, and by P28, spongiform,  
highly ramified protoplasmic astrocytes are abundant (Figure 3a).

As astrocyte morphology matures, a specialized structure 
called PAP also appears at the distal ends of astrocytes. PAPs 
are extremely fine (<50 nm) distal processes positioned near  
synapses65,66. This arrangement allows communication between 
astrocytes and synapses and originally formed the basis of the  
concept of the “tripartite synapse”64,67,68. To facilitate crosstalk  
with the synapse, PAPs exhibit high surface-to-volume ratios, 
providing ample space for the expression of channels, trans-
porters, and receptors in the membranes, including glutamate 
transporters GLAST and GLT169, potassium channel Kir4.170, 
and glutamate receptors mGluR 3 and 571 (see the “Molecular 
maturation” section). With this specialized anatomical arrange-
ment and protein localization, PAPs maintain homeosta-
sis of the local environment at the synaptic cleft69,70 and also  
actively crosstalk with synapses and regulate their function68,71.

Given the close relationship between astrocyte processes and 
synapses, it is not surprising that neurons or neuronal activ-
ity or both participate in astrocyte morphogenesis and PAP 
plasticity41,72–82. Previous studies demonstrated that astrocytes 
exhibit reduced territory and neuropil infiltration in dark-reared  
animals, providing evidence for the involvement of neuro-
nal activity in astrocyte morphogenesis73,74. Several subsequent 
studies demonstrated that the neurotransmitter glutamate is 
one molecular mechanism underlying this activity-dependent  
morphogenesis75–77. For example, using a VGluT1 KO mouse 
model in which VGluT1+ synaptic activity is silenced, Morel 
et al. found that excitatory synaptic activity is required for the 
growth of astrocyte territory and for perisynaptic astrocyte proc-
esses to ensheathe synapses75. Mechanistically, this crosstalk is 
mediated by an astrocytic glutamate receptor mGluR5-dependent 
signaling pathway and downstream intracellular Ca2+ activity75.  
The above findings suggest that the local environment 
guides astrocyte maturation, resulting in astrocyte processes  
that facilitate neighboring synapses.

Interestingly, a similar mechanism influences the structural plas-
ticity of PAPs in the adult brain. Using time-lapse imaging on 
organotypic brain slices and anesthetized adult mouse, Bernar-
dinelli et al. found that PAPs are highly motile at a time scale 
of several minutes76. This structural plasticity is regulated by 
synaptic activity and is dependent on astrocyte metabotropic  
glutamate receptor mGluR1/5. Moreover, astrocytic Ca2+ sig-
naling, presumably downstream of mGluR1/5, is both neces-
sary and sufficient for PAP motility. In that study, changes in 
PAP motility enhanced astrocytic coverage of the synapse and 
spine stability76. Currently, whether glutamate also regulates  
PAP maturation and motility during development remains 
unknown. However, the conserved function of glutamate in con-
trolling astrocyte morphology during development and PAP plas-
ticity in adulthood suggests that glutamate might also play a role in  
PAP development during the postnatal period.

Neurons also regulate astrocyte morphogenesis and PAP plas-
ticity via contact-dependent mechanisms, including neuro-
ligin–neurexin73, Notch signaling72, and EphA4/ephrine-A379,80,83. 
In the case of neuroligin–neurexin interaction, direct contact 
between astrocytic neuroligins and presynaptic neurexin is 
required and sufficient for astrocyte morphogenesis and PAP  
development in vitro and in vivo73. Moreover, the morphologi-
cal effect of astrocytic neuroligins is associated with the devel-
opment of local excitatory synapses. In the case of EphA4/
ephrine-A3, neuronal EphA4 and astrocytic ephrin-A3 interact 
to maintain the proper structure of spine morphology and also  
are required for proper expression of glutamate transporters in 
the astrocytic PAPs that surround the spine79,80,83. Together, the 
above studies reveal a contact-dependent reciprocal mechanism  
between astrocytic synapses and PAPs and demonstrate that 
astrocyte morphogenesis and synaptic formation and func-
tion are tightly linked components that coordinate during the  
critical period of postnatal synaptogenesis.

Although the biological consequences of neuron–astrocyte inter-
actions are well characterized, the downstream mechanisms 
by which their contact results in morphological changes or 
PAP plasticity are still limited. Interestingly, there is a plethora  
of evidence demonstrating the involvement of actin filaments and 
their regulators in astrocyte morphological changes, including 
Arp2/3, N-WASP, small GTPase Rho and Rac, and the effector 
ROCK, though mostly in vitro84–87. Henceforth, testing whether 
similar mechanisms exist under physiological conditions in vivo 
upon neuron–astrocyte contact and mediate astrocyte morphologi-
cal maturation during development would be necessary.

Molecular maturation
As astrocytes mature, their transcriptional profiles change  
dramatically to exhibit stage-specific signatures14,19,21,34,88,89. 
The genes that are induced during astrocyte maturation can be 
categorized into three groups on the basis of their locations:  
(1) membrane-bound proteins, including GLT1, Cx43, Cx30, 
Kir4.1, and Aqp4; (2) cytosolic proteins, including GFAP, S100b, 
AldoC, and GS; and (3) secretory proteins, including Thbs1,  
Gpc4, Gpc6, Hevin, and SPARC28,42,90–101 (Figure 3b).

The membrane-bound proteins necessary for astrocytic matura-
tion include channels and receptors, and this group of genes is 
enriched in subcellular structures such as PAPs and end-feet. 
Expression of these genes offers astrocytes their characteristic 
functions during postnatal development. For example, the gluta-
mate transporter GLT1 mediates glutamate uptake and regulates  
glutamate availability in the synaptic cleft, thus regulating synap-
tic transmission102,103. Cx43 and Cx30 form gap junctions to con-
nect neighboring cells, allowing the exchange of molecules (water,  
glucose, metabolites, and neurotransmitters) and ions (Ca2+, K+, 
and Na+) over long distances104,105. Kir4.1 is the major potassium 
channel of astrocytes and plays an essential role in buffering 
extracellular potassium built up during action potential. Aqp4 is 
the most abundant water channel in the brain and is important for 
water balance and also contributes to synaptic plasticity and learn-
ing/memory in the CNS27,106. During the morphological maturation  
of astrocytes, neurons often induce these genes72,75,107–109.
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Figure 3. Maturation of astrocytes during postnatal development demonstrated by progressive changes of morphology and gene 
expression. (a) Morphology of astrocytes matures in a stepwise manner. At postnatal day 7 (P7), astrocytes exhibit few branches and 
the overall morphology is simple and territories are small. Long protrusions are often seen extending into the territories of the neighboring 
astrocytes. The boundaries of territories are not well-defined yet. At postnatal day 14 (P14), the number of branches become greater 
and astrocyte territories become bigger. More branch points grow out of existing branches, resulting in more complex morphology. Long 
protrusions are seen less, and the boundaries of territories start to emerge. At postnatal day 21 to day 28 (P21–P28), astrocytes develop their 
characteristic “spongiform” complex morphology, and there is minimal overlap between neighboring astrocytes and clear boundary of each 
territory. (b) Genes that are induced during astrocyte maturation. Blue polygons indicate expression levels of the genes during development. 
Question marks indicate that the expression level beyond the developmental stage is unknown.
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The second group of genes is composed of enzymes and cytoskel-
eton proteins that serve as markers of mature astrocytes. How-
ever, each one of these genes labels only a portion of astrocytes, 
and there is some overlap in expression with other cell types.  
Comprehensive characterization and immunohistochemical  
validation of the timeline and astrocyte specificity of these 
markers during development remain open avenues of investiga-
tion. Furthermore, whether and how cytosolic proteins serve as 
members of combinatorial codes in different brain regions are 
interesting areas for future research. (Also, see the “Astrocyte  
differentiation” section.)

Astrocytic neuroactive molecules that regulate synaptogene-
sis make up the genetic signature of the third and final stage of 
astrocyte maturation. These molecules include Thbs1, Gpc4, 
Gpc6, Hevin, and SPARC, each of which regulates a different  
phase of synaptogenesis. These genes are concurrently expressed 
in astrocytes at corresponding developmental stages. For 
example, Thbs1, which is required for the formation of silent 
synapses, and Gpc4/6, which is required for inducing post-
synaptic active synapses, have the highest expression between  
P0 and P14 in developing astrocytes and are down-regulated 
thereafter. On the other hand, SPARC, an inhibitor of hevin and 
a negative regulator of synaptogenesis, is elevated only around 
P14 and remains expressed thereafter34,110–112. The temporal 
control of these synaptogenic genes suggests a well-defined  
mechanism that regulates different phases of synaptogenesis.

Despite the above findings, most studies to date have focused 
on neuron–astrocyte crosstalk via secretory molecules and 
membrane proteins (that is, glutamate, BDNF, mGluR,  
Eph–Ephrine, neuroligin–neurexin), and very little investigation 
of the upstream transcriptional mechanisms governs their 
expression. Thus, how transcription programs reciprocally 
respond to neuronal signaling is an important area of future  
research.

Borrowing a concept from neurons, astrocytes may respond to 
external environmental cues and tailor their course of matu-
ration to the local environment via transcriptional regula-
tion. With more advanced technology, including single-cell 
sequencing, super-resolution microscopy, in vivo live imaging,  
membrane-bound optical sensors for neurotransmitters and ions, 

fluorescence resonance energy transfer techniques, and three-
dimensional culture systems that reproduce astrocyte morphol-
ogy in vivo, we should be able to increase our understanding of 
the mechanisms that mediate crosstalk between neurons and 
astrocytes, and that facilitate maturation of astrocytes into the  
right subtype, at the right time and place.

In the future, it will be interesting to answer the following ques-
tions: (1) Do any cell types other than neurons (for example, 
neighboring astrocytes, endothelial cells, oligodendrocytes, 
or oligodendrocyte precursors) contribute to astrocyte matu-
ration? (2) How does transient Ca2+, an indicator of mature  
astrocyte activity, develop over this postnatal period? (3) Does 
Ca2+ activity also mediate astrocyte–neuron crosstalk to facili-
tate the co-maturation of PAPs and synapses? When address-
ing these questions, we should bear in mind that astrocytes  
are very responsive cells that preserve certain progenitor proper-
ties even in their mature form, a characteristic supported by recent 
studies looking into the transformation of reactive astrocytes in 
response to injury and trans-differentiation into neurons in vivo113,114. 
Thus, the astrocytic developmental program may be defined  
by proliferation, differentiation, and maturation over time, and 
their final refinement is regulated by the local environment, which 
gives rise to the optimal number, function, and morphology  
of astrocytes.

Closing remarks
Since Virchow first discovered astrocytes more than a hundred 
years ago, much progress has been made in our understand-
ing of the processes by which they are specified, migrate, pro-
liferate, and mature. However, there remain significant gaps 
in our characterization of these processes and our knowledge  
regarding molecular mechanisms underlying astrocyte phenotypes. 
Some crucial outstanding questions include (1) which upstream 
signaling pathways regulate the proliferation of astrocytes in the 
postnatal cortex? (2) Do transcription factors serve as immedi-
ate early genes that govern astrocyte maturation in accordance 
with the local synaptic environment? (3) Is Ca2+ activity mature 
during the period of astrocytic morphological and molecular  
maturation? With the recent explosion of knowledge and tools 
in the glial field, the future is bright, and we are looking for-
ward to a better understanding of astrocyte development and the  
mechanisms underlying it.
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