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High BMI levels associate with reduced mRNA expression of
IL10 and increased mRNA expression of iNOS (NOS2) in
human frontal cortex
JK Lauridsen1,7, RH Olesen1,7, J Vendelbo1, TM Hyde2,3,4, JE Kleinman2,3, BM Bibby5, B Brock1, J Rungby1,6 and A Larsen1

Several studies link increasing body mass index (BMI) to cognitive decline both as a consequence of obesity per se and as a sequela
of obesity-induced type 2 diabetes. Obese individuals are prone to a chronic low-grade inflammation as the metabolically active
visceral fat produces proinflammatory cytokines. Animal studies indicate that these cytokines can cross the blood–brain barrier.
Such crossover could potentially affect the immune system in the brain by inducing gene expression of proinflammatory genes.
The relationship between obesity and neuroinflammation in the human brain is currently unknown. Therefore we aim to examine
the relationship between BMI and gene expression of central inflammatory markers in the human frontal cortex. Microarray data of
141 neurologically and psychiatrically healthy individuals were obtained through the BrainCloud database. A simple linear
regression analysis was performed with BMI as variable on data on IL10, IL1β, IL6, PTGS2 (COX2) and NOS2 (iNOS). Increasing BMI is
associated with a decrease in the mRNA expression of IL10 (P= 0.014) and an increase in the expression of NOS2 (iNOS; P= 0.040).
Expressions of IL10 and NOS2 (iNOS) were negatively correlated (Po0.001). The expression of IL10 was mostly affected by
individuals with BMI ⩾ 40. Multiple linear regression analyses with BMI, age, sex and race as variables were performed in order to
identify potential confounders. In conclusion, increasing BMI could affect the IL10-mediated anti-inflammatory defense in the brain
and induce iNOS-mediated inflammatory activity.
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INTRODUCTION
The World Health Organization (WHO) estimates that about 1.9
billion adults are currently overweight,1 and obesity represents a
massive economic burden on health-care systems worldwide.
Much evidence links obesity in midlife to increased risk of
dementia in later life.2–7 However, a recent large-scale retro-
spective study of 2 million individuals reported that midlife
obesity associates with a lower risk of dementia.8 To what extent
obesity should be considered an independent risk factor for
dementia remains to be settled. A better understanding of the link
between obesity and neurodegeneration would be beneficial in
the search for new therapeutic targets for common neurodegen-
erative diseases with an inflammatory component, such as
Alzheimer´s disease.
Several factors could contribute to an increased risk of

developing dementia in the obese. Obese individuals have a
higher prevalence of atherosclerosis,9 endothelial dysfunction and
cerebral hypoperfusion. These are among the possible mechan-
isms of obesity-associated cognitive decline.10,11 Obese individuals
are more likely to develop diabetes, insulin resistance and/or
metabolic syndrome (MetS). MetS is characterized by elevated
plasma glucose levels, hypertension and dyslipidemia.12 It is
estimated that 20–25% of all adults suffer from MetS and about 1
in 11 adults have diabetes, of which 90% have type 2 diabetes.13,14

Type 2 diabetes patients carry a two to five times increased risk of

both Alzheimer´s disease and vascular dementia15 and MetS is a
known risk factor for cognitive decline and overall dementia risk.16

Although the literature is not conclusive on the role of MetS in
Alzheimer´s disease development,16 the severity of Alzheimer´s
disease is greater in patients with MetS.17 Likewise, the role of
insulin resistance in the brain is currently being investigated.18

Insulin resistance is linked to inflammation.19 Chronic systemic
low-grade inflammation is a cardinal feature in obesity as visceral
adipose tissue is a highly metabolically active organ that
contributes to an increased level of proinflammatory cytokines
such as interleukin (IL)-1β and IL6.20–22 Rodent studies have shown
that circulating proinflammatory cytokines can cross the blood–
brain barrier.23,24 The communication between the brain and the
periphery occurs via several routes.
Saturable carrier-mediated transport systems have been identi-

fied, which transport cytokines IL-1β, IL6 and tumor necrosis
factor-α from the blood to the central nervous system (CNS).23,24

Inflammatory cytokines interact with the circumventricular organs
and the brain endothelium24,25 and circulating proinflammatory
cytokines are believed to activate perivascular macrophages and
microglia, and also signal through receptors on the cerebral
endothelial cells.26,27 Systemic inflammation in rats triggers
microglia and astrocytes to induce IL10, tumor necrosis factor-α,
IL-1β and IL6 in cerebral cortex.27 Such activation can affect
microglia function within the brain, and microglia activity has
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been proposed as the link between inflammatory stimuli and
altered neuroplasticity.28–30

Knowledge about the relationship between obesity and
inflammation in the human brain is relatively sparse, but obesity
has been associated with decreased human white matter
integrity.31 In rodents, on the other hand, several studies have
shown that obesity and high-fat diets leads to increased gene or
protein expression of inflammatory cytokines in the hypothala-
mus, neocortex and hippocampus.19,32–37

The aim of the present study was to examine the hypothesis
that obesity per se will induce an inflammatory response in the
human brain. Utilizing microarray data from the BrainCloud
database (http://braincloud.jhmi.edu/) of the Lieber Institute for
Brain Development, this study analyzes microarray data from
frontal cortex in individuals without neurological and psychiatric
diseases at the time of death. The potential effect of body mass
index (BMI) on the gene expression of selected genes , that is, IL10,
IL6, IL1β, NOS2 (iNOS) and PTGS2 (COX2) was investigated by
performing simple linear regression analyses treating BMI as the
continuous variable including all adult individuals (age⩾ 18 years)
in the cohort (n= 141). In order to describe the impact of morbidly
obese individuals, additional simple linear regression analyses
were performed (n= 122) excluding all individuals with a BMI ⩾ 40
from the analyses.
Several studies indicate that increased inflammatory levels

are part of the aging process in the brain.38–40 In order to
investigate possible confounders, we performed multiple linear
regression analyses with BMI, age, sex and race as explanatory
variables.

MATERIALS AND METHODS
Demographics
The BrainCloud database (http://braincloud.jhmi.edu/) contains a collection
of microarray data on post-mortem samples from the human frontal cortex
(Brodmann’s area 9 and 46). The samples were collected from individuals
aged 0–78 years. The BrainCloud cohort only includes neurologically and
psychiatrically healthy individuals. Additional information on sex, race and
BMI (defined as: weight (masskg/heightm

2 ) at the time of death was also
available. We excluded individuals o18 years of age (n= 34), individuals
with known diabetes (n= 4) and individuals of whom no information on
BMI was available (n=17) leaving a total of 141 samples (77 African-
Americans, 56 Caucasians, 4 Asian and 4 Hispanic individuals) to be
included in the analyses. A detail description of the demographics can be
seen in Table 1. All tissue collection was performed with informed consent
obtained from the next of kin. All the data were subsequently anonymized
in accordance with the rules and regulations of the National Institute of
Health (using protocol 90-M-0142).

Genes
Gene expressions analyzed in this study are mRNA expression data. The
data were obtained through the use of a complementary DNA microarray
chip performed at the NIH/NHGRI microarray core facility using the
Illumina Oligoset HEEBO7 chip. A detailed description of tissue preparation
and data analysis of BrainCloud is available in Colantuoni et al.41

The genes Il10, 1L1β, IL6, PTGS2 (COX2) and NOS2 (iNOS) were selected
for the analyses.

Statistics
Simple linear regression analyses of the expression for each gene was
performed treating BMI as a continuous exploratory variable. To
investigate the impact of very high BMI, this analysis was also performed
on all individuals with a BMI below 40. This was choosen because of the
WHO classification of morbidly obesity (BMI ⩾ 40).42 To identify potential
confounders, we performed multiple linear regression analyses including
BMI, age, sex and race. This was done for each gene (each probe of each
gene if more than one probe was available) treating BMI and age as
continuous variables and race and sex as categorical variables. For each
data set assumptions of the multiple linear regression model was
examined. To this end, normal distribution of the residuals was
investigated by inspecting a QQ plot, whereas the linearity and the
homoscedasticity of residuals were assessed by inspecting a plot of the
residuals against the explanatory variables. Moreover, a squared residual
versus leverage plot was made in order to examine the impact of each
single observation of the model. No outliers were removed from the
analyses. To obtain data fulfilling the assumptions of the multiple
regression model, mathematical transformation of some gene expres-
sion/BMI data sets was performed, that is, transformation of the gene
expression data by an exponential function or the application of a natural
logarithm transformation of the variable BMI. In all analyses, a level of 0.05
was considered statistically significant. All analyses were carried out using
STATA version 12.1 (College Station, TX, USA).

RESULTS
Careful analysis of assumptions and squared residual versus
leverage plots confirmed that the data sets could be appropriately
analyzed applying a simple linear regression model and a multiple
linear regression model. The relationship between BMI and the
mRNA expression of the investigated inflammatory cytokines was
not affected by age, sex and race. See Table 2a and b and Figure
1a–e for the simple linear regression analyses, and see Table 3 for
the multiple linear regression analyses.

BMI is associated with an altered mRNA expression of IL10 and
iNOS, whereas BMI does not significantly affect the expression
level of IL1β, IL6 and PTGS2 (COX2)
Performing a simple linear regression analysis, we found a
significantly reduced IL10 expression P= 0.014 with increasing

Table 1. Demographics of the cohort divided according to the international WHO classification 57 of adult underweight, normal weight, overweight,
obesity and morbidly obesity

Demographic of the cohort divided according to WHO BMI classification

BMI n (141) Sex Race Mean age

Underweight o18.5 3 3M 3AA 45.0
Normal weight 18.5–24.99 33 15M/18F 15AA/17C/1A 44.2
Overweight 25–29.99 44 38M/6F 19AA/21C/3A/1H 45.5
Obesity 30–39.99 42 29M/13F 23AA/17C/2H 43.8
Morbidly obese ⩾ 40 19 8M/11F 17AA/1C/1H 41.9

Abbreviations: A, Asian; AA, African-American; C, Caucasian; BMI, body mass index; F, Female; H, Hispanic; M, Male; WHO, World Health Organization.
Additional information of the cohort. Mean BMI of the cohort: 30.8 (M: 29.9, F: 32.7), mean age of the cohort: 44.2 (M: 42.3, F: 48.3), the M/F ratio: 96M/45F and
race: 77AA/56C/4A/4H. Underweight: BMI o18.5, normal weight: BMI 18.5–24.99, overweight: BMI 25–29.99, obesity: BMI 30–39.99 and morbidly obesity
(obese class 3): BMI ⩾ 40.
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BMI (Figure 1a and Table 2a). The expression of NOS2 , that is, iNOS
(probe 29 594), was significantly upregulated with increasing BMI
(P= 0.040), whereas no significant effects of BMI were seen on
NOS2 probes 30 645 and 37 928 (P= 0.136, P= 0.801, respectively).
The mRNA expression of the proinflammatory cytokines IL1β, IL6
and PTGS2 gene (COX2) was not significantly affected by
increasing BMI (P= 0.485, P= 0.518 and P= 0.468, respectively;
Figure 1b–e and Table 2a).
In addition, we performed multiple linear regression models

including age, race and sex in the analyses confirming the overall
association between BMI and IL10 and NOS2 (iNOS) expression
(Table 3). There was no statically significant effect of age, race and
sex on the mRNA expression of IL10, IL1β, IL6, PTGS2 and NOS2
probe 29 594 and probe 37 928 (Table 3).
To examine the impact of the most markedly obese individuals

(BMI ⩾ 40), we applied a simple linear regression analysis for BMI,
omitting these individuals with BMI ⩾ 40 from the analyses.
Looking at the remaining 122 individuals, the expression of NOS2
remains significantly increased with increasing BMI for probes
29 594 and 30 645 (P= 0.006 and P= 0.006, respectively), whereas
probe 37 928 is not statistically significantly affected (P= 0.660;
Table 2b). On the other hand, the statistical significance of the BMI
induced alterations in the expression of IL10 seemed to depend
more on the highly obese individuals (P= 0.258, simple linear
regression analysis with n= 122). As seen in Table 2b, the mRNA
expression patterns of IL1β, IL6 and PTGS2 (COX2) were not
significantly different when looking only at individuals with a BMI
below 40.

The mRNA expression of IL10 is inversely correlated with the
expression of NOS2
Performing a simple linear regression analysis, we found that there
was an inverse relationship between IL10 and NOS2 mRNA
expression, assessing NOS2 with probe 29 594 (Po0.001;
Figure 1f). We found a similar significant inverse relationship

between IL10 and NOS2 expression with NOS2 probe 30 645 and
NOS2 probe 37 928 (P= 0.017 and P= 0.004, respectively).

Increasing age is reflected by a significant downregulation of
NOS2 (iNOS), whereas there is no significant effect of aging on
PTGS2 (COX2), IL6, IL1β and IL10
In the multiple linear regression analyses, increasing age was
associated with a significant downregulation of NOS2 (probe
30645) (P= 0.047; Table 3), whereas the expression of NOS2 probe
29 594 and probe 37 928 was not significantly affected by
increasing age (P= 0.981, P= 0.213, respectively). Aging had no
significant effect of the expression level of IL10, IL1β, IL6 and PTGS2
(COX2) (P= 0.205, P= 0.996, P= 0.467, P= 0.285, respectively) in
this cohort.

DISCUSSION
This study demonstrates that in prefrontal cortex of neurologically
and psychiatrically healthy humans, a gradual increase in BMI is
associated with discrete signs of altered gene expression , that is,
reduced mRNA expression of the anti-inflammatory cytokine IL10
and increased mRNA expression of NOS2 (iNOS), albeit with a
marked effect of the ~ 15% (n= 19) morbidly obese individuals on
the BMI-related changes in IL10 expression. To the best of our
knowledge, this study is the first to investigate the relationship
between BMI and inflammatory gene expression in human brains
without any neurological disease.
Accumulated evidence from animal studies suggests that active

inflammation is a neuronal stress factor, which may per se affect
higher mental functions such as cognition.26,30 Increased levels of
IL-1β and other inflammatory factors in CNS may damage synaptic
function and inhibit long-term potentiation.30 Experimental
studies of the endotoxin lipopolysaccharide in rodents support
the notion that activation of microglia partly occurs through the

Table 2. Summary of findings from the simple linear regression models with BMI as factor

a. Simple linear regression models with n= 141

Gene Probe number Probe type Factor Coeff. CI interval s.e. R2 F(1,139) P-value

IL10 8663 hHC BMI − 0.0137 (−0.0245; − 0.0028) 0.005 0.0425 6.17 0.014
IL1B 22 194 hHC BMI − 0.0041 (−0.0158; 0.0075) 0.006 0.0035 0.49 0.485
IL6 36 684 hHA BMI − 0.0028 (−0.0112; 0.0056) 0.004 0.0030 0.42 0.518
PTGS2 (COX2) 13 444 hHC BMI − 0.0038 (−0.0142; 0.0065) 0.005 0.0038 0.53 0.468
NOS2 (iNOS) 29 594 hHR BMI 0.1733 (0.0077; 0.3389) 0.084 0.0299 4.28 0.040
NOS2 (iNOS) 30 645 hHC BMI 0.2259 (−0.0718; 0.5235) 0.151 0.0159 2.25 0.136
NOS2 (iNOS) 37 928 hHA BMI − 0.0005 (−0.0048; 0.0037) 0.002 0.0005 0.06 0.801

b. Simple linear regression models with n= 122 (individuals with BMI440 are excluded)

Gene Probe number Probe type Factor Coeff. CI interval s.e. R2 F(1,120) P-value

IL10 8663 hHC BMI − 0.0124 (−0.0339; 0.0092) 0.011 0.0106 1.29 0.258
IL1B 22 194 hHC BMI − 0.0015 (−0.0246; 0.0217) 0.012 0.0001 0.02 0.900
IL6 36 684 hHA BMI − 0.0039 (−0.0211; 0.0132) 0.246 0.0017 0.20 0.652
PTGS2 (COX2) 13 444 hHC BMI − 0.0148 (−0.0348; 0.0052) 0.010 0.0175 2.14 0.146
NOS2 (iNOS) 29 594 hHR BMI 0.3610 (0.1045; 0.6175) 0.130 0.0608 7.77 0.006
NOS2 (iNOS) 30 645 hHC BMI 0.6578 (0.1928; 1.1228) 0.235 0.0614 7.84 0.006
NOS2 (iNOS) 37 928 hHA BMI − 0.0019 (−0.0104; 0.0066) 0.004 0.0016 0.19 0.660

Abbreviations: BMI, body mass index; CI, confidence interval; coeff., coefficient; hHA, human alternative exonic; hHC, human constitutive exonic; hHR, human
mRNA; IL, interleukin. (a) Simple linear regression models with n= 141. (b) Simple linear regression models with n= 122 (excluding individuals (n= 19) with BMI
⩾ 40 from the analyses). From the left: gene (the name of the investigated gene); probe number (the number identifying the probe in http://braincloud.jhmi.
edu/); probe type; factor (the parameter BMI in simple the linear regression model); coefficient (the arbitrary slope value); R2 of the model; F-value; P-value.
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toll-like receptor 4 (TLR4), subsequently resulting in the decrease
in long-term potentiation.29,43

Unlike the rodent studies showing a notable increase in IL-1β
within brain tissue,33,34,36 mRNA expression of the proinflamma-
tory genes IL1β, IL6 and PTGS2 (COX2) appeared to be unrelated to
BMI in our study sample. These differences might reflect that this
study focused on a neocortical area rather than hypothalamic
areas, which are outside the limitations of the blood–brain barrier.
One study does describe an association between inflammation in
cortical and hippocampal regions and BMI.34 Given the sample
size, we cannot be certain that additional inflammatory features
could be present selectively in extremely obese individuals, that is,
BMI4 40–45, but the present study sample included only 19
morbidly obese individuals limiting our analyses. Supporting an
effect of severe obesity, the association between BMI and IL10
expression was only significantly affected when analyses included
the 19 individuals with a BMI ⩾ 40. Expression of NOS2 was still
significantly upregulated when excluding the most obese
individuals, although expression of probe 37 928 designed to fit
an alternative isoform of the NOS2 gene was not statistically
affected by BMI. Both the importance of NOS2 isoforms for the
activity of this gene and the actual number of individuals
displaying this alternative splice variant in our cohort is
unknown—but our findings might simply reflect that only few
individuals display the alternative isoform detected by probe
37 928. Perhaps more surprisingly, the probe 30 645, which targets

a constitutive portion of the NOS2 gene and displays some overlap
with the location of the 29 594 probe, appears unaffected by
increasing BMI when including all 141 individuals. However,
looking at the coefficients for the BMI impact on gene expression
in Table 2a it appears that the effect of BMI on NOS2 expression is
similar for the two groups and a significant increase with BMI is
seen in both cases when excluding the 19 morbidly obese
individuals (Table 2b). With the heterogeneity of our sample—in
which variations in, eating habits, D-vitamin status and so on are
likely to be present—it is noteworthy that the mRNA expressions
of both IL10 and NOS2 (iNOS) display an association with
increasing BMI in this relatively small cohort. Still, this emphasizes
the need for further studies supporting the present microarray
findings, through deep RNA sequencing, qPCR and/or protein
expression.
Lending support to a potential biological relevance of the

altered mRNA expression of NOS2 (iNOS) in the present study, we
saw a negative relationship between the increased mRNA
expression of NOS2 and the reduced mRNA expression of IL10
(Figure 1f). An attenuated microglial production of nitric oxide as a
response of microglia cultured with IL10 has been reported in
rats.44 IL10 also downregulates mRNA expression of iNOS in
human macrophages.45 Moreover, IL10-deficient mice injected
with lipopolysaccharide respond with a higher expression of iNOS
than their wild-type counterparts.46 Despite the production of IL10
in adipose tissue22 others have found a reduced IL10 level in the
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Figure 1. The figure shows simple linear regression models with mRNA expression level of IL10, IL1β, IL6, PTGS2 and NOS2 probe 29594 in
relationship to increasing BMI (n= 141; a–e). See Table 2a for details. The y axis presents arbitrary mRNA expression values and the x axis
presents values of BMI. For NOS2 probe 29594 the y axis presents arbitrary mRNA expression values transformed to an exponential function
and the x axis presents values of natural logarithm transformed values of BMI. The figure also shows a simple linear regression model
describing the relationship between mRNA expression levels of IL10 in relationship to the mRNA expression levels of NOS2 (iNOS; probe
29594; n= 141). (f) For this model the y axis presents arbitrary mRNA expression values transformed to an exponential function and the x axis
presents values of mRNA expression of IL10 transformed to an exponential function. (a) The mRNA expression level of IL10 in relationship to
increasing BMI (P= 0.014). (b) The mRNA expression level of IL1β in relationship to increasing BMI (P= 0.485). (c) The mRNA expression level of
IL6 in relationship to increasing BMI (P= 0.518). (d) The mRNA expression level of PTGS2 (COX2) in relationship to increasing BMI (P= 0.468). (e)
The mRNA expression level of NOS2 (probe 29594) in relationship to increasing BMI (P= 0.040). (f) The mRNA expression level of IL10 in
relationship to the mRNA expression of NOS2 (iNOS; probe 29594), coefficient − 0.0819 (−0.1190; − 0.0447), F(1,139)= 19.00, R2= 0.120,
Po0.001). BMI, body mass index; IL, interleukin.
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blood of obese individuals.47 On the other hand, Esposito et al.48

found a higher IL10 level in the blood of obese individuals
compared with their lean counterparts, but also identified a
subgroup of both obese and non-obese individuals suffering from
MetS who had significantly lower circulating IL10 levels.
Local production of IL10 in CNS promotes neuronal and glial

survival.49 Reduced IL10 levels in the brain would likely increase
the sensitivity of the brain toward harmful stimuli. In a murine
study, IL10 in the subventricular zone modulates ERK and STAT3
activity. Via these factors, IL10 may play a role in adult
neurogenesis,50,51 hence linking Il10 levels to cognitive abilities.
Although the role of obesity as such in cognitive performance is
not clear-cut,52 several studies found a negative effect of obesity
on cognition, leading to mild cognitive impairment.53,54 Moreover,
there are beneficial effects of weight loss on brain function, such
as improved verbal memory, executive functions and global
cognition, have been reported in mild cognitive impairment
patients.53,54

In the present study we applied simple linear regression
analyses to evaluate the effects of BMI on gene expression. We
used multiple linear regression analyses to elucidate whether
potential confounders such as age, sex and race affected the
results. Similar effects of BMI were seen in both analyses. The
resulting R2 values in both the simple linear and the multiple linear
regression analyses are, however, while statistically significant,
relatively small. This is likely influenced by the nature of the
sample in which the number of individuals with very high BMI was
somewhat smaller than the large number with average BMI. We

believe our findings in conjunction with recent literature point
toward a need for further studies of both the impact of BMI and
the role of IL10 in the brain during metabolic and inflammatory
challenges.
When setting up the study, we included the effect of aging on

the investigated genes; however, little impact of age was seen
despite the apparent small but significant downregulation of
NOS2 on the 37 928 probe. In a previous study using the same
data set, others have found a correlation between age and
alterations in expression levels of NFKB1, TRAF6, TLR4, IL1R1, BDNF
and NGF among others. However, they have not investigated the
role of BMI.55 Others have described increased microglia activation
in the human brain with increasing age56 and an overall increase
in inflammatory activity, which might become detrimental in old
age.57 Our cohort is relatively young, and we cannot conclude that
neuroinflammation will not be a problem in senescent.
In conclusion, in a population of 141 non-diabetic adult

individuals with no known psychiatric or neurological disease,
we have found an association between altered gene expression in
prefrontal cortex and increasing BMI levels involving a decreased
mRNA expression of IL10 and an increased mRNA expression of
NOS2 (iNOS) despite indication of an age-related downregulation
of this gene in our population. In light of the increasing prevalence
of obesity, further research into the long-term effects of obesity
on the brain is needed to obtain a better understanding of
the underlying mechanisms linking obesity, aging and brain
inflammation.

Table 3. Summary of findings from the multiple linear regression models (n= 141) with BMI, age, sex and race as factors

Multiple linear regression models with n= 141

Gene Probe number Probe type Factors Coeff. CI interval s.e. R2 F(6,134) P-value

IL10 8663 hHC BMI − 0.0131 (−0.0247; − 0.0015) 0.006 0.064 1.53 0.027
Age − 0.0050 (−0.0128; 0.0028) 0.004 0.205
Sex 0.0019 (−0.2345; 0.2382) 0.119 0.988
Race − 0.0887 (−0.3205; 0.1431) 0.117 0.451

IL1B 22 194 hHC BMI − 0.0046 (−0.0169; 0.0077) 0.006 0.039 0.91 0.463
Age − 0.00002 (−0.0083; 0.0083) 0.004 0.996
Sex 0.1190 (−0.1326; 0.3706) 0.127 0.351
Race 0.1715 (−0.0752; 0.4183) 0.125 0.171

IL6 36 684 hHA BMI − 0.0060 (−0.0149; 0.0029) 0.004 0.042 0.98 0.184
Age − 0.0022 (−0.0082; 0.0038) 0.003 0.467
Sex − 0.1145 (−0.2955; 0.0666) 0.092 0.213
Race 0.1379 (−0.0397; 0.3155) 0.090 0.127

PTGS2 (COX2) 13 444 hHC BMI − 0.0040 (−0.0149; 0.0070) 0.006 0.035 0.82 0.475
Age − 0.0040 (−0.0114; 0.0034) 0.004 0.285
Sex 0.1369 (−0.0870; 0.3608) 0.113 0.229
Race − 0.0130 (−0.2326; 0.2066) 0.111 0.907

NOS2 (iNOS) 29 594 hHR BMI 0.2012 (0.0253; 0.3771) 0.089 0.044 1.03 0.025
Age − 0.00004 (−0.0035; 0.0034) 0.002 0.981
Sex 0.0479 (−0.0558; 0.1517) 0.052 0.362
Race − 0.0252 (−0.1266; 0.0762) 0.051 0.624

NOS2 (iNOS) 30 645 hHC BMI 0.2543 (−0.0535; 0.5621) 0.156 0.081 1.96 0.105
Age − 0.0061 (−0.0121; − 0.00009) 0.003 0.047
Sex 0.0946 (−0.0869; 0.2761) 0.092 0.305
Race − 0.1334 (−0.3109; 0.0440) 0.090 0.139

NOS2 (iNOS) 37 928 hHA BMI − 0.0004 (−0.0049; 0.0041) 0.002 0.067 1.59 0.859
Age 0.0019 (−0.0011; 0.0049) 0.002 0.213
Sex − 0.0854 (−0.1765; 0.0056) 0.046 0.066
Race −0.0197 (−0.1090; 0.0696) 0.045 0.663

Abbreviations: BMI, body mass index; CI, confidence interval; coeff., coefficient; hHA, human alternative exonic; hHC, human constitutive exonic; hHR, human
mRNA; IL, interleukin. From the left: Gene (the name of the investigated gene); probe number (the number identifying the probe in http://braincloud.jhmi.edu/
); probe type; factors (the parameters BMI, age, sex and race in the multiple regression model); coefficient (the arbitrary slope value for BMI and age; for sex it
means the difference in expression between males and females; for race it means the difference in expression between African-Americans and Caucasians); R2

of the model; F-value; P-value.
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