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Abstract

Human aging into senescence diminishes the capacity of the postural control system to adapt to the stressors of everyday
life. Diminished adaptive capacity may be reflected by a loss of the fractal-like, multiscale complexity within the dynamics of
standing postural sway (i.e., center-of-pressure, COP). We therefore studied the relationship between COP complexity and
adaptive capacity in 22 older and 22 younger healthy adults. COP magnitude dynamics were assessed from raw data during
quiet standing with eyes open and closed, and complexity was quantified with a new technique termed empirical mode
decomposition embedded detrended fluctuation analysis (EMD-DFA). Adaptive capacity of the postural control system was
assessed with the sharpened Romberg test. As compared to traditional DFA, EMD-DFA more accurately identified trends in
COP data with intrinsic scales and produced short and long-term scaling exponents (i.e., aShort, aLong) with greater reliability.
The fractal-like properties of COP fluctuations were time-scale dependent and highly complex (i.e., aShort values were close
to one) over relatively short time scales. As compared to younger adults, older adults demonstrated lower short-term COP
complexity (i.e., greater aShort values) in both visual conditions (p.0.001). Closing the eyes decreased short-term COP
complexity, yet this decrease was greater in older compared to younger adults (p,0.001). In older adults, those with higher
short-term COP complexity exhibited better adaptive capacity as quantified by Romberg test performance (r2 = 0.38,
p,0.001). These results indicate that an age-related loss of COP complexity of magnitude series may reflect a clinically
important reduction in postural control system functionality as a new biomarker.
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Introduction

Biological aging is commonly associated with a degradation or

breakdown in the complex dynamics of spontaneous physiological

fluctuations, such as the fractal patterns (i.e., similar temporal

structure at different time scales) in gait and motor activity [1].

Theses dynamic patterns are intrinsic and believed to arise from

the network of neuro-physiological control nodes that interact over

multiple time scales to regulate behavior and physiology [2], [3],

[4]. Thus, an age-related loss of ‘complexity’ may reflect alteration

within the neurophysiological control network and a correspond-

ing diminished capacity of the organism to adapt to the

innumerable stressors in everyday life [5].

The human postural control system enables bipedal stance

along with the capacity to adapt to more stressful conditions such

as standing on one leg, completing a cognitive task or reaching for

an object [6]. This control system comprises a host of sensory

elements integrated with spinal, supraspinal and peripheral motor

circuitry [7]. When standing quietly, the dynamics of postural

sway–as most commonly estimated by center-of-pressure (COP)

fluctuations beneath the feet–are complex [8]. For instance, COP

fluctuations possess robust fractal patterns at time scales from

milliseconds to minutes [9]. Within the older adult population,

sensory impairments [10], [11], frailty [12] and a history of falling

have each been linked to diminished COP complexity. However,

the effects of normal biological aging (i.e., without abnormal

sensory impairments, frailty, or history of falls) on COP complexity

are less clear, and the relationship between COP complexity and

the capacity to adapt to stressors has not been established.

Numerous metrics have been proposed to quantify the complex

characteristics of postural sway dynamics [2], [13], [14], [15]. One

metric is based on the assessment of fractal correlations in the

magnitude of COP fluctuations. In other words, instead of

examining the original anterioposterior and mediolateral data,

the degree of fractal correlation is computed from a new time-

series related to the absolute magnitude of COP displacement over

time [16] [17].
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It utilizes detrended fluctuation analysis (DFA) [18] to quantify

fluctuation amplitudes after ‘‘detrending’’ (i.e., removing local

trends) at different time scales. If a signal is fractal in nature,

fluctuation amplitudes behave as a power-law function of time

scale and the correlations of the signal can be characterized by a

DFA-derived scaling exponent, a. Under healthy conditions, the

value of a is typically close to 1.0 for many fractal physiological

fluctuations, such as heart rate, motor activity and neural activity,

indicating highly complex fluctuation patterns containing strong

multi-scale correlations [19], [20], [21] [22] [23] [24]. Both aging

and pathological conditions often disrupt these patterns, leading to

alterations in the fractal scaling exponent [25].

In the original DFA method, local trends at different time sales

are estimated by polynomial fitting [26] and the results are often

affected by nonlinear filters [27], trends [28], [29] and non-

stationarities [30]. In a recent study, Yeh et al [31] demonstrated

that a modified DFA method in which local trends are determined

by an adaptive data analysis technique termed empirical mode

decomposition (EMD) [32] more reliably identifies trends in

human heart beat dynamics as compared to traditional methods.

The purpose of this study was thus to establish the relationship

between COP complexity, as quantified by the EMD-DFA

technique, and system adaptability in healthy younger and older

adults. We tested the following hypotheses: 1) Aging from

adulthood into senescence is associated with altered long-range

correlations in COP magnitude fluctuations during quiet standing.

We expected that a values would be greater in older as compared

to younger adults. 2) The degree of long-range correlation within

COP dynamics is related to the adaptive capacity of the postural

control system. We therefore expected that a would be predictive

of performance in the one-leg standing balance test, a widely-used

clinical test of balance that identifies elderly persons at increased

risk of future functional dependence and frailty [33].

Materials and Methods

Ethics
We think all the methods used in the experiment like force

platform is very common without harm to body and the

experiment process is also permitted in clinical like the Romberg

test, which is very easy to take. This study and the consent

procedure were approved by the ethics committee of Academy for

Advanced Interdisciplinary Studies, Peking University.

Subjects
Two groups of healthy adults subjects participated in the study:

(1) 22 healthy young subjects aged between 21–25 years (11 men

and 11 women, age = 23.4561.34 years,

height = 167.7768.08 cm, body mass = 61.72613.76 kg); (2) 22

older subjects aged 56–78 years (11 men and 11 women,

age = 66.6867.11 years, height = 168.6867.36 cm, body

mass = 66.31610.05 kg). All subjects provided informed consent

as approved by the local institutional review board. No subjects

had cardiovascular, neurological, or other disorder that may

influence movement. We obtained informed consent from all the

subjects. All methods involved in this study achieved clinical

acceptance and were presented to the subject in detail prior to

obtaining consent.

Experimental Procedure
Standing postural sway was measured for 20 seconds with a

stationary force platform (Kistler Instrument Corp., Amherst, NY).

Subjects stood barefoot with feet shoulder-width apart. Foot

position was marked to ensure consistency between trials. Four

trials were completed in random order: two with eyes open and

two with eyes closed. Subjects were instructed to remain as still as

possible throughout the trial.

Adaptive capacity of the postural control system was assessed

with the sharpened Romberg test [34]. Subjects stood barefoot on

their dominant leg for up to 20 seconds. The time to failure (i.e.,

when the dominant foot moved position or the non-dominant foot

touched the ground) was recorded and averaged over two trials.

Postural Sway Analysis
Anterioposterior and mediolateral center-of-pressure displace-

ments were recorded at 1000 Hz using Bioware software (Kistler

Instrument Corp., Amherst, NY). A one-dimensional magnitude

time-series was derived by calculating the absolute displacement

between each sampled point. A one-dimensional time-series was

derived by calculating the absolute displacement between each

sampled point as following:

d~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x(i){x(i{1))2z(y(i){y(i{1))2

q
ð1Þ

where d is the magnitude (absolute displacement), and x (i) and y (i)

are the coordinate value of current sampling point while x(i-1) and

y(i-1) stand for the coordinate of the previous point. After that,

instead of the original coordinate values in anteroposterior (AP)

and mediolateral (ML) directions, the magnitude series could be

gained, which was then analyzed by EMD-DFA method in a six

step process (Figure 1).

A cumulative sum time series, Y(i), was constructed after

removing the mean from the original time series x(i),i = 1,…,N

(Figure 1a).

1) The data-driven EMD algorithm was applied to decompose

the integrated time series Y(i) into a set of intrinsic mode

functions, IMF(1,n), and a residual component (i.e., Mode

5, Figure 1b). The residual component, which represents a

nonstationary trend, was removed.

2) All time scales inherent to the given COP series (i.e.,

intrinsic scale, s) were identified by computing the number

of data points between each neighboring local minima

throughout each IMF (i.e.,IMF (j),j~1,:::,n). Each s was

therefore mono-component, derived from the signal itself

and not affected by nonstationary trends, thus reflecting an

inherent property of the signal. Accordingly, all intrinsic

scales of each IMF were determined (Figure 1c).

3) For each identified intrinsic scale (e.g.,s1), all IMFs were

resampled such that zeros were substituted for all data points

corresponding to scales not equal tos1. The fluctuation at the

time scale s1 time-series, Ys1(i), was then generated by

summing all IMFs1(j) (Figure 1e).

4) The root mean square, F(s1), of Ys1(i) was calculated using

the following equation:

F(s1)~
1

N

XN

i~1

Y 2
s1(i)

" #1=2

ð2Þ

5) Steps 4 and 5 were repeated for all intrinsic scales, thus

forming a power law relationship between F (s) and s:

F(s)*sa ð3Þ

Complexity of Postural Control in Older Adults
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where the scaling exponent a exhibits the scaling properties

of the signal and can be estimated by the slope of a linear

plot on a double log graph (Figure 1f).

6) For all datasets, two distinct linear regions were observed on

the double log graph (Figure 2A). We therefore employed a

least-squares fitting procedure to first determine the best

cross-over point and then computed a short- and long-term

alpha (ast. alt).

For comparative purposes we also derived double log plots using

the original DFA method. Similar to previous report [35], we did

not observe a cross over point in any dataset and moreover, long-

term scaling properties were highly unstable (Figure 2B).

In addition to the EMD-DFA method, traditional summary

statistics were computed and averaged across trials. COP speed

was computed by dividing total path length by trial duration. COP

area was determined by calculating by area of a confidence ellipse

enclosing 95% of the center-of-pressure trajectory [36].

Statistical Analysis
Statistical analyses were performed using JMP software (SAS

Institute, Cary, NC). Descriptive statistics (means 6 S.D.) were

used to summarize all numeric variables. Potential group

differences in gender distribution, height and body mass were

examined with one-way ANOVAs or logistic regression.

The effects of age on standing postural sway (i.e., aShort, aLong,

speed, area) were examined with repeated-measures ANCOVAs.

Group (i.e., young, old), visual condition (i.e., eyes-open, eyes-

closed) and their interaction were included as model effects.

Models were adjusted for gender, height and body mass. Tukey’s

post-hoc testing was used to analyze group differences within

significant models. As the four COP metrics were analyzed with a

separate model, a Bonferroni adjustment of p,0.012 was used to

determine significance.

The relationship between standing postural sway metrics and

Romberg test performance (i.e., one leg standing time to failure)

was examined using linear regression analysis. Models were

adjusted for gender, height and body mass. As all the young

subjects were able to complete the one-leg stand test without

failing, relationships were only explored within the older group.

Similar to above, significance was determined by p,0.012.

Results

The younger and older groups did not differ in height, body

mass or the distribution of gender.

With all subjects analyzed together, ashort and aLong did not

correlate with one another or with the traditional metrics of COP

speed or area in either visual condition (r2,0.04, p.0.10).

The long-term scaling exponent (aLong) was similar across

groups and between visual conditions (0.4660.12). On the other

hand, an interaction (F = 5.3, p = 0.01) was observed between

group and visual condition for aShort (Figure 3a). As compared to

the younger group, the older group demonstrated greater aShort

values when standing with eyes open and eyes closed. Occluding

vision resulted in increased aShort values across both groups;

however, this effect was significantly greater in the older group

(p,0.01).

The older group exhibited larger COP area (F = 4.5, p,0.01)

and faster COP speed (F = 12.4, p,0.001) than the younger group

(Figure 3 b and c). Closing the eyes led to an increase in COP area

in both groups (F = 5.2, p = 0.01), yet did not affect COP speed.

To examine the relationship between the degree of long-range

correlations within COP dynamics and the adaptive capacity off

the postural control system, we examined the relationship between

Figure 1. The empirical mode decomposition embedded detrended fluctuation analysis (EMD-DFA) technique.
doi:10.1371/journal.pone.0062585.g001

Complexity of Postural Control in Older Adults
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COP metrics obtained during eyes-open bipedal standing and the

time to failure in the single leg balance test. Only those data from

older adults were utilized, as a ceiling effect occurred in the

Romberg test in the younger group. Those older adults with lower

aShort values (i.e., closer to 1.0) were able to stand on one leg

significantly longer (Figure 4, r = 20.64, p,0.001). This correla-

tion remained significant (p = 0.01) after adjusting for gender,

height and body mass. No other COP metric correlated with time

to failure in the single leg test.

Discussion

In this study, we applied EMD-DFA on to estimate the fractal-

like complexity of standing postural control dynamics and its

relationship to adaptive capacity in younger and older adults.

Using this method, we have demonstrated that the fractal

properties of COP magnitude fluctuations are time-scale depen-

dent which is different from the raw data of COP. The aLong

Figure 2. Comparison of A) EMD-DFA, and B) conventional DFA
of standing postural sway dynamics (i.e., center-of-pressure) as
a 23-year-old subject stood with eyes-open. Two distinct linear
regions were present in the EMD-DFA-derived double log plot, thereby
enabling calculation of a short- and long-term scaling exponent, a. The
double log plot derived from the conventional DFA, on the other hand,
did not contain a clear cross-over point. Similar results were observed
for all analyzed datasets.
doi:10.1371/journal.pone.0062585.g002

Figure 3. The effects of age and visual condition on postural
sway metrics including A) the short-term scaling exponent
(ashort), B) center of pressure (COP) speed, and C) COP area.
Values represent means 6 standard error. The long-term scaling
exponent (aLong) was similar between groups and across visual
conditions and therefore not shown.
doi:10.1371/journal.pone.0062585.g003

Complexity of Postural Control in Older Adults
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parameter was nearly constant across all subjects in either visual

condition which resembled white noise. On shorter time scales

(less than 10 ms), however, fluctuations were highly complex.

Biological aging and the removal of visual feedback were each

associated with larger aShort values; i.e., diminished short-term

COP complexity. The value of aShort was not correlated with

traditional COP parameters and importantly, closely predicted

system functionality in older adults as defined by performance in

the Romberg test of one leg standing balance.

The EMD-DFA utilizes an adaptive decomposition algorithm to

determine time scales that are intrinsic to the signal being

analyzed. These intrinsic scales denote periods of mono-compo-

nent oscillations and therefore, are not pre-determined or fixed

periods, as is the case in the conventional DFA approach. This

detrending procedure thereby affords more accurate identification

(and removal) of intrinsic trends, as well as subsequent interpre-

tation of the scaling properties associated with the complex control

of standing postural sway. As opposed to conventional DFA,

results derived from EMD-DFA consistently revealed two distinct

linear regions on the double-log graphs, with an average cross-over

point occurring at approximately 10 milliseconds. Similar to

several previous studies on the analysis of the COPx and COPy

data [19], [37], the short-term scaling properties of COP dynamics

resembled pink noise (i.e., aShort values were close to one). The

long-term scaling properties were more stable than those derived

from conventional DFA (i.e., Figure 2) and resembled white noise

which is not similar to the result of original data in AP and ML.

In a previous study, Collins and De Luca [9] examined the

COP dynamics of quiet standing using stabilogram diffusion

analysis, a technique comparable to that of conventional DFA.

Similar to the present study, the authors observed distinct short-

and long-term fractal scaling characteristics. They concluded that

in the short term (i.e., periods less than one second), COP

fluctuations are dominated by persistent behavior and thus reflect

open-loop control. Over periods greater than one second, on the

other hand, COP fluctuations are anti-persistent, suggesting the

presence of feedback-mediated control. In the present study, we

observed a cross-over point that consistently occurred at approx-

imately 0.01 second (for normal elder and young people it remains

at the same time scale). While feedback-mediated reflexes do

indeed occur on the millisecond level [38], the specific regulatory

mechanisms that influence high-frequency COP dynamics are

unclear. For example, in addition to studying feedback-mediated

reflexes, future research should employ EMD-DFA to establish the

influence of both muscle tone and joint stiffness characteristics on

cross-over point timing, as each also influences the high-frequency

components of standing postural sway [39].

Lipsitz and Goldberger proposed that aging from adulthood

into senescence results in a loss of complexity associated with the

dynamics of physiological control [40]. This concept has been

supported by many studies. For instance, in a previous study of

balance control, Thurner et al [41] calculated the power spectral

exponent, b, of COP time-series acquired as healthy younger and

older adults stood quietly with eyes open. The study showed that

older adults exhibited higher b values over short time scales. As b
is analytically related to a (b= 2a-1) [42], higher values of b reflect

lower complexity of postural sway [43]. Our results show that the

time courses of young are in higher anti-persistence than elderly

(when 1,a,1.5, smaller a= more anti-persistent), which is

correlated with a more tightly controlled postural system and

higher balance stability [44], [45]. These results demonstrate a

cross-sectional, aging-related degradation in the complex physio-

logical control of standing posture.

Across all subjects, closing the eyes increased aShort values and

thus, reduced COP complexity. However, this reduction in

complexity was significantly greater in older adults as compared

to their younger counterparts. This observation supports the

notion that with advancing age, the control of postural sway

becomes increasingly dependent upon visual feedback [10], [46].

These results are also supported by Manor et al [25], who

demonstrated–in a cohort of 453 community-residing elderly

adults–that visual and somatosensory impairments were indepen-

dently associated with diminished quiet standing COP complexity,

as quantified by multiscale entropy analysis. Thus, as visual

feedback appears to be involved in the complex regulation of

postural control, particularly in elderly individuals, research

examining the mechanisms through which this source of feedback

contributes to the fractal-like nature of postural control across the

lifespan is needed.

However, there are also studies showing that complexity in

certain physiological variables is not necessarily reduced with

healthy aging [47] [48] [49], and several caveats exist within this

theory [50] e.g., the effects of biological aging may be dependent

upon both the metric used to quantify complexity [51] and the task

constraints within which a system is operating. Further studies are

warranted to clarify potentially different influences of aging on

different physiological systems and on different dynamic proper-

ties.

A central premise of the complexity theory of aging is that a loss

of complexity in the dynamics of postural control results in

functional decline of the individual by limiting the range of

available, adaptive postural responses to the innumerable and

often unpredictable stressors and perturbations experienced

throughout one’s daily life [13], [40]. 1. Current study supports

this premise that older adults with greater aShort values of the

magnitude series were able to stand longer on one-leg. 2. As

Romberg test reflects function and fall risk, suggests that

complexity is important and complimentary to traditional metrics.

As we know the degeneration of balance control system resulting

from the age increasing or disease leads to large amount of injuries

Figure 4. The relationship between the complexity of postural
sway and the functionality of the postural control system in
older adults. Those individuals with greater short-term COP
complexity (i.e., EMD-DFA-derived aShort values closer to one) during
eyes-open standing demonstrated greater performance in the Romberg
test of one-leg standing balance.
doi:10.1371/journal.pone.0062585.g004
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and death in olds or patients, this finding may be helpful in falls

predicting and protecting.

Of note, the fractal properties associated with the derived COP

magnitude time-series may be different from those associated with

the raw COP series. Previous studies have demonstrated that

positive correlations in the magnitude series reflect nonlinear

properties of the dynamics of physiological fluctuations, and that

two signals can have similar correlations in raw data but different

correlations in magnitude series and vice versa [16] [22] [52].

In this study, we examined COP complexity at time scales up to

20 seconds, which is relatively short. Further studies should be

carried out to determine the EMD-DFA derived scaling properties

of COP fluctuations at larger time scales. In addition, since this

study was cross-sectional, future longitudinal studies are needed to

examine intra-subject changes in postural sway complexity over

time, as well as the relationship of these changes in complexity to

clinical outcomes. Furthermore, to better understand aging effects

on human movement in general, the EMD-DFA method can also

be applied to other types of physiological signals such as wrist

motion and gait, which also possess fractal and complex temporal

fluctuations [2] [3] [52] [53] [54].

In conclusion, this study applied EMD-DFA to examine the

aging and functional implications of the complex fractal properties

of standing postural sway. The fractal-scaling exponents of

magnitude series derived from this procedure were more stable

than those produced by conventional DFA. The observed age-

related reduction in COP complexity (i.e., larger aShort) was

exaggerated by removing visual feedback, and was closely

associated with diminished performance in the Romberg test; a

widely-used clinical assessment associated with reduced mobility

and elevated risk of falling. This property of postural control as a

new biomarker may therefore aid in the evaluation of the postural

control system and the identification of elderly people with

functional limitations.
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